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Numerical semigroups with a given set
of pseudo-Frobenius numbers

M. Delgado, P. A. Garćıa-Sánchez and A. M. Robles-Pérez

Abstract

The pseudo-Frobenius numbers of a numerical semigroup are those gaps of the numerical
semigroup that are maximal for the partial order induced by the semigroup. We present a
procedure to detect if a given set of integers is the set of pseudo-Frobenius numbers of a numerical
semigroup and, if so, to compute the set of all numerical semigroups having this set as set of
pseudo-Frobenius numbers.

1. Introduction

Let S be a numerical semigroup, that is, a cofinite submonoid of (N,+), where N stands for
the set of non-negative integers.

An integer x is said to be the Frobenius number of S (respectively, a pseudo-Frobenius
number of S) if x 6∈ S and x + s ∈ S for all s ∈ N \ {0} (respectively, for all s ∈ S \ {0}).

Given a positive integer f , there exist numerical semigroups whose Frobenius number is
f . One example of such a semigroup is the semigroup {0, f + 1,→} containing 0 and all the
integers greater than f . There are several algorithms to compute all the numerical semigroups
with a given Frobenius number (the fastest we know is based on [9]).

We denote by F(S) the Frobenius number of S and by PF(S) the set of pseudo-Frobenius
numbers of S. The cardinality of PF(S) is said to be the type of S and is denoted by t(S).

A positive integer that does not belong to S is said to be a gap of S and an element of S
that is not greater than F(S) + 1 is said to be a small element of S. To denote the set N \ S
of gaps of S we use gaps(S) and to denote the set of small elements of S we use smalls(S).
Since a set of gaps must contain the divisors of all its members and a set of small elements
must contain all multiples of its members (up to its maximum), it is clear that there are sets
of positive integers that cannot be the set of gaps or the set of small elements of a numerical
semigroup. The set of gaps, as well as the set of small elements, completely determines the
semigroup. Observe that when some elements or some gaps are known, others may be forced.
For instance, a gap forces all its divisors to be gaps.

Let n be a positive integer and let PF = {g1, g2, . . . , gn−1, gn} be a set of positive integers.
Denote by S(PF) the set of numerical semigroups whose set of pseudo-Frobenius numbers
is PF. When n > 1, S(PF) may clearly be empty. Moreover, when non-empty, it is finite.
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grant no. FQM-5849. The third author is also supported by the Plan Propio (Plan de Fortalecimiento de
los Grupos de Investigación) of the Universidad de Granada. The authors are also supported by the project
MTM2014-55367-P, which is funded by Ministerio de Economı́a y Competitividad and Fondo Europeo de
Desarrollo Regional FEDER.

https://doi.org/10.1112/S1461157016000061 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000061


pseudo-frobenius numbers of numerical semigroups 187

In fact, S(PF) consists of semigroups whose Frobenius number is the maximum of PF. Some
questions arise naturally. Among them, we can consider the following.

Question 1. Find conditions on the set PF that ensure that S(PF) 6= ∅.

Question 2. Find an algorithm to compute S(PF).

Both questions have been solved for the case that the set PF consists of a single element
(which must be the Frobenius number of a numerical semigroup, symmetric numerical
semigroups) or when PF consists on an even positive integer f and f/2 (pseudo-symmetric
numerical semigroups), see [1]. Moreover, Question 1 was solved by Robles-Pérez and
Rosales [7] in the case where PF consists of two elements (not necessarily of the form {f, f/2}).

The set S(PF) can be computed by choosing those semigroups that have PF as set of
pseudo-Frobenius numbers from the set of numerical semigroups whose Frobenius number
is the maximum of PF. Due, in part, to the possibly huge number of semigroups with a
given Frobenius number, this is a rather slow procedure and we consider it far from being a
satisfactory answer to Question 2 (there are 1 156 012 numerical semigroups with Frobenius
number 39, and the set for Frobenius number 100 is by now out of reach).

Irreducible numerical semigroups with odd Frobenius number correspond with symmetric
numerical semigroups, and those with even Frobenius number with pseudo-symmetric ones
(see for instance [8, Chapter 3]). Bresinsky proved in [2] that symmetric numerical semigroups
with embedding dimension 4 have minimal presentations of cardinality 5 or 3 (complete
intersections). Symmetry of a numerical semigroup S translates to having {F(S)} as set of
pseudo-Frobenius numbers. Later, Komeda [6] was able to prove the same result for pseudo-
symmetric numerical semigroups (though he used different terminology for this property;
in this setting 3 does not occur since pseudo-symmetric semigroups are never complete
intersections). A numerical semigroup S is pseudo-symmetric if its set of pseudo-Frobenius
numbers is {F(S),F(S)/2}. It should be interesting to see the relationship with the type
and the cardinality of a minimal presentation, and thus having tools to find semigroups with
given sets of pseudo-Frobenius numbers becomes helpful. Watanabe and his students Nari and
Numata are making some progress in the study of this relationship.

1.1. Contents

We present two different procedures to determine the set of all numerical semigroups with
a given set of pseudo-Frobenius numbers. One exploits the idea of irreducible numerical
semigroups. From each irreducible numerical semigroup, we start removing minimal generators
with certain properties to build a tree whose leaves are the semigroups we are looking for. The
other approach is based on determining the elements and gaps of any numerical semigroup
with the given set of pseudo-Frobenius numbers, obtaining in this way a list of ‘free’ integers.
We then construct a binary tree in which branches correspond to assuming that these integers
are either gaps or elements.

We start this work with some generalities and basic or well-known results. Then we describe
a procedure to compute forced integers. Computing forced integers is fast and leads frequently
to the conclusion that there exists no semigroup fulfilling the condition of having the given
set as set of pseudo-Frobenius numbers. The following section of the paper is devoted to the
above-mentioned approach of constructing a tree with nodes lists of integers, which turns
out to be faster most of the time than the one based on irreducible numerical semigroups.
Nevertheless, besides being useful to compare results, the method using irreducible numerical
semigroups is of theoretical importance so we decided to keep it, and it is given in Appendix A.
In Appendix B, we describe an algorithm that (increasing the number of attempts, if necessary)
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returns one numerical semigroup with the given set of pseudo-Frobenius numbers, when such
a semigroup exists. This procedure is reasonably fast in practice.

We give pseudo-code for various algorithms used in the approach of lists of free integers.
For the implementation of the algorithms we have taken advantage of the existence of the
GAP [5] package numericalSgps [4] for computing with numerical semigroups. However, all the
algorithms use elementary operations and could be implemented in any language.

Many examples are given throughout the paper, some to illustrate the methods proposed,
while others are included to motivate the options we have followed, and why we discarded
other possible choices. In some of the examples we show the output obtained in a GAP session.
These usually correspond to examples that are not suitable to a full computation just using
a pencil and a sheet of paper; furthermore, indicative running times, as given by GAP, are
shown (mainly in §§ 3 and 4).

