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Abstract

Wastewater surveillance and quantitative analysis of SARS-CoV-2 RNA are increasingly used
to monitor the spread of COVID-19 in the community. We studied the feasibility of applying
the surveillance data for early detection of local outbreaks. A Monte Carlo simulation model
was constructed, applying data on reported variation in RNA gene copy concentration in fae-
ces and faecal masses shed. It showed that, even with a constant number of SARS-CoV-2 RNA
shedders, the variation in concentrations found in wastewater samples will be large, and that it
will be challenging to translate viral concentrations into incidence estimates, especially when
the number of shedders is low. Potential signals for early detection of hypothetical outbreaks
were analysed for their performance in terms of sensitivity and specificity of the signals.
The results suggest that a sudden increase in incidence is not easily identified on the basis
of wastewater surveillance data, especially in small sampling areas and in low-incidence
situations. However, with a high number of shedders and when combining data from multiple
consecutive tests, the performance of wastewater sampling is expected to improve
considerably. The developed modelling approach can increase our understanding of the
results from wastewater surveillance of SARS-CoV-2.

Introduction

Worldwide, wastewater-based epidemiology (WBE) is increasingly used as a tool to monitor
the spread of COVID-19 in the community. The method has proven to be successful in
describing epidemiological trends by identifying and quantifying the virus RNA in wastewater
samples [1–12]. Additionally, as increasing trend in wastewater may be found prior to those
identified by individual testing, it is proposed to be useful for early warning [13–17].
Especially when human testing is limited, it has the potential to predict an increase in the
hospitalisation rate, allowing for rapid intervention against local spread of the virus [18].

Before the start of the COVID-19 pandemic, WBE has successfully been applied for
several purposes, including surveillance for poliovirus [19]. In a situation where the virus is
not circulating in the population, such as in the case of the poliovirus, emergence of the
virus can be signalled by wastewater sampling, and wastewater surveillance has proven to be
a useful strategy for early detection and intervention [20]. This is particularly useful
when samples are obtained at a local scale, so immediate and targeted action can be taken
[6, 18]. Research at local or institutional scale (such as in university dormitories) shows
that the application of wastewater surveillance is a useful strategy in a situation
where re-emergence of SARS-CoV-2 has to be detected in an early stage [21, 22]. However,
in the current situation where the epidemic is ongoing and is expected to develop as an
endemic disease [23, 24], such elimination and re-emergence may not be a realistic scenario
in catchment areas that cover populations with thousands of people or more. In a
low-incidence situation, it may be more important to detect increases in incidence that indi-
cate the start of a local outbreak, which should be targeted for a local intervention, before the
outbreak spreads further.

For the analysis of wastewater sampling data, it is important to understand the relation-
ship between the number of gene copies (as found by qPCR) and the number of infected
people in the population. It has been estimated that between 40 and 67% of infected people
shed the SARS-CoV-2 virus in their faeces [25–27], but the timing of faecal shedding
remains largely unknown. Using a Monte Carlo simulation model describing the relation
between the infection prevalence and the total number of SARS-CoV-2 RNA copies in
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wastewater, Ahmed et al. [1] estimated the number of infections
based on Australian wastewater data. Medema et al. [12] estab-
lished a similar theoretical relationship between the number of
shedders and the expected virus concentration in wastewater.
In their Monte Carlo simulation, they found that the uncertainty
of the virus concentration estimated from the number of shed-
ders is dominated by the variation in viral concentrations
between people and is particularly large with low numbers of
shedders. Whereas Medema et al. [12] assumed no decay of
the RNA in the sewer signal, McMahan et al. [28] incorporated
the effects of viral decay over time in their model for viral con-
centrations in the sewer shed, and applied it in a susceptible-
exposed-infectious-recovered model to describe the course of
the epidemic.

