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DIOPHANTINE EQUATIONS OF ERDOS-MOSER TYPE

PlETER MOREE

Using an old result of Von Staudt on sums of consecutive integer powers, we shall
show by an elementary method that the Diophantine equation 1* + 2* + • • • +
(z - l)k = axk has no solutions (a, x,k) with ife > 1, x < 1O10 . For a = 1 this
equation reduces to the Erdos-Moser equation and the result to a result of Moser.
Our method can also be used to deal with variants of the equation of the title, and
two examples will be given. For one of them there are no integer solutions with
x < 1010" .

1. INTRODUCTION

The Diophantine equation 1* + 2* + • • • + (z — 1) = x* is known as the Erdos-
Moser equation. An obvious solution is 1 + 2 = 3. Notice that there are no further
solutions with k = 1. Erdos conjectured that there are no solutions with k > 1.
This is Problem D7 in Guy [5], where some historical background is given. It has not
been proved that the number of solutions of the Erdos-Moser equation is finite, but if
solutions with k > 1 exist, both x and k must be larger than 1010 . For x this was
proved by Moser [9]. Using Proposition 2 below the same bound can be deduced for k.
Best and te Riele [1] proved that for every k there is at most one x (the trivial bound is
k + 1). The sum 1* + 2* H \-(x — 1) cries out to be rewritten in terms of Bernoulli
polynomials. Urbanowicz [13] seems to have been the first to attack the problem in
this way. His approach is continued in [8], where the divisibility properties of solutions
with k > 1 are investigated. It is shown there that lcm(l,2.. . ,200) divides k and
that x is not divisible by any regular prime nor by any prime < 10000.

The present note is more in line with Moser's approach than with the approach of
[8] and deals with Erdos-Moser type equations, that is equations of the form 1* + 2k +
• • • + (x — 1) ' = f(x, k). Moser's paper is remarkable in that he arrives at such a strong
result using only elementary methods. His original paper is a gem of mathemagics.
Seemingly out of nothing Moser pulls the four inequalities given in (11) and (12) below

Received 7th June, 1995
This research was carried out at Princeton University. The author thanks The Netherlands Organiza-
tion for Scientific Research (NWO) for making his stay there possible. Furthermore he wishes to thank
A. Granville, J.-L. Nicolas, P. Pleasants, H. te Riele and J. Urbanowicz for their assistance.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/96 SA2.00+0.00.

281

https://doi.org/10.1017/S0004972700017007 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017007


282 P. Moree [2]

with a = 1. Adding them together he finds Lemma 1 with a — 1. This is a strong
inequality, for £ 1/p grows very slowly with x. Using a little bit of analytic number

Pi*

theory Moser then deduces that x ^ 1010 . Questions that arise are whether there are
more inequalities like those in (11) and (12) (which could give rise to an even larger
bound) and whether there is an interconnection between these inequalities. In this note
a method will be presented that sheds some light on these questions. Furthermore, the
method is sufficiently systematic to allow one to deal with equations of the form

(1) lk + 2k + ---+(x-l)k = f(x,k).

We shall study the case f(x,k) = axk in detail, where we consider a as a variable.
Apparently Krzysztofek [6] was the first to consider this equation. Our main result is
the following generalisation of Moser's result:

THEOREM 1. The equation

(2) 1*+2*+ ••• + ( * - l ) * = oa!*

has no integer solutions (a,x,k) with

k> 1, x <max(lOl o 8 ,a-102 2) .

Moser's method can be easily extended to the case of fixed a, but it seems harder
to generalise to variable o. As further examples of our method we shall present in
Section 5 results on the equations

(3) lk+2k + ... + {x-l)k =axk + l

and

Since our way of dealing with these equations is the same as for (2), we shall indicate

only some fine points of the proofs. Unfortunately for most equations of the form (1),

the analogue of Lemma 1 will contain a number on the right hand side of (6) which

is too small in order to infer a strong result. Equation (4) is the simplest the author

knows of for which a number > 3 | in the right hand side of (6) can be obtained and

thus a larger bound for x than 1010 results (1010 to be precise).