A new version of the numericalSgps package, including implementations of the algorithms
developed in the present work, is released at the same time as this work is made public. The
implementations are available at the links given in the references (this software is open source).
Hence, the interested reader can find a sharper depiction of the algorithms presented in this
paper, and can use these implementations for testing examples (and produce new code based
on them).

2. Generalities and basic results

Throughout the paper we will consider often a set PF = {g1, g2, . . . , gn−1, gn} of positive
integers. We will usually require it to be ordered, that is, we will assume that g1 < g2 < . . . <
gn−1 < gn. For convenience, we write PF = {g1 < g2 < . . . < gn−1 < gn} in this case.

We denote by frob the maximum of PF and by type the cardinality of PF. Note that if
S ∈ S(PF), then frob = gn = F(S) and type = n = t(S).

2.1. Well-known results

The partial order 6S induced by the numerical semigroup S on the integers is defined as
follows: x 6S y if y − x ∈ S. The following result is well known and will be used several times
throughout this paper.

Lemma 3 [8, Lemma 2.19]. Let S be a numerical semigroup. Then:
(i) PF(S) = Maximals6S

(Z \ S);
(ii) x ∈ Z \ S if and only if f − x ∈ S for some f ∈ PF(S).

The type of a numerical semigroup S is upper bounded by the least positive element
belonging to S, which is known as the multiplicity of S and is denoted by m(S).

Lemma 4 [8, Corollary 2.23]. Let S be a numerical semigroup. Then m(S) > t(S) + 1.

2.2. Forced integers

We say that an integer ` is a gap forced by PF or a PF-forced gap if ` is a gap of all the
numerical semigroups having PF as set of pseudo-Frobenius numbers. In particular, if there
is no semigroup with PF as set of pseudo-Frobenius numbers, then every non-negative integer
is a gap forced by PF. We use the notation GF(PF) to denote the set of PF-forced gaps. In
symbols: GF(PF) =

⋂
S∈S(PF) gaps(S).

In a similar way, we say that an integer ` is an element forced by PF or a PF-forced element
if ` is an element of all semigroups in S(PF). We use the notation EF(PF) to denote the
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set of small PF-forced elements. In symbols: EF(PF) =
⋂

S∈S(PF) smalls(S). Note also that if

S(PF) = ∅, then EF(PF) = N.
The union of the PF-forced gaps and PF-forced elements is designated by PF-forced integers.
The following is a simple, but crucial, observation.

Proposition 5. S(PF) 6= ∅ if and only if GF(PF) ∩ EF(PF) = ∅.

Proof. If S(PF) = ∅, then all non-negative integers are at the same time gaps and elements
forced by PF. Conversely, assume that S(PF) 6= ∅ and let S ∈ S(PF). Then GF(PF)∩EF(PF) ⊆
gaps(S) ∩ smalls(S) = ∅.

Frequently the prefix PF is understood and we will abbreviate by saying just forced gap,
forced element or forced integer.

Let G and E be, respectively, sets of forced gaps and forced elements. The integers v ∈
{1, . . . , frob} that do not belong to G ∪ E are said to be free integers for (G,E). When the
pair (G,E) is understood, we simply call free integer a free integer for (G,E).

2.3. Forced gaps

The maximality of the pseudo-Frobenius numbers of S with respect to 6S means that they
are incomparable with respect to this ordering. In particular, the difference of any two distinct
pseudo-Frobenius numbers does not belong to S, that is,

{gi − gj | i, j ∈ {1, . . . , t(S)}, i > j} ⊆ gaps(S). (1)

This is the underlying idea of the next result.

Lemma 6. Let S be a numerical semigroup and suppose that PF(S) = {g1 < g2 < . . . <
gn−1 < gn} with n > 1. Let i ∈ {2, . . . , t(S)} and g ∈ 〈PF(S)〉 with g < gi. Then gi − g ∈
gaps(S).

Proof. Assume that g = gi1 + . . . + gik for some k ∈ N. We proceed by induction on k. The
case k = 1 is given by (1). Assume that the result holds for k − 1 and let us prove it for k. If
gi − g ∈ S, then gik + (gi − g) ∈ S by definition of pseudo-Frobenius number. It follows that
gi − (gi1 + . . . + gik−1

) ∈ S, contradicting the induction hypothesis.

Remark 7. Lemma 4 implies that {x ∈ N | 1 6 x 6 t(S)} ⊆ gaps(S). Hence, {1, . . . , n} ⊆
GF(PF).

As the pseudo-Frobenius numbers of S are gaps of S and any positive divisor of a gap must
be a gap also, we conclude that the set of divisors of

PF(S) ∪ {x ∈ N | 1 6 x 6 t(S)} ∪ {gi − g | i ∈ {2, . . . , t(S)}, g ∈ 〈PF(S)〉, gi > g}

consists entirely of gaps of S.
Consider the set

PF ∪ {x ∈ N | 1 6 x 6 n} ∪ {gi − g | i ∈ {2, . . . , n}, g ∈ 〈PF〉, gi > g}

and denote by sfg(PF) the set of its divisors (as we are only considering positive divisors,
in what follows we will not include this adjective). If S is a numerical semigroup such that
PF(S) = PF, we deduce that sfg(PF) ⊆ gaps(S). We have proved the following result for the
case where there is a numerical semigroup S such that PF(S) = PF. If no such semigroup
exists, then GF(PF) = N and the result trivially holds.
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Corollary 8. Let PF be a set of positive integers. Then sfg(PF) ⊆ GF(PF).

We use the terminology starting forced gap for PF to designate any element of sfg(PF), since
sfg(PF) is the set we start with when we are looking for forced gaps.

Remark 9. Whenever we find a new forced element, it might produce new forced gaps. The
idea is the following. If e is an element and f is a gap, then f − e is either negative or a gap.
The divisors of these new gaps will also be forced gaps.

2.4. Forced elements

We use two ways to get new forced elements. One of these ways makes use of Lemma 3(ii).
We refer to the elements obtained in this way as elements forced by exclusion.

Lemma 10. Assume that we have a set of forced gaps FG. Let x ∈ FG. Consider the set
H = {h ∈ PF | h−x > 0 and h−x 6∈ FG}. If H = {h} for some positive integer h, then h−x
is a forced element.

Proof. Let S ∈ S(PF). As x ∈ FG, x 6∈ S and then by Lemma 3(ii), there exists g ∈ PF
such that g − x = s ∈ S. Hence, g ∈ H and consequently g = h. This implies that g − x =
h− x = s ∈ S.

Lemma 11. Let FG be a set of forced gaps with PF ⊆ FG. Take x ∈ {1, . . . , frob− 1} \FG.
If there is no positive integer in (−x + PF) \ FG, then x is a forced element.