In Denmark, wastewater surveillance for SARS-CoV-2 has
been set up in the course of 2021, and has been organised with
samples taken three times a week at 230 locations covering
more than 85% of Danish addresses. Population sizes of the catch-
ment areas range between 670 and 638 000 inhabitants (median
10 600). This specific surveillance programme has prompted the
need to assess the possible application of wastewater surveillance
for early detection of local outbreaks in a low-prevalence situ-
ation, which would allow fast local intervention to prevent a
wider spread of the virus. To our knowledge, the feasibility of
this specific application of wastewater surveillance data has not
been studied previously.

In this paper, we therefore explored the possibility for setting
up an early warning system for local SARS-CoV-2 outbreaks in
a low-prevalence situation, by developing a Monte Carlo simula-
tion model of viral shedding in a wastewater system and analysis
of wastewater sampling. As outbreaks are characterised by an
increase in the number of infected people, the aim of the model-
ling was to evaluate the performance of different potential signals
for an increase in incidence, based on measured RNA copy counts
in two consecutive periods. The results of the modelling may pave
the way for the implementation of a systematic routine calculation
of potential signals from a wastewater surveillance programme.
Although the Danish surveillance programme inspired our
study, we used a generic approach for which the conclusions
should be valid internationally.

Methods

Model description

Based on [12], the relation between RNA copy concentration in
wastewater and the number of people shedding the virus in the
wastewater system (shedders) can be given as:

Cww =
∑N

i=1 fliC faeces, i

Q
(1)

where Cww is the concentration in the wastewater (gene copies
(gc))/l), N is the number of infected people shedding the virus,
fli is the amount of faeces shed by one infected individual i (g fae-
ces per person per day), Cfaeces,i is the number of gene copies per
gram faecal matter shed by infected individual i (gc/g faeces) and
Q indicates the daily water flow to the sewer (l per day).

It follows that the change in log concentration in the waste-
water over two measurements is

D log (Cww) = D log(
∑N

i=1

fliC faeces, i)− Dlog(Q) (2)

which simplifies to:

D log (Cww) = D log(
∑N

i=1

fliC faeces, i) (3)

if Q does not change between measurements at a specific sam-
pling point.

Given that, by definition,

E(
∑N

i=1

fliC faeces, i) = N × E( fli) × E(Cfaeces, i) (4)

it follows that the relation between the change in log concentra-
tion of gene copies in the wastewater, Δlog (Cww), is expected to
be proportional to the change in the log number of shedders, Δ
log (N ), for large values of N. Yet, if the variation in Cfaeces,i

and fli between shedders is large and N is small, this assumption
of proportionality may not be justified. Therefore, published data
on Cfaeces and fl were compared to obtain feasible distributions for
these variables in the model.

As qPCR analyses are not perfect, an additional source of vari-
ation is added to the values of log (Cww). This is implemented as
ε∼Normal(0, sPCR), where it is assumed that sPCR = 0.15 log10
units, equivalent to 0.5 Ct value in the qPCR [29, 30].

Therefore, the change in concentration in the wastewater can
be obtained from

D log (Cww) = D log(
∑N

i=1

fliC faeces, i)+ 1 (5)

This equation was implemented in a Monte Carlo simulation
model, developed in R 4.0.4., where N values of fli and Cfaeces,i

are sampled from the distributions given above (see
Supplementary Material). The model was used to illustrate the
expected dynamics in the observed values of Cww and to explore
the expected performance of potential signals that can be used
to identify an increase in incidence. The incidence is assumed
to be proportional to the number of infected people shedding
the virus (N ). In the simulations, viral concentrations in human
faeces and the amount of faeces shed are assumed to be independ-
ent from each other and independent by time. Also, the catch-
ment size is not explicitly included in the model; the wastewater
samples are assumed to be taken from well-homogenised
wastewater.

Potential signals

The model was used to assess how wastewater surveillance data
may be used to signal a twofold, fourfold or tenfold increase in
incidence between two consecutive periods. Based on the
model, we explored two potential signals: (a) the difference in
the mean of the log Cww found between two sets of consecutive
samples; (b) the P value of a linear regression through two sets
of consecutive samples.

