A NOTE ON EULER NUMBERS AND POLYNOMIALS

L. CARLITZ

1. Euler numbers. Let En denote the Euler number in the even suffix

notation so that
(1.1) (E+1)"+(E~1)"=0 (m>0), E=1,

where, as usual, after expansion of the left member E” is replaced by Er.
Nielsen [4, p. 273] has proved that

{0 (mod p) (=1 (mod 4))

(1-2) Eom =
2 (mod p) (=3 (mod 4)),

where p is an odd prime such that p—1|2m. The special case m=p—1 is due
to Ely [1, p, 341].
We wish to point out, to begin with, that (1.2) can be extended to give

0 (mod 2°) (p=1 (mod 4))

(1.3 m =
) E. {2 (mod 2°) (=3 (mod 4)),

where p is an odd prime such that (p —1)°7!|2m.

To prove (1.3) we begin with the formula
(1.4) Em(x+1)+Em(x) =2x"’,

where [5, p. 25]

(1.5) Enx)= 3 (M)e>(:-1)" B,

0=2s=m'2S
is the Euler polynomial of degree m. It is clear from (1.4) that
{1.6) 220( —1(x+8)" = En(x) + (= 1) En(x + 7 +1).
We also recall that [5, p. 28]
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(1.7) Enx) =33 (") 27 Coa™,
s=0 S
where
(1.8) cm_1=2’"(1—2"‘)%1; Co=1, Cu=0 (ra1).

Consequently for x =0, (1.5) and (1.6) imply

L9) 2R~ = Bnlr 4 1) =272 (47 ) (2 4+ 1" B,
Clearly (1.9) yields the congruence

(1.10) PPN (—1) M= B (mod (27+1)).

Now let (p—1)p°"*|2m and 2°|(27r+1). Then for p + s it is evident that
s =1 (mod »°), while for p|s we have s*” =0 (mod p°). Thus the left member

of (1.10) is congruent to

(1.11) 29S(=1)"°  (mod 2°).

s=1

Since p|27-+1 implies rz%(p—l) (mod p), it follows at once that (1.11) re-

duces to

0 (p=1 (mod 4))

L12) 2014+ (~DE) = (p=3 (mod 4))

Comparison of (1.10) and (1.12) leads at once to (1.3). This proves
THEOREM 1. If (p—1)p°""|2m then (1.3) holds.
For a different proof of (1.3) see [2, p. 845].

2. Euler polynomials. Returning to (1.6) we put x = a, where a is a ra-
tional umb er that is integral (mod ). Since for a=b (mod °) we have
En(a) = En(8) (mod %), there is no loss in generality in assuming that a is an
integer.

If we take r=p—1, (1.6) becomes

-1
(2.1) ng:( —1)*(a+$)" = Eam(a) + Esm(a +p).
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o1

Let a=0 (mod p) and assume that (p—1)p* *|2m. Then (2.1) reduces to
(2.2) Em(a) + Esm(a+p) =0 (mod »°).

Since by (1.7) and (1.8), E:m(0) =0 for m = 1 we therefore get from (2.2)
(2.3) Evm(a) =0 (mod p°) (pla).

For a=1 (mod p) it is also clear that the left member of (2.1) is divisible by
?°; since Eym(1) =0 for m =1 we get
(2.4) Exn(a) =0 (mod %) (@=1 (mod p)).
In the next place, since
Em(x + 7’) = }j‘;

§=0

( 7;1) 7" °Es(x),

it follows from (1.6) that

r—1
(2.5) 2};0(—1)5(a+s)2”‘
2m-1
= 1+ (=1 Eanla) + (-1 3 (27)r By(a)

=14+ (-1 Emla) (mod 7).
We take 7 odd, p°l7 and (p—1)p°"'|2m; since
(a+p)"=a"  (mod p°),
it follows at once from (2.5) that

(2.6) Evm(a+p) = Esm(a) (mod 2°),

where a is arbitrary (but integral (mod p)).
Thus to determine the residue of E;m(a) it suffices to take 1 €a=p—1.

Using (1.6) we have
220( -1)"*(a+ )" =(—-1) Exm(a) + Exm(a+7+1),
which implies

(2.7) 24%‘_0.( =1 (a+5)""=(=1) Esmla) + 27" Eym
(mod (2a+27+1)%).