Proof. Let S be a numerical semigroup with set of pseudo-Frobenius numbers PF. Assume
that x 6∈ S. Then, according to Lemma 3(ii), there exist f ∈ PF and s ∈ S such that f = x+s.
Observe that s 6= 0, because x 6∈ FG. But then s = −x + f ∈ (−x + PF) \ FG, which is a
contradiction.

Another way to find more forced elements makes use of the following lemma, which tells us
that small gaps force elements that are close to the maximum of PF. Sometimes we refer to
them by using the more suggestive terminology big forced elements.

Lemma 12. Let m be the multiplicity of a numerical semigroup S and let i be an integer
such that 1 6 i < m. Then either F(S)− i ∈ S or F(S)− i ∈ PF(S).

Proof. It suffices to observe that, as i < m, one has that F(S)−i+s > F(S) for all s ∈ S\{0}.
Consequently, F(S) − i + s ∈ S for all s ∈ S \ {0}. The result follows immediately from the
definition of pseudo-Frobenius numbers.

Since we do not know the multiplicity of the semigroups we are looking for, in the above
result we can take m to be the least positive integer that is not in the current set of forced
gaps.

Remark 13. If fe is a list of forced elements, then so is 〈fe〉 ∩ {0, . . . , frob− 1}. So, we will
always take this closure when computing forced elements.

2.5. Stop conditions

We present here some obvious conditions on the set PF that can be used to stop the algorithms
if they are not fulfilled, producing in this case the empty list.
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Let n > 1 be an integer and let PF = {g1 < . . . < gn} be a set of positive integers.

Lemma 14. Let S be a numerical semigroup such that PF(S) = PF. Let i ∈ {2, . . . , n} and
g ∈ 〈PF〉 \ {0} with g < gi. Then there exists k ∈ {1, . . . , n} such that gk − (gi − g) ∈ S.

Proof. Lemma 6 ensures that gi − g 6∈ S. The conclusion follows from Lemma 3.

By choosing i = n in the above result, there exists k 6= n such that gk − (gn − g1) > 0 and
gk− (gn− g1) 6∈ {1, . . . , type}. (Note that k = n would imply g1 ∈ S, which is impossible.) But
then gn−1− (gn− g1) > 0, since gn−1 > gk for all k ∈ {1, . . . , n− 1}. We have thus proved the
following corollary.

Corollary 15. Let S be a numerical semigroup such that PF(S) = PF. Then g1 > gn −
gn−1.

The computational cost of testing the condition g1 > gn − gn−1 obtained in Corollary 15
is negligible and should be made before calling any procedure to compute S(PF), avoiding in
many cases an extra effort that would lead to the empty set.

Other conditions of low computational cost would also be useful. Since gn−1− (gn−g1) > 0,
one could be tempted to ask whether replacing g1 by g2 one must have gn−1 − (gn − g2) 6∈
{1, . . . , type} (since {1, . . . , type} consists of gaps). The following example serves to rule out
this one that seems to be a natural attempt.

Example 16. Let S = 〈8, 9, 10, 11, 13, 14, 15〉. One can check easily that PF(S) equals
{5, 6, 7, 12}. For PF = {5, 6, 7, 12}, we have gn−1 − (gn − g2) = 7− (12− 6) = 1 ∈ {1, . . . , 4} =
{1, . . . , type}.

Remark 17. In light of Lemma 3, we have another condition. For every element x in sfg(PF)\
PF, there is always a positive integer in (−x + PF) \ sfg(PF).

Remark 18. It is also clear that at any step of the execution of the procedure, the set of
forced gaps cannot intersect the set of forced elements. If this is not the case, the output must
be empty (see Proposition 5).

Let us see how this last remark is used in an example.

Example 19. Let PF = {4, 9}. Taking divisors and the difference 9 − 4, one immediately
sees that the set of starting forced gaps contains {1, 2, 3, 4, 5, 9}. But then 5 appears as a forced
gap and as a (big) forced element. This is a contradiction, which shows that {4, 9} cannot be
the set of pseudo-Frobenius numbers of a numerical semigroup.

Example 20. Figure 1 has been produced by using the intpic package [3]. It represents
the set of numerical semigroups having {19, 29} as set of pseudo-Frobenius numbers, and it is
meant to illustrate the sets described in this section.

For PF = {19, 29}, we have that the set {1, 2, 4, 5, 10, 11, 19, 20, 29} consists of forced gaps
and that the set {0, 9, 18, 24, 25, 27, 28, 30} consists of forced elements. To the elements in each
of these sets, as well as the ones in the sets of minimal generators, is assigned one color (red
corresponds to pseudo-Frobenius numbers, blue to minimal generators, green to elements, cyan
to forced gaps and magenta to forced elements; in a black and white visualization of this paper
this will correspond with different gray tonalities). For integers that belong to more that one
set, gradient colors are assigned.

https://doi.org/10.1112/S1461157016000061 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000061
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Figure 1. The numerical semigroups with pseudo-Frobenius numbers {19, 29}.

This picture as well as many others that we produced were fundamental for the design of
the general procedure we describe in this paper.

3. Computing forced integers

In this section we present procedures (Algorithms 1 and 2) to compute forced integers. The
first one is the faster. Its input consists of sets of forced gaps and forced elements previously
computed and is appropriate to be used within a recursive function. For the second one we
introduce a subtlety (the concept of admissibility of integers) that sometimes leads to finding
extra forced integers. This section ends with some examples and execution times comparing
both approaches.

3.1. A quick procedure to compute forced integers

With the contents of § 2, it is not hard to show that Algorithm 1 computes a list containing
as first component a set of forced gaps and as second component a set of forced elements.

Input : g, e, where g, e are sets of PF-forced gaps and PF-forced elements, respectively.
Output: [fg, fe], where fg ⊇ g is a set of PF-forced gaps and fe ⊇ e is a set of PF-forced

elements, or fail, when some inconsistency is discovered.

repeat
Compute new gaps using § 2.3 and store them in fg;
Compute new elements using § 2.4 and store them in fe;
if some inconsistency arises (§ 2.5) then

return fail;

until no new gaps or elements arise;
return [fg, fe];

Algorithm 1: SimpleForcedIntegers.

Theorem 21. Algorithm 1 correctly produces the claimed output.

Remark 22. In light of Remark 13, the second component of the list returned by
Algorithm 1 is the set of small elements of a numerical semigroup.
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Example 23. Let us see how SimpleForcedIntegers works for PF = {16, 29}. Contrary
to what happens in Example 20, here every integer below frob is forced. Let us call this
function with g as the output as an initial call to § 2.3 and e the empty set. Then g =
{1, 2, 4, 8, 13, 16, 29}.