In (a), the mean of k = 3 consecutive samples (1 week in the
Danish surveillance programme) is compared with the mean of
the next k = 3 consecutive samples (the next week). The difference
between the two means of the log(Cww) is determined, and eval-
uated as a potential signal defined as an increase of more than D
log units. As a twofold increase implies an increase of 0.3 logs, we
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evaluated D = 0, 0.3, 0.6, 0.9 and 1.2. The same analysis is done for
k = 6, which may refer to the comparison of two consecutive
2-week periods.

In (b), assuming k = 3 consecutive samples per week, a linear
regression is performed through the 2 × 3 = 6 data points
expressed as log concentrations. The P value associated with the
slope of an increasing regression line being different from zero,
which readily follows from the analysis, is used as a potential sig-
nal, defined as P < 0.05, P < 0.1 or P < 0.2. The same analysis is
done for k = 6, which corresponds to the comparison of two con-
secutive 2-week periods.

Performance was expressed as sensitivity and specificity of the
signal, as obtained from the simulations. Here, the sensitivity is
the expected relative frequency in which you get a signal given
an increase of the number of shedders between the sets of sam-
ples. The specificity is the expected relative frequency in which
you do not get a signal given that the number of shedders is
unchanged. In the simulations, it was assumed that the number
of shedders instantaneously increased from one week to the
next, i.e. N shedders for the first k data points and 2N, 4N or
10N for the second k data points. This is a hypothetical scenario
that should be identified by a potential signal.

Results

Model inputs

Tables 1 and 2 show values and distributions that have been
reported for the concentration of viral RNA copies in the faeces,
Cfaeces and the faecal mass shed per day, fl. They show that most
authors have used the data presented by [31] (on Cfaeces) and [32]

(on fl). Based on these data, we use the following lognormal dis-
tribution for both parameters, as baseline in our analyses:

log10(fli) � Normal(2.11, 0.25) (3)

log10(Cfaeces,i)� Normal(6, 1) (4)

These distributions are in line with what has been used by
others, and have the advantage that the log10 values are normally
distributed, so some basic statistics apply. Note that the precise
mean values, 2.11 and 6, are not important for our approach, as

Table 1. Reported distributions of the concentration of RNA copies (gene copies, gc) in human faeces (Cfaeces)

Study Distribution of concentrations Comment

Wölfel et al. [31] Stool samples occur in a range between below LoD to about 7.5 log10
copies per swab
Average 6.76 × 105 copies per throat/nasal swab; max 7.11 × 108

Observations from hospitalised patients
Decline in concentration over time

Ahmed et al. [1] Uniform (2.56, 7.67) log10 gc/g Based on [31]

Curtis et al. [34] Between 100 and 7.1 × 108 gc/g Based on [31]

Lui et al. [43] Between 3 and 6.2 log10 gc/ml
Median 4.1

Observations from hospitalised patients

Han et al. [44] Between LoD and 10.3 log10 gc/ml
Median 7.63

Observations from mildly symptomatic and
asymptomatic children

Medema et al. [12] Gamma (10.78, 0.46)
mean = 4.95, S.D. 1.5 log10 gc/g

Based on five publications

Miura et al. [41] Mean 3.4 (95% CrI 0.24–6.5) log10 gc/g over the whole shedding period
Peak concentration 6.5 (95% CrI 5.6–7.4) log10 gc/g

Based on [31] and a fitted dynamical model for decline
over time

Chavarria-Miró et al.
[45]

Between 3 and 7 log10 gc/g
Mean first 10 days 5.3, later 4.9

Based on [31]

Li et al. [46] Between 1 and 8 log10 gc/g
Mean: 4.23, S.E. 0.133

From systematic review

Schmitz et al. [47] Between 5.74 and 8.28 log10 gc/g
Mean: 7.39, S.E. 0.67
Median: 6.64

Observations from student dormitories

McMahan et al. [28] Normal (7.6,0.8) log10 gc/g faeces after 5 days;
Normal (3.5,0.35) log10 gc/g faeces after 25 days

Based on [31]
Dynamical model includes change in concentration
over time

LoD, limit of detection.