If we assume that (p—1)p°'|2m and p°|(2a+27+1)* then (2.7) becomes
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(2.8) zg( ~1)=(=1) Esm(a) + Eam  (mod 7°).

pta+s

Clearly the left member of (2.8) is equal to

a+r a-1
(2.9) 221}(—-1)‘””5-22_}1(—1)“"5.
p+s

Comparing the first sum in (2.9) with (1.11) and using (1.3) it is clear that

(2.8) becomes
(=1) Eoma) = —22( _ 1)

and therefore finally
(2.10) Exn(a) =1+ (—1)° (mod 7°) lga=p-1).

We may state
TuEOREM 2. If (p—1)p°"'12m and p + a then
(2.11) Em(a) =1+ (-1)° (mod 2°),

where a=c (mod p), 1=c<p-—1; if pla, then (2.3) holds.

It is evident that (2.11) includes (2.4); also it is not difficult to show that
(2.11) includes (1.3).

3. Additional results. If in (1.6) we replace m by 2m—1 we get using
(1.5)

(3.1) 22( —1)(a+5)"" = Bymr(a)  (mod 2a+27+1).

Hence if (p—1)p°"'|12m and p°|2a+27+1, (3.1) implies

3.2) e o B @ (mod £°).
Prass

In particular when @ =0, it follows from (1.8) that

Fo%-1) ( _ 1)\S
(3.3) 5 D = a-2m B (mod 4
p+s

the special case
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3(p-1) (- 1)$
(3.4) > 7 =Cem-1 (mod p) (p—112m)

s§=0
may be noted. We also remark that for a = _;" (3.2) becomes

e O
$=0 2s+1

pt2s+1

(3.5) =0 (mod 2°).

TFor formulas like (3.4) see Glaisher [3].

If (a/p) denotes the Legendre symbol, then
Jo-upet _ (@ 2
a? = (p) (mod p°).
Thus (1.6) implies

(3.6) 28 (~1*(2E) = Eal@) 4 (=1 " Enat+r)  (mod 4,

where m is an odd multiple of %(p—l)pe'l. Now let 7 be odd, p°|7; then
(3.6) yields

(3.7) :E;:( -1)° (a—;-i) = En(a) (mod 2°).

It follows at once from (3.7) that
(3.8) En(a+p) = En(a) (mod 2°).

Moreover it is clear from (3.7) that (r = pt)

t-1p-1

En(a)= 33 (-1 (211)

2=0¢=
S &, ifati) & ifa+i
=5 (-1 S (- V() = 3 (-0 +£).
so that
-1 . o
(3.9) En(@)=2(~1(4FL)  (mod ).
izo ?
In particular for @ =0, (3.9) becomes
A il ¢
(3.10) En(0)=3(-17(5)  (mod £).

For p=1 (mod 4), both members of (3.10) vanish, while for »=3 (mod 4)
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we get

ot s 2s §
(3.11) Cn=23 (-1 ( p) (mod £°).

let1£a<p—1; then by (3.9)

+a-

Ena)= (-1 3 (~1¢()

E(—l)"g(—ns(%) 2 —1)”::2:( -0 (5 )

Comparing with (3.10) we get
a—1

(312)  En0)-En@=2(-1D"3(-1°($)  (mod #°).
im0 »

We may state

Tueorem 3. If m is an odd multiple of <5 (p~1) 3", then (3.8), (3.10)
and (3.12) hold.

In particular, (3.12) implies
$(p-1)
(3.13) Cm—En=2(—132" "5 (= 1)3(‘2335") (mod %),
$=0

which includes (3.11).

4. Eulerian numbers and polynomials. It is of interest to compare (2.3)

with the following known results for Bernoulli polynomials.
(4.1) Bn(a) =0 (mod p°) (Plm, p—14+m),

(4.2) Bm(a)+%—150 (mod p°)  ((p—1)5Im),

where the rational number « is integral (mod p). However it seems more in-

structive to discuss the “Eulerian” numbers ¢x(¢) defined by

1-¢ & " )
(4.3) g = Dm0 D),
and the polynomials
(4.4) om(x, €)= f‘%( )5 9s(8) = (x4 9™,

For a detailed study of ¢m(¢) see [2]. We shall suppose that the parameter ¢
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is an I-th root of unity, where I = 2.