The first call to the contents of § 2.3 yields no new integers, while the first call to § 2.4 yields

{0, 3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 28, 30}

as current forced elements. Observe that 3 is forced by exclusion (note that 3 = 16− 13; also,
29− 13 = 16 and 16 is a forced gap); 25 is also forced by exclusion (note that 16− 25 < 0 and
29 − 25 = 4 is a forced gap). Also, 21 is forced by exclusion, but for now we do not need to
worry with the multiples of 3, because these will appear when taking the closure.

The second call to § 2.3 produces

{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 20, 23, 26, 29}

as current forced gaps. To check it, observe that 29− 3 = 26, 29− 6 = 23, 29− 9 = 20 and so
on are forced gaps. But, then, 10 and 5 are (forced to be) gaps.

In the second call to § 2.4, we obtain 19 and 22 as forced integers.
The union of the sets of forced gaps and of forced elements is {0, . . . , 30}. Therefore, all

positive integers less than 29 are forced. One can check that the closure of the set of forced
elements does not produce new forced elements and thus it is the set of small elements
of a numerical semigroup. Also, one can check that no forced gap outside {16, 29} is a
pseudo-Frobenius number and thus one may conclude that there exists exactly one numerical
semigroup S such that PF(S) = {16, 29}.

This example illustrates that more than one passage through the repeat-until loop of the
algorithm SimpleForcedIntegers may be needed.

Example 24. Let us now apply the algorithm to PF = {15, 20, 27, 35}. We will use GAP to
help us in doing the calculations (which can be easily confirmed by hand).

gap> pf := [ 15, 20, 27, 35 ];;

gap> sfg := StartingForcedGapsForPseudoFrobenius(pf);

[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 27, 35 ]

We immediately get that {25, 26, 28, 29, 30, 31, 32, 33, 34} consists of forced big elements. And,
one can observe that 19 and 23 are forced by exclusion. This leads to the obtention of 35−19 =
16 as forced gap. No other forced elements are obtained, which agrees with the following
continuation of the GAP session:

gap> SimpleForcedIntegersForPseudoFrobenius(sfg,[],pf);

[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 16, 20, 27, 35 ],

[ 0, 19, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36 ] ]

3.2. A not so quick procedure to compute forced integers

We start by introducing a concept that may lead to the discovering of new forced gaps.
Algorithm 2 will make use of it. Finding further forced integers has a non-negligible cost
in terms of time and using it in all the situations may not be the best option.

Let G and E respectively be sets of PF-forced gaps and PF-forced elements, and let v be a
free integer for (G,E). We say that v is admissible for (G,E) if Algorithm 1 does not return
fail when applied to (G,E ∪ {v}). Otherwise, we say that v is non-admissible for (G,E). If v
is non-admissible, then v cannot be an element of any semigroup in S(PF). Therefore, v is a
PF-forced gap. We state this fact as a lemma.
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Lemma 25. Let G and E be sets of forced gaps and forced elements, respectively. Let v be
free for (G,E). If v is non-admissible for (G,E), then v is a PF-forced gap.

The following example shows that there exist forced gaps that are not detected by
Algorithm 1, but arise when looking for non-admissible integers.

Example 26. Let PF = {11, 22, 23, 25}.
gap> pf := [ 11, 22, 23, 25 ];;

gap> sfg := StartingForcedGapsForPseudoFrobenius(pf);

[ 1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 22, 23, 25 ]

By using the function SimpleForcedIntegers, one obtains the following.

gap> SimpleForcedIntegersForPseudoFrobenius(sfg,[],pf);

[ [ 1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 22, 23, 25 ],

[ 0, 18, 19, 20, 21, 24, 26 ] ]

One can easily confirm by hand that the set {1, 2, 3, 4, 5, 6, 7, 11, 12, 14, 22, 23, 25} consists of
forced gaps and that the set {0, 18, 19, 20, 21, 24, 26} consists of forced elements.

Let us now check that 15 is non-admissible. If it was an element of a semigroup S ∈ S(PF ),
then 10 (= 25 − 15) and 8 (= 23 − 15) would be gaps of S. But then 17 is a big element,
13 (= 25 − 12) is forced by exclusion (note that 23 − 12 = 11, 22 − 12 = 10 are gaps and
11 − 12 < 0) and 9 (= 23 − 14) is forced by exclusion too (25 − 14 = 11, 22 − 14 = 8 are
gaps and 11 − 14 < 0). This is not possible, since 13 + 9 = 22 is a gap. Therefore, 15 is
non-admissible.

The following remark may be used to reduce the number of calls to Algorithm 1 and thus
improve the performance of a function to compute non-admissible integers.

Remark 27. A semigroup generated by admissible elements for some pair (G,E) consists
of admissible elements for (G,E).

Algorithm 2 is our procedure to compute forced integers that produces the best result in
terms of the number of forced integers encountered. Apart from Algorithm 1, it makes use of
the concept of non-admissible integers to find new forced gaps (which may then force others
elements and gaps).

Remark 28. It is a consequence of Remark 22 that the second component of the list returned
by Algorithm 2 is the set of small elements of a numerical semigroup.

The correctness of Algorithm 2 follows from the discussion at the beginning of this subsection
(including Lemma 25) and Theorem 21.

Theorem 29. Algorithm 2 correctly produces the claimed output.

3.3. Examples and execution times

Algorithm 1 can be used as a quick way to compute forced integers. In fact, when called with
the starting forced gaps and the empty set of elements, it can be seen as a quick version of
Algorithm 2. Table 1 collects some information concerning some execution times (as given by
GAP) and the numbers of forced gaps and of forced elements both using Algorithm 1 (identified
as QV (which stands for quick version)) and Algorithm 2 (identified as NV (which stands for
normal version)). We observe that the execution times when using the quick version remain
relatively small, even when the Frobenius number is large.
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Input : PF with PF 6= {frob} and PF 6= {frob/2, frob}.
Output: fail if some inconsistency is discovered; otherwise, returns [fg, fe ], where fg and

fe are sets of forced gaps and forced elements, respectively.
fints := SimpleForcedIntegers (sfg(PF), ∅);
if fints = fail then

return fail
else

if fints[1] ∪ fints[2] = {0, . . . , frob} then
return fints;

newgaps := set of non-admissible integers for (fints[1],fints[2]);
return SimpleForcedIntegers (newgaps ∪ fints[1],fints[2]);

Algorithm 2: ForcedIntegers.

Failure is usually detected very quickly, as Table 2 somehow confirms.
As one could expect, there are examples where failure is not detected with the quick version.

Table 1. Execution times for computing forced integers.