Table 2. Reported distributions of the daily faecal mass shed by humans ( fl)

Study
Faecal mass (g) per
person per day Comment

Rose et al. [32] Median 128, mean 149, range
51–796 g wet mass

Burns et al. [48] Between 105 and 140

Ahmed et al. [1],
McMahan et al. [28]

Normal (2.11, 0.25) log10 units Based on
[32]

Curtis et al. [34] Triang (51, 128, 786) Based on
[32]

Medema et al. [12] ExpNormal (5,0.58)

(mean 149, median 126)
Based on
[32]

Chavarria-Miró
et al. [45]

380
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we focus on the change in log concentrations in the wastewater
Δlog Cww. Critical values for our analyses are the standard devia-
tions as given in the equations above.

Simulation of the number of shedders and the concentration in
the wastewater

First, the simulation model was run to explore the variation in
Cww as a function of N. Figure 1a presents an example of a simu-
lation of a series of 40 measurements over time where the number
of shedders is held constant. This illustrates that, on average, the
gene copy counts will be higher with a larger number of shedders,
and also that the variation in gene copy counts will be substantial.
With 100 000 iterations of the simulation model, for N = 3, 30 and
300 shedders, means in log (Cww) are 9.1, 10.6 and 11.8 and
standard deviations 0.74, 0.39 and 0.24, respectively. The 95%
probability intervals obtained from the 2.5 and 97.5 percentiles
are 7.7−10.6, 10.0–11.5 and 11.3–12.3, respectively. Hence, the
feasible ranges of observed concentrations overlap, despite the
tenfold differences in numbers of shedder. This suggests that indi-
vidual measurements are unreliable as indicators for an increase
in the number of shedders, especially when the number of shed-
ders is low. Figure 1b shows that the mean of log (Cww) of three
samples performs better as an indicator of the number of shed-
ders. The mean log (Cww) values are the same and the variation
is still considerable (standard deviations 0.43, 0.23 and 0.14
with N = 3, 30 and 300 shedders respectively), especially when
the number of shedders is low. However, the 95% probability

intervals (8.3–10.0, 10.2–11.1 and 11.5–12.1 respectively) do no
longer overlap.

Figure 2 illustrates the relation that was obtained between log
(N ) and log (Cww) and is very similar to one published by [12]. It
confirms that the variation between measurements is expected to
be large. It also shows that the relation between the mean values
of log (N ) and log (Cww) is not linear when the number of shed-
ders is low, due to the nature of the lognormal distribution [33].

Next, the simulation model was used to explore the perform-
ance of potential signals by analysis of the frequency of signals
without a change in the number of shedders N, and with a two-
fold, fourfold and tenfold increase of N. Results are presented in
Figure 3, which shows that the performance for all signals is poor
for the detection of a twofold increase in N, but progressively bet-
ter for the detection of a fourfold and tenfold increase, especially
when two 2-week periods (k = 6) are compared. With a fourfold
increase, the best performance is from the signal D > 0.3log,
with initially N = 1000 shedders. For a tenfold increase, the D >
0.6 signal performs best, with (almost) 100% sensitivity and spe-
cificity with initially N = 1000 shedders. In general, a higher num-
ber of shedders N increases the performance of signals, especially
if the D value is smaller than the log increase in N. With an initial
number of N = 10 shedders, the only signal with sensitivity and
specificity >95% is D > 0.6 log with a tenfold increase in shedders
and k = 6.

Interestingly, with the linear regression method, the specificity
of the signal is one minus half the P value: for P < 0.05, the spe-
cificity is 0.975, for P < 0.1 it is 0.95, etc., because we only look at

Fig. 1. Example of the variation in the observed viral concentration in
wastewater Cww (log gene copies per litre per day) due to random
variation in the shedding of virus RNA in a simulation with N = 3 (cir-
cles), N = 30 (crosses) and N = 300 (triangles) shedders. (a) Forty con-
secutive single samples. (b) Consecutive means of independent sets
of three samples. The horizontal axis can be taken to represent
time, for example, daily independent measurements.
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increasing trends. Here an increased number of shedders always
increases the sensitivity of the method.