A key role in our method is played by the identity:

0 (mod | ) odd r > 1;
,«—• - I . .

(5) —-— = ^ — 2~] — (mod 1) r even.
p-l|rP

pis
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This identity goes back to Von Staudt. We leave it as an exercise for the reader ac-
quainted with Bernoulli numbers to prove (5) by using the Von Staudt-Clausen theorem.
A combinatorial proof based on the theory of finite differences was given by Carlitz [3].
A proof of a more general form of (5) using only some results on primitive roots can
be found in [7]. For appropriate choices of y in terms of x, where x is a solution of
1* + 2* + • • • + (x — 1) = x*, analysis of (5) yields the four inequalities of Moser.

It is perhaps a tribute to Moser, that the author found (to his surprise) that he could
do without Bernoulli numbers. As a demonstration we shall give a more insightful proof
of the result that ord2 (x — 3) = ord2 (k) + 3, first established in [8] by using Bernoulli
polynomials.

In Section 2 we state and prove the key inequality in the proof of Theorem 1. In
Section 3 we show that the fractions in (6) containing a are small and that this implies
that k must be large (Lemma 2). In Section 4 we show that the proof of Theorem 1
easily follows from (6) and Lemma 2. In Section 5 we state analogues of Theorem 1
for equations (3) and (4). Finally in Section 6 we prove some further results for the
solutions of (2).

2. T H E KEY LEMMA IN THE PROOF OF THEOREM 1

By way of numerical computation Theorem 1 will be deduced from the following
lemma:

LEMMA 1 . Suppose (a,x,k) is a solution of (2) with k > 1. Then

P - I | * P z - * + x - x +

2.1 THE PROOF OF LEMMA. 1.

PROPOSITION 1. Suppose {a,x,k) is a solution of (2) with k > 1. Then for
6 = 0

0 (mod | ) ifk is odd;

(7a) ——— = < _ \ ^ - (mod 1) otherwise.{
\

p\x

For 1 ^ 6 < x

{ 0 (mod f) if k is odd;

„ 1
- 2_j ~ (mod 1) otierwise.

p-l|4P

p\x-b
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For b ^ 1

{
0 (mod | ) if k is odd;

— > - (mod 1) otherwise.
V-l\kP

p|z+6

PROOF: (7a) Put y = x, r = k in (5) and use (2). (7b)+(7c) For 1 ^ 6 < x we
have

r=0

= abk - [lk + 2k + • • • + (6 - 1)*] (mod x - b).

Similarly for 6 ^ 1 we have

x + b-l

rk=axk+xk+(x + l)k... + (x + b-l)k

= (a + l)(-b)k + ( - 1 ) * [ 1 * + ••• + ( * - 1)*] (mod x + b).

r = 0

On taking y = x — b (respectively x+b ( 6 ^ 1 ) ) in (5), (7b) (respectively (7c)) follows. D

Proposition 1 suggests the importance of determining the parity of k. It turns out
that k must be even. In the proof we shall use the following bound for x in terms of
a and k that is important in its own right:

PROPOSITION 2 . If (a,x,k) is a solution of (2), then

a(A + l ) <x < ( a

PROOF: By comparing the sum 1* + \-(x - l)k with ftkdt. D

Krzysztofek [6, Lemat 4] has shown by more elaborate but elegant reasoning the

stronger result that a(k + 1) + 1 < x < ( a + l/2)(Jfe + 1).

PROPOSITION 3 . If (a,x,fc) is a solution of (2) with Jfc > 1, then k is even.

PROOF: Clearly x ^ 1, so we may assume x ^ 2. Suppose k > 1 and k is
odd. Taking b = 1 in (7b) we see that 2o/(x — 1) is integral and in particular that
2a ^ x — 1. But then 2a ^ (fc + l ) a , by Proposition 2. This contradiction shows that
k must be even. D

In the sequel Proposition 3 is used so often that it will not be referred to, but
assumed implicitly.
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PROPOSITION 4.

(i) If the denominator and numerator in (7b) are coprhne for some 1 ^ b < x,

then x — b is squarefree and p\x — b implies p — l|fc.
(ii) If the denominator and numerator in (7c) are coprime for some 6 ^ 1 ,

then x + b is squarefree and p\x + b implies p — l|fc.