Pseudo-Frobenius numbers
Time #F. Gaps #F. Els

QV NV QV NV QV NV

[ 11, 22, 23, 25 ] 2 7 13 14 7 7

[ 17, 27, 28, 29 ] 2 5 16 17 8 10

[ 17, 19, 21, 25, 27 ] 2 9 15 16 8 8

[ 15, 20, 27, 35 ] 2 10 16 16 13 13

[ 12, 24, 25, 26, 28, 29 ] 3 11 18 22 6 9

[ 145, 154, 205, 322, 376, 380 ] 47 1336 82 85 52 54

[ 245, 281, 282, 292, 334, 373, 393, 424, 432, 454, 467 ] 129 2075 116 116 53 53

[ 223, 434, 476, 513, 549, 728, 828, 838, 849, 953 ] 213 5866 300 318 221 253

[ 219, 437, 600, 638, 683, 779, 801, 819, 880 ] 205 4838 219 224 153 161

[ 103, 110, 112, 137, 160, 178, 185 ] 25 262 50 51 29 31

Table 2. When failure occurs ...

Pseudo-Frobenius numbers
Time

QV NV

[ 18, 42, 58, 88, 94 ] 6 6

[ 20, 27, 34, 35, 37, 42, 48, 80 ] 2 3

[ 30, 104, 118, 147, 197, 292, 298, 315, 333, 384, 408 ] 32 43

[ 36, 37, 219, 233, 304, 410, 413, 431, 438, 458 ] 35 32

[ 89, 411, 446, 502, 557, 600, 605, 631, 636, 796, 801, 915 ] 223 233

[ 56, 134, 136, 137, 158, 248, 277, 373, 383, 389, 487, 558, 566, 621, 691, 825, 836 ] 103 113
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Example 30. Let PF = {25, 29, 33, 35, 38, 41, 46}.

gap> pf := [ 25, 29, 33, 35, 38, 41, 46 ];;

gap> ForcedIntegersForPseudoFrobenius(pf);

fail

gap> ForcedIntegersForPseudoFrobenius_QV(pf);

[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 19, 21,

23, 25, 29, 33, 35, 38, 41, 46 ], [ 0, 30, 34, 36, 37, 39, 40,

42, 43, 44, 45, 47 ] ]

We have not been able to detect any set PF candidate to be the set of pseudo-Frobenius
numbers of a numerical semigroup that passes the normal version and such that S(PF) = ∅.
Despite the various millions of tests made (some with the algorithm explained in Appendix B),
we do not feel comfortable on leaving it as a conjecture; we leave it as a question instead.

Question 31. If Algorithm 2 with input PF does not return fail, then S(PF) 6= ∅?

We observe that in view of the execution times illustrated in Table 1, a positive answer to
Question 31 would imply that Algorithm 2 constitutes a satisfactory answer to Question 1.

4. An algorithm based on forced integers

In this section we present our main algorithm (Algorithm 3), which computes S(PF). Its
correctness is stated in Theorem 39, whose proof is built from almost all the results preceding
it in the paper.

After considering some initial cases, the algorithm makes a call to RecursiveDepthFirstExploreTree,
which is a recursive function used to construct a tree whose nodes are labeled by pairs (X,Y ),
where X is a list of forced gaps and Y is a list of forced elements. Thus, we implicitly have
lists of free integers in each node: the complement of X ∪ Y in the set U = {1, . . . , gn}, where
PF = {g1 < . . . < gn}. Nodes with an empty set of free integers are the leaves in our tree.

A node (X,Y ) such that there exists a numerical semigroup S ∈ S(PF) for which X ⊆
gaps(S) and Y ⊆ smalls(S) is said to be PF-feasible, or simply feasible, if PF is understood.
A node that is not feasible is called a dead node.

Remark 32. The knowledge of some forced integers allows us to identify immediately some
dead nodes: if (G,E) is such that G consists of forced gaps and E consists of forced elements,
then any node (X,Y ) such that X ∩ E 6= ∅ or Y ∩G 6= ∅ is a dead node.

Remark 33. Let (X,Y ) be a leaf that is not a dead node. It follows from the
construction (see Remarks 22 and 28) that there exists a numerical semigroup S fulfilling
that (gaps(S), smalls(S)) = (X,Y ).

Remark 34. Observe that if PF = {g1} or PF = {g1/2 < g1}, then the set of numerical
semigroups with pseudo-Frobenius numbers PF corresponds with the set of irreducible
numerical semigroups having Frobenius number g1; see Appendix A. In this case we will use
the fast procedure presented in [1].

4.1. The recursive construction of a tree

A naive idea is to start with a list of free integers (for some set of forced integers) and turn
each one of these free integers into either a gap or an element. Assuming that the number of
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Figure 2. The numerical semigroups with pseudo-Frobenius numbers {15, 20, 27, 35}.

free integers is n, the number of possibilities is 2n; thus, checking each of these possibilities
for being in correspondence with the set of gaps of a numerical semigroup with PF as set of
pseudo-Frobenius numbers is unfeasible, unless n is small. Nevertheless, this idea can evolve
by taking advantage of the already observed facts that elements can force gaps and vice versa.
Although there are examples for which fixing one integer does not force anything else, which
lets us expect that nothing good can result from a worst-case complexity analysis, in practice
it works quite well. We give some examples, but leave a detailed analysis of the complexity
(perhaps average complexity) as an open problem.

The procedure we use is, for each integer v in the current list of free integers, compute all
numerical semigroups containing v and the forced elements, and having the forced gaps as
gaps. We proceed recursively and use backtracking when a semigroup or a dead node is found.
When we revisit the node, we then suppose that v is a gap and continue with the next free
integer.

Before proceeding with the pseudo-code for the recursive function RecursiveDepthFirstExploreTree

that constructs the tree in a depth-first manner, let us give an example which we accompany
by a picture (Figure 2).

Example 35. Let PF = {15, 20, 27, 35}. From Example 24, we have a pair of lists of forced
gaps and forced integers, which leaves the list

F = {11, 13, 14, 17, 18, 21, 22, 24} (2)

of free integers.
The leaves contained in the branch that descends from 11 in Figure 2 consist of the

semigroups containing 11 as forced element.
All the remaining semigroups in S(PF) must have 11 as gap. The process then continues as

Figure 2 illustrates: considering 13 as a forced integer, developing its corresponding subtree
and so on.

Let us now look at the integer 21 in the root of the tree. At this point, all the semigroups
in S(PF) containing some integer preceding 21 in F have been computed. Thus, any new
semigroup must have the elements in {11, 13, 14, 17, 18} as gaps. From the computations, one
concludes that no new semigroup appears having 21 as an element. Thus, if some not already
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computed semigroup exists fulfilling the current conditions, then it must have 21 as gap. One
can check that this cannot happen. The remaining elements (22 and 24) need not be checked,
since 21 had to be either an element or a gap. Therefore, we can stop.

Next we give pseudo-code for RecursiveDepthFirstExploreTree. The recursion ends when no
more than one free integer is left. A call to the function EndingCondition is then made.