Impact of standard deviations

The performance of potential signals was not affected by the
mean values for log ( fli) and log (Cfaeces,i), but was influenced
by the standard deviations. This is illustrated in Figure 4, which

shows the performance of potential signals for values of the stand-
ard deviation of log (Cfaeces,i), σfaeces = 0.5, σfaeces = 1 and σfaeces =
1.5, as well as the inherent variation of the qPCR, sPCR = 0.3 log10
units (equivalent to 0.5 Ct value in the qPCR), for a fourfold
increase in N and k = 6. Similar results are obtained in scenarios
with two- and tenfold increase of N and/or k = 6 (results not
shown). These results indicate that with lower standard deviation,
the performance increases, whereas it decreases with larger stand-
ard deviation.

Discussion

In this study, we have modelled the expected viral concentrations
obtained from RT-qPCR measurements of SARS-CoV-2 in com-
munity wastewater samples, based on published studies on excre-
tion rates of virus in faeces. Our simulations show that a large
variation in the viral concentration per gram of faeces between
infected individuals will result in a large variability in the concen-
trations found in wastewater, especially when the number of shed-
ders is low. As an example, our results show that in a hypothetical
catchment area with 10 000 inhabitants and 30 persons shedding
the virus daily, the expected variation on subsequent measure-
ments of virus is large, such that 95% of the values fall within a
range of 1.6 log units. This range decreases to less than 1 log
unit with 300 shedders, but note that this would imply a
COVID-19 prevalence larger than 3%, given that not all infected
people shed the virus in their faeces. This result suggests that it
will be difficult to reliably identify an increase in incidence

Fig. 3. Simulated sensitivity and specificity of potential signals in six scenarios comparing a two- (a, d), four- (b, e) and tenfold (c, f) increase of the number of
shedders between two sets of k = 3 (a, b, c) and k = 6 (d, e, f) samples. Axes correspond to those used for ROC (receiver operating characteristic) curves, only results
with sensitivity >50% and specificity >75% are shown. Circles show results for signals based on a difference of means (d), crosses for signals based on linear regres-
sion. Open circles/small crosses: N = 10; shaded circles/medium crosses: N = 100; closed circles/large crosses: N = 1000.

Fig. 2. The simulated relation between the number of shedders N and the gene copy
concentration in the wastewater Cww (median, 5% and 95% percentiles). Note that
both are expressed on a log scale.

Epidemiology and Infection 5

https://doi.org/10.1017/S0950268823000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268823000146


based on wastewater surveillance data, especially if it is based on a
comparison of single wastewater samples in a low-incidence situ-
ation. However, the simulations also show that with a high num-
ber of shedders and when using the mean result of a number of
consecutive tests, the performance of wastewater sampling
improves considerably. As the variation depends on the absolute
number of shedders rather than the percentage of shedders in a
catchment area, with equal incidence, the reliability of signals
will be larger in large population areas than in small ones.
However, sudden four- or tenfold increases in incidence may be
less likely in large population areas.

Based on the need to define signals for early warning in local
outbreaks, when setting up wastewater analysis as a new surveil-
lance tool for SARS-CoV-2, the performance of potential signals
was explored. Several hypothetical scenarios were defined. It was
assumed that a two-, four- or tenfold increase in the number of
shedders indicates a sudden increase, which is typical for an
(early) outbreak or superspreading event, and should be identified
by a signal. Additionally, the signal should be identified in a rela-
tively short timeframe, to allow quick action by public health
authorities. We imagined a situation where three wastewater sam-
ples are taken per week. The signal was therefore based on k = 3
and k = 6 samples, where the current 1- or 2-week period was
compared with the preceding period. To identify a fourfold
increase in the number of shedders, the results show that the
signal-detection performs best with a signal based on D > 0.3

log increase in the mean number of gene copies. For a tenfold
increase this is D > 0.6. As expected, test performance is best if
the number of shedders (N ) and the numbers of samples com-
pared (k) are large.