PROOF: If p divides the denominator of the left hand side, the p-order of the
fraction is ^ — 1. Since the p-order of the right hand side is at least — 1 , the p-order of
both sides is exactly — 1. It follows that p — l|fc and that the denominator of the left
hand side is squarefree. U

EXAMPLES, (i) (a,b) = (1,1) (ii) (a,6) = (2m,x - l )(m ^ 0), (2ro - l , x + l ) (m > 1).

PROPOSITION 5 . Suppose (a,x,k) is a solution of (2) with fc > 1. Tien

(i) I - I = 1 I mod 1 for some divisor a of a.

(ii) I — I = 1 I mod ——— I for some divisor f3 of a + 1.
\2/ V P /

In (i) and (ii) 1/2 denotes the inverse of 2 modulo 2a; — 1, respectively 2x + 1.

PROOF: Take b = x — 1 in (7c). On invoking (2) we obtain

P-i|fc
p\2x-l

side of (8) equals 2a(l /2) modulo 2x — 1. So we have

Now if p|2x — 1, p is odd and x = 1/2 (mod 2s — 1). The numerator on the left hand

dulo 2x — 1. So w

- E j
p\2x-l

(i) If p|2x - 1 and p \ a, then from (9) we conclude that p - l|fc, (so (1/2)* = 1
(mod p)) and p2 \ 2x — 1, so we can write

-1=( n p?) n *•
Pi\a p\a

Pi\2x-1 p|2i-l

Let a — Yl Pi' be the prime factorisation of a. If a,- > fa, then from (9) it follows

that pi — l\k (so (1/2) = 1 (mod p,)) and cti = fa + 1. By the Chinese remainder
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theorem we have

I — I = 11 mod I I Vi I I D I.\2J \ -1-1 y% 1 1 yJ
Pil° Pi<»

Let a be the quotient of 2x — 1 by the modulus of the latter congruence. We have

«- n »r> n rf1-
Pi\a Pi|o

Pi\2x-1 Pi\2x-1

Since a^ = Pi + 1 whenever aj > /?j, a is a divisor of a.

(ii) Take b — x + 1 in (7c). Proceeding as in the proof of (i), we obtain

P - i \ k r

p\2x+l

The rest of the proof is similar to the proof of part (i).

PROOF OF LEMMA 1: Taking b = 1 in (7b) and (7c) we find that

(ID E
P-I|fc P-I\k
p\x-l p\x+l

On combining (9) and Proposition 5(i), and (10) and Proposition 5(ii), we find that

, N v ^ 1 2o v-^ 1 2 (a+ l )

(12) E - + ^ n > i. "-p"*"* E - + i ^ n r >L

p\2x-l p\2x-l

Adding the inequalities in (11) and (12) and noting that no prime > 3 can divide more
than one of the numbers x — 1, x + 1, 2x — 1 and 2x + 1 and that 2 and 3 can divide
at most two of these numbers, we obtain

V l ° I a + 1 I 2 a I 2 ( g + 1 ) M 1 * = ? 1

^ p x - l x + 1 2 x - 1 2 x + l ^ 2 3 6 '
|fc
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3. T H E NONEXISTENCE OF SOLUTIONS WITH SMALL k

In this section we shall show that (2) has no solutions with k 'small':

LEMMA 2 . Equation (2) has no solutions with 1 < k < 102 2.

The number 1022 is an approximation to twice the 200th highly composite numbeT

( = 28355372ps • • • pis , where p,- denotes the ith successive prime). Recall that Ramanu-
jan defined a number n to be highly composite if d(n) > d(m) for n > m, where as
usual d(n) denotes the divisor function 53 1. A list of the first 5000 highly composite

d\n

numbers was independently computed by te Riele and Robin. The proof of Lemma 2

will follow on applying Propositions 2 and 6 to (6).

PROPOSITION 6 . Let C > 0 be an arbitrary real number. Suppose p,, the sth

prime, satisfies

(13) E:<c'

Let n be a highly composite number satisfying d{n) ^ s. Then if r satisfies

(14)
p-l\2rP

the inequality r ^ n holds true.