The variable semigroups works as a container which serves to store all the semigroups we
are looking for, as they are discovered.

EndingCondition(g,e)
� g and e are such that #{1, . . . , frob} \ (g ∪ e) 6 1

� g and e represent lists of gaps and elements, respectively

free :={1, . . . , frob} \ (g ∪ e);
1 if Length(free) = 0 then
2 if there is no f ∈ PF \ g such that (f + e \ {0}) ∩ g is empty then

Add to semigroups the numerical semigroup
NumericalSemigroupByGaps(g));

return;

3 if Length(free) = 1 then
if g represents the set of gaps of a numerical semigroup S then

4 if there is no f ∈ PF \ g such that (f + (e ∪ free) \ {0}) ∩ g is empty then
Add to semigroups the numerical semigroup S;

if g ∪ free represents the set of gaps of a numerical semigroup S then
5 if there is no f ∈ PF \ g such that (f + e \ {0}) ∩ (g ∪ free) is empty then

Add to semigroups the numerical semigroup S;

return;

Function EndingCondition.

Lemma 36. Function EndingCondition either does nothing or adds to semigroups a
numerical semigroup S such that PF(S) = PF.

Proof. It suffices to observe that any of the conditions in the ‘if’ statements of Lines 2, 4
and 5 guarantee that no forced gap outside PF can be a pseudo-Frobenius number.

Notice that when EndingCondition does nothing, it is because one of the following reasons:
• there is no numerical semigroup whose set of gaps is the first component of the input;
• the resulting semigroup does not have PF as set of pseudo-Frobenius numbers (it actually

has more pseudo-Frobenius numbers);
• there is a free element that cannot be neither a gap nor an element.

Recall that recursion in RecursiveDepthFirstExploreTree ends (in Line 3) when there is at
most one free integer.

Proposition 37. Let (fg, fe) be a pair of disjoint sets of integers contained in U =
{0, . . . , gn+1}. After the execution of the function RecursiveDepthFirstExploreTree with input
(fg, fe), semigroups contains all numerical semigroups S such that S ∈ S(PF), fg ⊆ gaps(S)
and fe ⊆ smalls(S).

https://doi.org/10.1112/S1461157016000061 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000061


pseudo-frobenius numbers of numerical semigroups 199

RecursiveDepthFirstExploreTree([fg, fe])
� fg and fe consist of forced gaps and elements, respectively

currentfree := {1, . . . , frob} \ (fg ∪ fe);
nfg := fg; � used to store new forced gaps

while Length(currentfree) > 1 do
v := currentfree[1];

1 left := SimpleForcedIntegers (nfg,fe ∪ {v});
2 if left = fail then

right := SimpleForcedIntegers (nfg ∪ {v}),fe);
if (right = fail) or (right[1] ∩ right[2] 6= ∅) then

break;

else
RecursiveDepthFirstExploreTree ([left[1],left[2]]);

nfg := nfg ∪ {v};
currentfree := currentfree \ {v};

3 if Length(currentfree) 6 1 then
EndingCondition (fg,fe);

Function RecursiveDepthFirstExploreTree.

Proof. Denote by Λ the set of all numerical semigroups S such that fg ⊆ gaps(S) and
fe ⊆ smalls(S). We have to prove that semigroups ∩ Λ = S(PF) ∩ Λ.

⊆. It suffices to observe that the numerical semigroups are added to semigroups by the
function EndingCondition and these belong to S(PF), by Lemma 36.

⊇. Let S ∈ S(PF) be such that fg ⊆ gaps(S) and fe ⊆ smalls(S). If #U \ (fg ∪ fe) ∈ {0, 1},
then the function EndingCondition is called and it gives the correct output. Otherwise, we
enter a recursion.

We will prove by induction on the number of free elements that the output is correct. Let
us consider the smallest integer v ∈ U \ (fg ∪ fe). RecursiveDepthFirstExploreTree is called
with input (fg, fe), and will enter the while loop, adding v to fe and computing new forced
integers (SimpleForcedIntegers).
• If v ∈ S, then left in Line 1 will not be equal to fail (Theorem 21), and we will call

RecursiveDepthFirstExploreTree with a larger set fe, having in consequence fewer free
integers. By induction, S is added to semigroups.

• Now assume that v 6∈ S. After the execution of the if–then–else starting in Line 2,
v is added to the set of gaps. We have then one element less in the list of free
integers, fg ∪ {v} ⊆ gaps(S) and fe ⊆ smalls(S), whence the effect is the same as
if we called RecursiveDepthFirstExploreTree with arguments fg ∪ {v} ⊆ gaps(S) and
fe ⊆ smalls(S). By the induction hypothesis, S is added to semigroups.

Observe that if S(PF) 6= ∅ and the sets fg and fe considered in Proposition 37 consist of
forced gaps and forced elements, respectively, then Λ ⊆ S(PF). Therefore, we have proved the
following corollary.

Corollary 38. If the function RecursiveDepthFirstExploreTree is called with a pair
(fg, fe), where fg consists of forced gaps and fe consists of forced elements, then at the
end of its execution we have that semigroups = S(PF).
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Input : PF.
Output: the set S(PF).

if PF = {frob} or PF = {frob/2, frob} then
Use the procedure described in [1];

root:=ForcedIntegers (PF);
if root = fail then

return ∅;
semigroups := ∅;
RecursiveDepthFirstExploreTree (root);
return semigroups;

Algorithm 3: NumericalSemigroupsWithPseudoFrobeniusNumbers.

4.2. The main algorithm

We observe that Algorithm 3 is not efficient when there are many free integers (for some set of
forced integers). A possible attempt to improve it could be to replace the recursive function by
a much more efficient depth-first search algorithm to parse the tree in question. In any case,
we have not been able to write an iterative process to avoid recursiveness, which would be a
better option from the point of view of programming.

Another possible approach is to use extra theoretical tools. What is done in Appendix A
could be seen as an attempt. Having at our disposal more than one approach, we can take
advantage of choosing the most efficient for each situation.

Theorem 39. Let PF = {g1 < . . . < gn} be a set of positive integers. The output of
Algorithm 3 with input PF is S(PF).

Proof. As Algorithm 2 (ForcedIntegers) returns fail precisely when it has found some
forced gap that is at the same time a forced element, Proposition 5 ensures us that S(PF) = ∅,
which is the set returned by the algorithm.

When nothing of the above holds, the variable semigroups is initialized as the empty set
and there is made a call to the recursive function RecursiveDepthFirstExploreTree. As we
are considering this variable global to the functions EndingCondition, the result follows from
Corollary 38.

Algorithm 3 would also work with the initial call to SimpleForcedIntegers instead of
ForcedIntegers (any inconsistency as in Example 30 will arise later). The idea is to use the
best filter in the starting steps of the algorithm, and leave the quick version for the recursion
steps.