Our simulation modelling approach is in many ways similar to
that applied by others [1, 12, 28, 34]. However, by considering the
log increase in concentrations and in the number of shedders over
time, we did not need to describe the absolute number of gene
copies or the difference in water flow between specific wastewater
treatment plants, which may be sensitive to unique characteristics
of the sampling method and the wastewater treatment plant.
At the same time, our approach gives the possibility to identify
potential outbreaks by detecting instantaneous increases in the
number of shedders. We specifically applied the model to study
the performance of potential signals for the detection of early out-
breaks at a local scale. This is a highly relevant application of was-
tewater surveillance of SARS-CoV-2, as COVID-19 is expected to
stay endemic, and the detection of re-emergence of the virus may
not be the main purpose of the surveillance.

Our results suggest that it will be challenging to apply waste-
water surveillance to detect early-stage outbreaks in a low-
incidence situation at a local scale. These results may seem to con-
trast the many promising findings in relation to wastewater sur-
veillance during the COVID-19 pandemic [2, 5, 6, 11, 14, 18,
35]. However, most of these authors refer to a situation where
the incidence is high and/or populations contributing to the

Fig. 4. Simulated sensitivity and specificity of potential signals in the scenario with fourfold increase of the number of shedders and two sets of k = 6 samples with
σfaeces = 0.5 (a), σfaeces = 1 (b), σfaeces = 1.5 (c), sPCR = 0.3 (d) and other values as in the baseline. Only results with sensitivity >50% and specificity >75% are shown.
Symbols and lines are identical to those in Figure 3.
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collected wastewater are large. At the other hand, studies at
institutional scale typically involve smaller populations than
those referred to in our study [17, 21, 22]. In these cases
wastewater surveillance has shown to be an effective tool to
detect the re-emergence of the virus, after it had been eliminated.
Our specific purpose, however, was to identify increases in preva-
lence in a low-prevalence situation and not the detection of
re-emergence, in populations where this could be relevant,
i.e. those that fall between the small populations of concern at
institutional scale and large populations considered in many
other studies. The challenge of the analysis of wastewater data
from smaller communities in low-incidence situations has been
addressed by [36], who indicate that, in such situations, the
high day-to-day variance is a key challenge for the interpretation
of wastewater surveillance data. Others [37] found that, with 10
individuals shedding SARS-CoV-2 in a catchment of 100 000
individuals, there was a high likelihood of detecting viral RNA
in wastewater.

For illustration, we show the performance of a few potential
signals in some very specific scenarios, where the increase of
the number of shedders occurs instantly. These scenarios are
not realistic, as increases would often be gradual, and not exactly
between two periods in which measurements are taken. The scen-
arios can be considered examples for which signals are most easily
identified, and therefore the performance estimates are probably
too optimistic. Still, superspreading events with sudden strong
increases in prevalence may occur as well [38]. For these events,
which may have been driving the COVID-19 pandemic [39], was-
tewater surveillance is expected to give clear signals.

The performance measures ‘sensitivity’ and ‘specificity’ refer to
the expected rate of true positives and true negatives and provide
the probability of a correct test result given the occurrence (or
not) of an outbreak, defined as a two-, four- or tenfold increase
in the number of shedders. For a decision maker who is mostly
concerned about taking unnecessary action, it will be more
important to know the positive predictive value, i.e. the probabil-
ity of the occurrence of an outbreak, given that you get a signal.
As explained in Appendix A, this probability depends on the
rate in which outbreaks occur. If it is low, as in an endemic situ-
ation with low prevalence, the probability that a signal correctly
identifies an outbreak is expected to be low, even if sensitivity
and specificity are high.