PROOF: The number of primes p such that p — 1 divides 2r is $J d(r) + 1, so

( 1 5 » E < E ;•
p-l|2r i=l F%

Now if d(r) < s it follows that the sum on the left hand side is < C, so d(r) ^ s ^ d{n).
Since n is highly composite it follows that r ^ n. U

PROOF OF LEMMA 2: Using Proposition 2 we see that the sum of the fractions
appearing in the left hand side of (6) is < 6/(fc + 1). Therefore

(16) Y

For k = 2 , . . . , 998 it follows by direct computation that this inequality is not satisfied.

Since Y, 1/P < 3 - 1 6 (9> Lemma 2], TT(107) = 664579 and the 200th highly composite
7

number has divisor sum 663552 (the 201th has divisor sum 688128) and exceeds 1022,
the proof of Lemma 2 follows from Proposition 6 with C = 3.16, s = 664579 and n

the 200th highly composite number. D
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4. PROOF OF THEOREM 1

Recall that the a dependent terms in (6) are bounded above by 6/(fc + 1). So on
using Lemma 1 and Lemma 2 we find

E I >3-16-

Using J2 l/P < 3 - 1 6 i1; follows that (x2 - l ) (4x2 - l ) > f] p . Proceeding as in
7 7

Moser [9] it follows that x < 1010 . For the convenience of the reader we recall his (in
essence) argument.

From [12] we have

16{X) ~ " ' < i 0 1 ^ ( » > 678407).

Hence

log (4z4) > log (x2 - 1) (4x2 - 1) > log Y[ p =

On invoking Lemma 2 in combination with Proposition 2, Theorem 1 follows. U

5. A N A L O G U E S O F T H E O R E M 1 FOR EQUATIONS (3) AND (4)

Since, in dealing with Erdos-Moser type equations, Proposition 6 has to be applied

for various C , it is convenient to have estimates for p, and n in this proposition in

terms of C.

Using the estimate .

- < loglogx + .2615 + —=— for x > 1,
P l o 8 x

due to Rosser and Schoenfeld [11, (3.20)], we find

- < log log x + .267 for x ^ 106.

From this inequality one easily deduces:
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PROPOSITION 7 . Let C > 2.9. Inequality (13) is satisfied for any prime p,

with

C-.38T

(17) p. ^ e°

Denote the right hand side of (17) by f{C). Put

g(C) = 0.938{log/(C) - log log/(C)} and h{C) =

Using the bound

< 1 5 3 7

log 2 "" log log n '
of Nicolas and Robin [10], the bound n(x) > x/ log x (x > 17) of Rosser and Schoenfeld

[11, (3.5)] and Proposition 7 we obtain:

PROPOSITION 8 . Let C > 2.9. Suppose r satisfies (14), then r > e9(C)log9(C)

Examples.

/(2.99) ^ 4 • 106, h(2.99) > 1012.

/(3.16) ^ 6 • 107, ft(3.16) ^ 1018.

/(3.66) ^ 8 • 1012, ft(3-66) ^ 1034.

The proofs of Theorems 2 and 3 are very similar to the proof of Theorem 1 and so
we give only sketches. We leave it as an exercise to the reader to complete them.

THEOREM 2 . The equation

1* + 2* + • • • + (x - 1)* = axk + 1

has no solutions (a,x,k) 6 N3 with fc > 1, x < max flO1()6,a • 1012) .

PROOF: (Sketch.) If x is even we have

-1 x
p |

P\x3-x

and if x is odd, we have

*-*> p x-2 x - l x x + 1 ^ 6
i|fc

p
p—i|fc
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After some numerical calculation we conclude that there are no solutions with 1 < k <
1012 < 2A(2.99). If a < 1010", then x < (o +3/2)(Jfe + 1) < 2* and (18) is satisfied
irrespective of whether x is even or odd. Now proceed as in the proof of Theorem 1. D

THEOREM 3 . The equation

(19) l + 2 + + ( a ; l ) ^ + l +

has no solutions (x,k) € N2 with x < lO10" .