4.3. Running times and examples

The number of semigroups can be quite large compared to the number of free elements. The
following example illustrate this possibility.

Example 40.

gap> pf := [ 68, 71, 163, 196 ];;

gap> forced := ForcedIntegersForPseudoFrobenius(pf);;

gap> free := Difference([1..Maximum(pf)],Union(forced));;

gap> Length(free);
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38

gap> list := NumericalSemigroupsWithPseudoFrobeniusNumbers(pf);;

gap> Length(list);

1608

In the continuation of the previous GAP session, we do a kind of verification of the result.

gap> ns := RandomList(list);

<Numerical semigroup>

gap> MinimalGeneratingSystem(ns);

[ 35, 38, 65, 81, 89, 94, 99, 101, 104, 106, 109, 110, 112, 113,

117, 118, 121, 122, 133 ]

gap> PseudoFrobeniusOfNumericalSemigroup(ns);

[ 68, 71, 163, 196 ]

Table 3 is meant to illustrate some timings, and the fact that there is no straight relationship
between the number of numerical semigroups having a set of pseudo-Frobenius numbers and
the number of free integers for this set of pseudo-Frobenius integers. Its content was produced
by using repeatedly the commands of the first part of the previous example. The candidates to
PF were obtained randomly. We observe that, although depending on some factors (such as the
type or the Frobenius number we are interested in), the vast majority of the candidates would
lead to the empty set. We do not consider them in this table (some were given in Table 2).

Table 3. Some examples of execution data of the main algorithm.

Pseudo-Frobenius numbers #Free #Semigroups Time

[ 15, 27, 31, 43, 47 ] 0 1 3

[ 16, 30, 33, 37 ] 9 3 12

[ 40, 65, 80, 89, 107, 110, 130 ] 5 3 29

[ 32, 35, 44, 45, 48 ] 13 7 24

[ 40, 65, 89, 91, 100, 106 ] 24 9 99

[ 36, 50, 56, 57, 63 ] 25 39 123

[ 43, 50, 52, 65 ] 35 213 605

[ 68, 71, 163, 196 ] 38 1608 16 603

[ 38, 57, 67, 74, 79 ] 40 155 527

[ 68, 72, 76, 77 ] 46 177 607

[ 62, 78, 99, 129, 130 ] 53 4077 28 622

[ 128, 131, 146, 151, 180, 216, 224, 267, 271, 287 ] 54 954 24 253

[ 84, 103, 144, 202, 230, 242, 245 ] 56 14 292 277 094

[ 66, 85, 86, 92 ] 55 950 4683

[ 76, 79, 88, 102 ] 64 1409 6505

[ 61, 67, 94, 105 ] 69 4432 21 471

[ 114, 150, 179, 182, 231, 236, 254, 321 ] 69 302 929 7 121 020

[ 62, 73, 166, 190, 203 ] 77 9934 134 554

[ 102, 104, 118, 123, 134, 146, 149 ] 87 15 910 149 910
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Appendix A. An approach based on irreducible numerical semigroups

We present here an alternative way to compute the set of numerical semigroups with a given
set of pseudo-Frobenius numbers. In general, this procedure is slower than the one presented
above, though we have not been able to characterize when this happens. We include it in the
paper since it was the initial implementation and was used to test the other one.

A numerical semigroup is irreducible if it cannot be expressed as the intersection of two
numerical semigroups properly containing it. It turns out that a numerical semigroup S
is irreducible if and only if either PF(S) = {F(S)} or PF(S) = {F(S)/2,F(S)} (see [8,
Chapter 3]). Irreducible numerical semigroups can also be characterized as those maximal
(with respect to set inclusion) numerical semigroups in the set of all numerical semigroups
with given Frobenius number.

The maximality of irreducible numerical semigroups in the set of all numerical semigroups
with given Frobenius number implies that every numerical semigroup is contained in an
irreducible numerical semigroup with its same Frobenius number. Actually, we can say more.

Lemma A.1. Let S be a numerical semigroup. There exists an irreducible numerical
semigroup T such that:

(1) F(S) = F(T );
(2) ]F(S)/2,F(S)[∩PF(S) ⊂ T .

Proof. Let f = F(S) and let F = ]f/2, f [∩PF(S). We claim that S′ = S ∪F is a numerical
semigroup with F(S′) = f . Take s, s′ ∈ S′ \ {0}.
• If both s and s′ are in S, then s + s′ ∈ S ⊆ S′.
• If s ∈ S and s′ ∈ F , then s + s′ ∈ S, because s′ ∈ PF(S).
• If s, s′ ∈ F , then s + s′ > f , and so s + s′ ∈ S ⊆ S′.

Let us show that F(S′) = f . Assume to the contrary that this is not the case, and consequently
f ∈ S′. Then, as all the elements in F are greater than f/2, and f 6∈ S, there must be elements
s ∈ S and g ∈ PF(S) such that g + s = f . But this is impossible, since all elements in PF(S)
are incomparable with respect to 6S (Lemma 3).

If S′ is not irreducible, then, as irreducible numerical semigroups are maximal in the set of
numerical semigroups with fixed Frobenius number, there exists T with F(S) = F(S′) = F(T )
and containing S′; whence fulfilling the desired conditions.

With all these ingredients, we get the following result.

Proposition A.2. Let S be a non-irreducible numerical semigroup with PF(S) = {g1 <
. . . < gk}, k > 2. Then there exists a chain

S = S0 ⊂ S1 = S ∪ {x1} ⊂ . . . ⊂ Sl = S ∪ {x1, . . . , xl}

with:
(1) Sl irreducible;
(2) xi = max(Sl \ Si−1) for all i ∈ {1, . . . , l};
(3) ]gk/2, gk[∩PF(S) ⊂ Sl;
(4) for every i ∈ {1, . . . , l}, xi is a minimal generator of Si such that gj − xi ∈ Si for some

j ∈ {1, . . . , k};
(5) for every i ∈ {1, . . . , l} and f ∈ PF(Si) with f 6= gk, there exists j ∈ {1, . . . , k − 1} such

that gj − f ∈ Si.

Proof. Let T be as in Lemma A.1. Construct a chain joining S and T by setting S0 = S
and Si = Si−1 ∪ {xi} with xi = max(T \ Si−1). Then Si is a numerical semigroup, and xi is a
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minimal generator of Si and a pseudo-Frobenius number for Si−1 [8, Lemma 4.35]. Since the
complement T \ S is finite, for some k, Sk = T .

Clearly, x1 = gk and thus x1 − gk = 0 ∈ S. Now let i ∈ {2, . . . , k}. Then xi ∈ T \ S and, by
Lemma 3, there exists j ∈ {1, . . . , k} such that gj − xi ∈ S ⊆ Si.