Several simplifying assumptions have been made in our model-
ling approach. As other authors [1, 12, 28], we assume that the daily
wastewater sample results do reflect the daily shedding of the virus
in a homogeneously mixed wastewater system and that daily sam-
ples of the faecal mass ( fli) and the viral concentration in the faeces
(Cfaeces,i) are independent. Additionally, we assume a proportionality
of incidence and number of shedders and do not include the decline
in viral concentration in the faeces that is observed over time [28,
31, 40, 41]. The assumption that changes in concentration over
time reflect the changes in incidence may not be correct, especially
in the situation when the incidence is decreasing and the shedding
of virus continues. However, as the signals are meant to identify
increases rather than decreases, the importance of this potential
shortcoming is expected to be limited [42].

The analysis of the impact of the standard deviations shows that
the individual variation in the viral amounts being shed largely
impacts the performance of signals, especially when the number
of shedders is low. Although the available data [12, 31] suggest
that this variation is large, it is not well characterised. To our
knowledge, it is not specifically known, neither for symptomatic

vs. asymptomatic, nor for vaccinated vs. non-vaccinated people. It
is also unknown whether there are differences between
SARS-CoV-2 variants. Collection of that type of data would be
very useful to predict the performance of wastewater surveillance.
PCR measurement errors are included as a small error term,
sPCR = 0.15, but additional background noise that is often found
[36] and other possible sources of pre-PCR error due to laboratory
processing have not been included. The alternative analysis with
sPCR = 0.3 illustrates how an increased measurement error also
impacts the performance of signals. As most of our assumptions
ignore several sources of variation in sampling and analysis of
the RNA data, variability in sampling data is expected to be larger
than in the model predictions, and therefore the model probably
overestimates the performance of signals.

Conclusions

We used a simulation modelling approach to explore the perform-
ance of wastewater analysis-based surveillance for the detection of
local SARS-CoV-2 outbreaks. Although many studies have shown
that wastewater surveillance is highly promising and useful both
for following trends in COVID-19 infection pressure and early
detection of re-emergence, the method does not seem particularly
suitable for detection of local outbreaks in low-prevalence situa-
tions. Our study showed that the substantial inherent variance
in viral gene copy concentrations shed by individuals infected
with SARS-CoV-2 complicates this potential usage of the surveil-
lance tool. More specifically, our model results suggest that, for
example, a situation with around 100 shedders of the
SARS-CoV-2 virus, at least a fourfold increase of their number
and two series of at least six consecutive samples would be needed
to reliably obtain a signal (i.e. with more than 95% sensitivity and
specificity). This requires intensive sampling, especially if a rapid
identification of a local outbreak is required. Moreover, given the
simplifying assumptions made in the analysis, such as the exclu-
sion of several sources of variation from sampling and analysis of
the RNA data, the obtained performance characteristics can be
considered optimistic. As the performance of the surveillance
decreases with population size and the probability of a correct sig-
nal decreases with prevalence, we do not expect to be able to per-
form an early identification of an outbreak at a local scale, based
on wastewater surveillance.

With our analysis, we have shown that modelling can be a use-
ful tool to increase our insight in the expected results from waste-
water surveillance for SARS-CoV-2. With the large amount of
data becoming available, the hypotheses generated by the model-
ling can be studied in detail, which may allow us to verify the
underlying assumptions and increase understanding and inter-
pretation of the results obtained.
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Appendix A The probability of a correct signal

Given that the sensitivity Se = P(signal|outbreak) and specificity Sp = P(no sig-
nal|no outbreak), with occurrence rate (outbreak probability) P(outbreak) = p,

it is easy to see that the probability of a correct signal

P(outbreak |signal) = p Se
(1− p)(1− Sp)+ p Se

This equation is evaluated in Figure A1, for some typical values of Se and
Sp. It shows that the specificity is particularly important for the signal per-
formance and that, when the outbreak occurrence rate is low (<<0.05), the

majority of signals will be false, even with acceptable values of Se and Sp.

Fig. A1. The probability that a signal is correct as a
function of the outbreak occurrence rate, for different
specificity (Sp) and sensitivity (Se). Black: Sp = 0.95,
blue: Sp = 0.9, red: Sp = 0.8; straight line: Se = 0.99,
long dash: Se = 0.9, short dash: Se = 0.5.
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