PROOF: (Sketch.) There are no solutions with x ^ 4. There are no solutions

with k = 1,2 or 4. There are no solutions with k even, so we may assume k ^ 6.

Notice that the last term in (19) remains an integer on division by x + i, i — —2, —1,1.

This remains true if i = 0 and 3 { x. We have k + 1 < x < (fc + l ) 3 j . Since

(k + 1 )3 | ^ 2k s$ 3*, it follows from ^ 1/p + 3*/(x - 3) = 0 (mod 1) that 3 \ x
v-i\k,
p\x-3

and from ^ 1/p + 2k/(x - 2) = 0 (mod 1) that x is odd. We find
P-i\k,
p|i-2

1

Proceeding as in the proof of Theorem 1 we find

Iog(z 5 )> £ logp>7.99 1012,

and so x > lO10" . D

Theorems 1, 2 and 3 suggest the following conjecture:

CONJECTURE. Equations (2), (3) and (4) do not have integer solutions with k > 1.

6. FURTHER RESULTS ON (2)

In this section we derive some further results on the integer solutions of (2) and
prove some additional results in the case a = 1 in (2), that is the Erdos-Moser equation.

PROPOSITION 9 . Suppose (a,x,k) with k > 1 satisfies (2). If p\x, then

p - l j k.

PROOF: From (7a) it follows that Y^ 1/p is either zero or a positive integer.

Since the latter is clearly impossible, the proposition follows. D
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When a = 1 this result is already known [8, Lemma 10a)].

From Proposition 9 it follows that x must be odd. Using the fact that k is even,
the proposition yields that 3 { x . Take b = 1 in (7b). Using the fact that x is odd, we
see that the 2-order of the right hand side is —1. So the 2-order of the left hand side
must be —1 too, that is, ord2 (x — 1) — ord2 (a) + 1. Suppose a is odd. Then x = 3
(mod 4). Take b = 3 in (7b). The left hand side is

a3* - 1 - 2*
x - 3

Since an easy induction shows that ord2(3r — 1) = ord2 (r)+2 for even r (alternatively
one may invoke Proposition 1 of Beyl [2]), we have

a3* - 1 - 2* = a - 1 + am2o r d l <*>+2 - 2fc,

where m is odd. Since k ^ 6, by Lemma 2, ord2(fc) + 3 < k. We conclude:

PROPOSITION 1 0 . Suppose (a,x,fc) satisfies (2), a is odd and k > 1. Then

( ord2 (a - 1) + 1 if ord2 (a - 1) < ord2 (Jfc) + 2;

ord2 (Jfc) + 3 if ord2 (a - 1) > ord2 (fc) + 2;

^ ord2 (k) + 4 otherwise.

In the case a = 1 we find ordi(x — 3) = ord2 (k) + 3, which is Lemma 12 of [8]. In the

case a ̂  1 (mod 8), we have ord2(x — 3) = 3 if a = 5 (mod 8) and 2 otherwise.

For the Erdos-Moser equation the following new result can be proved by comparing
orders of the left hand side and right hand side of (7b) with 6 = 2:

PROPOSITION 1 1 . Suppose (x,k) is a solution of the Erdos-Moser equation

with k > 1. Let p be a prime divisor of x — 2. If 2 is a primitive root modulo p, then

p — l\k and

ordp (x - 2) = ordp (2P~1 - l ) + ordP (Jb) + 1 ^ 2.
The following argument works for equations (3) and (4). Take a fixed. By reasoning

as in the proof of Proposition 2, we see that there exist positive constants c\ and c2

such that ci ^ k/x ^ c2. In this case it follows from [4, Theoreme 2] that
x —1 / i \ k

Z-J i _ e-((*+i)/(*-i:

From this it is easily deduced that the solutions of equations (3) and (4) satisfy

k ( 1 \
lim - = log 1 + - ,

x—>oo x \ a J

that is, when there are infinitely many solutions, the ratio of k and x tends to
log (1 + I/a) . When there are only finitely many, since we know that k and x have to
be very large the ratio of k to x will be very close to log(1 + I/a). For a = 1 this was
proved using continued fractions by Best and te Riele [1].
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