Take f ∈ PF(Si) \ {gk}. Then f 6∈ S and thus gj − f ∈ S for some j ∈ {1, . . . , k} (Lemma 3
once more). Consequently, gj − f ∈ Si. Notice that j 6= k, since f − gk < 0.

Given a candidate set PF of pseudo-Frobenius numbers with maximum element f , we can
use the above procedure to construct from the set of all irreducible numerical semigroups with
Frobenius number f the set of all numerical semigroups having PF as a set of its pseudo-
Frobenius numbers. In order to compute the set of all irreducible numerical semigroups with
Frobenius number f , we use implementation of the procedure presented in [1] that is already
part of [4]. We have slightly modified the algorithm in [1] to compute the set of irreducible
numerical semigroups containing a given set of integers, and these integers are the second
component of ForcedIntegers (PF). For every irreducible element in the list, we then remove
those minimal generators fulfilling condition (4) in Proposition A.2. We add to our list of
semigroups the semigroups obtained in the preceding step for which condition (5) holds, and
then we proceed recursively.

Example A.3. Let us illustrate the above procedure with PF = {10, 13}. The number of
irreducible numerical semigroups with Frobenius number 13 is 8. However, if we first call
ForcedIntegers (the names we use in our implementation are slightly different), we get

gap> ForcedIntegersForPseudoFrobenius([10,13]);

[ [ 1, 2, 3, 5, 6, 10, 13 ], [ 0, 7, 8, 11, 12, 14 ] ]

Since we have modified the function IrreducibleNumericalSemigroupsWithFrobeniusNumber to
output only those irreducible numerical semigroups containing the set {0, 7, 8, 11, 12, 14}, we
obtain only two irreducible numerical semigroups: S1 = 〈4, 7, 10〉 and S2 = 〈7, 8, 9, 10, 11, 12〉.

For S1, the only minimal generator that fulfills the conditions in Proposition A.2 is 10. If
we remove 10 from S1, we obtain T1 = 〈4, 7, 17〉, which already has the desired set of pseudo-
Frobenius numbers.

As for S2, again 10 is the only minimal generator fulfilling the conditions in Proposition A.2,
and we obtain T2 = 〈7, 8, 9, 11, 12〉. This semigroup has pseudo-Frobenius numbers set equal
to PF, and so, as with T1, we do not need to look for new minimal generators to remove.

Thus, the only numerical semigroups with pseudo-Frobenius numbers set {10, 13} are T1

and T2.

Appendix B. Picking a single semigroup with given pseudo-Frobenius numbers

Sometimes one may just be interested in obtaining one numerical semigroup with PF as set
of pseudo-Frobenius numbers, or simply if S(PF) 6= ∅. Algorithm 3 may be too slow (it gives
much information that will not be used). One could adapt the algorithm to stop once it
encounters the first semigroup, but the information had to be transmitted recursively and one
would end up with a slow algorithm. Next we propose an alternative (Algorithm 4). Instead
of calling the recursive function, it tries to guess a path that leads to a leaf corresponding to a
numerical semigroup. The procedure starts by choosing a random free integer v and tests its
non-admissibility (by checking whether SimpleForcedIntegers returns fail when called with
v as if it was forced). If one does not conclude that v is non-admissible, it is assumed to be
a forced integer; and one continues while there are free integers. As an option the user can
specify the maximum number of attempts. Its usage is illustrated in Examples B.1 and B.2.
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Input : PF.
Output: A numerical semigroup S such that PF(S) = PF if it discovers some, fail if it

discovers that no semigroup exists. Otherwise, it is suggested to use more
attempts.

if PF = {frob} or PF = {frob/2, frob} then
Use [1, Proposition 2.7];

f ints := ForcedIntegers (PF);
if f ints = fail then

return fail;

free := {1, . . . , frob} \ (f ints[1] ∪ f ints[2]);
for i ∈ [1..max attempts] do

while free 6= ∅ do
v := an element chosen randomly in free;
nfig := SimpleForcedIntegers ( f ints[1] ∪ {v},f ints[2]);
nfie := SimpleForcedIntegers (f ints[1],f ints[2] ∪ {v});
if nfig 6= fail then

if nfig[1] ∪ nfig[2] is an interval then
return NumericalSemigroupByGaps (nfig[1]);

else
free := {1, . . . , frob} \ (nfig[1] ∪ nfig[2]);

else
if nfie 6= fail then

if nfie[1] ∪ nfie[2] then
return NumericalSemigroupByGaps (nfie[1]);

else
free := {1, . . . , frob} \ (nfie[1] ∪ nfie[2]);

else
break;

� Info: Increase the number of attempts ...

Algorithm 4: ANumericalSemigroupWithPseudoFrobeniusNumbers.

It may happen that no semigroup has the given set as set of pseudo-Frobenius elements, and
thus the output will simply be fail. The following example is meant to illustrate that one can
use Algorithm 4 even for quite large Frobenius numbers. (The reader may obtain a different
output since it depends on a random seed.)

Example B.1. We look for a numerical semigroup with PF = {100, 453, 537, 543}. The first
execution of the function yields†

gap> pf := [ 100, 453, 537, 543 ];;

gap> ns := ANumericalSemigroupWithPseudoFrobeniusNumbers(pf);;time;

MinimalGeneratingSystem(ns);

2440

[ 66, 94, 106, 126, 166, 184, 194, 206, 209, 216, 224, 230, 235,

246, 256, 263, 267, 284, 295, 309, 363, 374, 379, 385, 391, 413 ]

†In [4], ANumericalSemigroupWithPseudoFrobeniusNumbers is called RandomNumericalSemigroupWithPseudo-

FrobeniusNumbers; in the next version of numericalsgps we will use the name employed in these examples
(see also the development version of the package in https://bitbucket.org/gap-system/numericalsgps).
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Example B.2. If one of the free integers can neither be a gap nor an element, no semigroup
exists:

gap> pf :=[30, 104, 118, 147, 197, 292, 298, 315, 333, 384, 408];;

gap> ns :=ANumericalSemigroupWithPseudoFrobeniusNumbers(

> rec(pseudo_frobenius := pf, max_attempts := 100));time;

fail

22
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8. J. C. Rosales and P. A. Garćıa-Sánchez, Numerical Semigroups, Developments in Mathematics 20

(Springer, 2010).
9. J. C. Rosales, P. A. Garćıa-Sánchez, J. I. Garćıa-Garćıa and J. A. Jiménez-Madrid, ‘Fundamental

gaps in numerical semigroups’, J. Pure Appl. Algebra 189 (2004) 301–313.

M. Delgado
CMUP
Departamento de Matemática
Faculdade de Ciências
Universidade do Porto
Rua do Campo Alegre 687
4169-007 Porto
Portugal

mdelgado@fc.up.pt
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