It is an immediate consequence of (4.4) that
(4.5) om(x+1, &) = Com(x, ¢)=(1-¢)x"
(Since ¢m(x, —1) = En(x), it is clear that (4.5) reduces to (1.4) when = —1).
By means of (4.5) we readily obtain

r—1
(4.6) pm(x+7,0) = omlx, O)=(1-0) ‘_joc"“s(x +8)™
Substituting from (4.4) it is evident that (4.6) implies
m—1 m

(4.7) A=) g, O+ 2 (7 )7 gz, ©)

r-1
=(1-2¢) 20,4"““5 (x +s)™.

Now replace x by a rational number a that is integral (mod p). The
number ¢,(¢) is in the field R(%), where R is the rational field; more precisely
it is of the form am/(1-¢)™, where ax is an integer of R(¢). If we assume
that (p, 1—¢) = (1), then ¢m(¢) is integral (mod p); the same is therefore
true of ¢m(a, ¢). In the next place (4.7) implies

r—1
(4.8) (1=¢) gm(x, C)E(1~C)§C'“"s(x+s)m (mod 7),

provided (7, 1—¢)=(1). Let us now assume that (p—1)p*"'|m and »°|7.
Then (4.8) reduces to

r—1
(4.9) (1=¢)pmla, €) =(1-20) }j(}) gt (mod 2°).
pta+s

If we suppose, as we may, that ! + 7, then it follows readily from (4.9)
that

(4.10) om(a+p, €) =gmla, ¢) (mod »°).
It accordingly suffices to assume that 0 £ag < p—1.

In the first place for a =0, (4.9) reduces to

r=1
(4.11) (1-—C')¢m(C)E(l—C);‘OC"I's (mod p°).

pts

We shall take =1 (mod /); then (4.11) gives
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r-1 t-1
Bn(@) = 2307 = TR,
§=0 8=

where 7 =tp. A little computation now gives

C'—l

(4.12) om(C) = "T—“CT

(mod 2°).

Next for 1 <a <p—1, where again =1 (mod I), 7 =1p, it follows from
(4.9) that

¢m(a, ¢) = “’i“cﬁ,_l_s_ ‘gca”—l_—s" éca*r-l—ps
8=0

8§=0 s=1

=1_Ca+r_cr1_ca _Call ;pt
T o 1-¢ 1-¢ 1-¢?
— a—-1 1 "‘C

Hence using (4.10) we get

(4.13) om(a, €) =1 —¢ 1 (mod 7°),

CD
where a=c¢ (mod »), 1 ¢ £ p—1. This completes the proof of

THEOREM 4. Let (p—1)p°""|\m and let a=c (mod p), where 0 £c = p—1.
Then if ¢x0, (4.13) holds, while for ¢ =0 we have

1 ¢Pt

(4. 14) ¢m(a, C) cp

(mod %) (pla).

It is clear that for ¢ = —1, (4.13) reduces to (2.11) and (4.14) reduces to
(2.3). For the special case a=0 of (4.14) see [2, p. 842].

If « is an integer of R(¢), we may again employ (4.8). Let p be a prime
ideal of R(¢), Np=2’, where (p, 1) =1. Then if we assume that

(4.15) (Np-1)p°"" | m,

and p°|7, we get

(4.16) 1= pma, O)=(1-20) i“j ¢rTe (mod p°).

pta+s

It follows that if # € p then

(4.17) om(a+ 7, ¢) = ¢mla, €) (mod »°),

and therefore

https://doi.org/10.1017/50027763000018043 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018043

NOTE ON EULER NUMBERS AND POLYNOMIALS 43

(4.18) om(a + 2, &) = omla, €) (mod 2°).

Now if « is congruent to a rational integer (mod p), then, in view of (4.17),
(4.13) holds. On the other hand, when « is not congruent to a rational integer,
then in the right member of (4.16) the condition p + a + s is satisfled automati-
cally and we get (=1 (mcd /1))

o

r=1 _
omla, )= 2= -11—~~ =1 (mod »°).
s=0 _'C

‘We may state

THEOREM 5. Let a be an integer of R(C), p +1, and assume that (4.15)
is satisfied, where p is a prime ideal of R(C), Np= ﬁf. Then if a is congruent

to a rational integer a (mod p), (4.13) and (4.14) hold; otherwise we have
(4.19) om(a, ©) =1 (mod 1°).

In particular if Np=p, (4.13) and (4.14) apply.
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