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Abstract

Let X be a smooth projective manifold with dimCX = n. We show that if a line
bundle L is (n− 1)-ample, then it is (n− 1)-positive. This is a partial converse to the
Andreotti–Grauert theorem. As an application, we show that a projective manifold X
is uniruled if and only if there exists a Hermitian metric ω on X such that its Ricci
curvature Ric(ω) has at least one positive eigenvalue everywhere.

1. Introduction

One of the most fundamental topics in algebraic geometry is the characterizing ampleness of
line bundles by using numerical and cohomological vanishing theorems. The theorem of Cartan–
Serre–Grothendieck is a milestone in this direction. The following statements are equivalent:

(i) L is an ample line bundle over a projective manifold X;

(ii) for every coherent sheaf F on X, there exists a positive integer m0 = m0(X,F , L) such that

H i(X,F ⊗ L⊗m) = 0

for all i > 0 and all m > m0.

On complex projective manifolds, ampleness is also equivalent to the existence of a smooth metric
with positive curvature, thanks to the celebrated Kodaira embedding theorem.

In [AG62], Andreotti and Grauert considered the case of line bundles with curvature of mixed
signature. Now it is formulated into the following definition.

Definition 1.1. Let L be a holomorphic line bundle over a compact complex manifold X with
dimCX = n.

(i) L is called q-positive, if there exists a smooth Hermitian metric h on L such that the Chern
curvature R(L,h) = −

√
−1∂∂ log h has at least (n − q) positive eigenvalues at every point

on X.

(ii) L is called q-ample, if for any coherent sheaf F on X there exists a positive integer m0 =
m0(X,L,F) > 0 such that

H i(X,F ⊗ Lm) = 0 for i > q, m > m0. (1)

It is obvious that L is 0-positive if and only if L is positive, and L is 0-ample if and only if L is
ample. Hence the 0-positivity and 0-ampleness are equivalent. In [AG62, Theorem 14], Andreotti
and Grauert proved the following fundamental theorem (see also [DPS96, Proposition 2.1]).

Received 24 August 2017, accepted in final form 10 July 2018, published online 19 November 2018.
2010 Mathematics Subject Classification 14F17, 32L20, 53C55 (primary).
Keywords: vanishing theorem, (n− 1)-ample, (n− 1)-positive, pseudoeffective, uniruled manifolds.
This journal is c© Foundation Compositio Mathematica 2018.

https://doi.org/10.1112/S0010437X18007509 Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X18007509


X. Yang

Theorem 1.2 (Andreotti–Grauert). A q-positive line bundle is q-ample.

Historically, the Andreotti–Grauert theorem is the first result on the relationship between
(partially) positive line bundles and the cohomological vanishing theorems. In the pioneer
work [DPS96], Demailly, Peternell and Schneider systematically investigated partial vanishing
theorems and proposed the following problem on the converse to the Andreotti–Grauert theorem.

Problem 1.3. On a projective manifold, if a line bundle is q-ample, is it q-positive?

This is a long-standing open problem. The key difficulty arises from constructing a precise
metric according to the formal partial vanishing theorem (1). Recently, there has been some
progress on this problem, mainly contributed by Demailly, Totaro, Ottem, Küronya, Matsumura,
Brown and so on (see [Dem11, Tot13, Mat13, Ott12, Bro12, Kür13, GK15] and also the references
therein). Totaro proved in [Tot13] that the notion of q-ampleness is equivalent to others previously
studied in [DPS96]. As a result, the q-ampleness of a line bundle depends only on its numerical
class, and the cone of such bundles is open. In particular, Totaro established that the (n−1)-ample
cone of an n-dimensional projective manifold X is equal to the negative of the complement of
the pseudo-effective cone of X (see also Corollary 1.6). In dimension two, Demailly proved
in [Dem11] an asymptotic version of this converse to the Andreotti–Grauert theorem using
tools related to the holomorphic Morse inequality and asymptotic cohomology; subsequently,
Matsumura obtained in [Mat13, Theorem 1.3] a positive answer to the question for projective
surfaces. However, there exist higher-dimensional counter-examples to the converse Andreotti–
Grauert problem in the range (dimX)/2− 1 < q < dimX − 2, constructed by Ottem [Ott12,
Theorem 10.3]. Our main result in this paper is a partial converse to the Andreotti–Grauert
theorem on smooth projective manifolds.

Theorem 1.4. Let L be a line bundle over a smooth projective manifold X with dimCX = n.
If L is (n− 1)-ample, then it is (n− 1)-positive.

In particular, when dimCX = 2, the converse Andreotti–Grauert problem 1.3 is true (see also
[Mat13, Theorem 1.3]). Actually, Theorem 1.4 is a straightforward application of the following
result on general compact complex manifolds.

Theorem 1.5. Let X be a compact complex manifold with dimCX = n. Then the following
statements are equivalent:

(i) L is (n− 1)-positive;

(ii) the dual line bundle L−1 is not pseudo-effective.

Note that, Theorem 1.5 is also valid if we replace the line bundle L by a Bott–Chern class
α ∈ H1,1

BC(X) (see Theorem 4.2). The key ingredients in the proof of Theorem 1.5 rely on several
results in our previous paper [Yan17] on geometric characterizations of pseudo-effective line
bundles (respectively Bott–Chern classes). As an application of Theorems 1.4, 1.5 and 1.2, one
has the following.

Corollary 1.6. On a projective manifold X of complex dimension n, the following are
equivalent:

(i) L is (n− 1)-ample;
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(ii) L is (n− 1)-positive;

(iii) L−1 is not pseudo-effective.

Note that the equivalence of (1) and (3) is also obtained in [DPS96, Proposition 2.5], [Tot13,
Theorem 9.1] and [Mat13, Lemma 2.4] by different methods in one direction.

According to Ottem’s counter-examples in [Ott12, Theorem 10.3], for (dimX)/2 − 1 < q <
dimX − 2, the q-ampleness cannot imply the q-positivity. On the contrary, by Theorem 1.4, we
obtain the following.

Proposition 1.7. Let X be a smooth projective manifold with dimCX = n. Suppose L is
q-ample, then the restriction of L to every codimension-(n − q − 1) smooth submanifold Y is
q-positive.

In particular, we have the following.

Corollary 1.8. Let X be a smooth projective manifold with dimCX = n. If L is (n− 2)-ample,
then the restriction of L to every codimension-1 smooth submanifold is (n− 2)-positive.

On the other hand, by using the classical result of [BDPP13], one obtains the following.

Corollary 1.9. On a projective manifold X of complex dimension n, the following are
equivalent:

(i) X is uniruled;

(ii) K−1X is (n − 1)-positive, i.e. there exists a Hermitian metric ω on X such that its Ricci
curvature Ric(ω) has at least one positive eigenvalue everywhere;

(iii) KX is not pseudo-effective;

(iv) K−1X is (n− 1)-ample.

Remark 1.10. From Theorems 1.4, 1.5, Corollaries 1.6, 1.9, Theorems 4.1 and 4.2, one can derive
and formulate various cone dualities on compact complex manifolds. The vector bundle analogous
of the main results and applications are obtained in [Yan18].

2. Partially positive line bundles on compact complex manifolds

In this section, we deal with two different notions on q-positive line bundles over compact complex
manifolds.

Definition 2.1. Let X be a compact complex manifold and L be a holomorphic line bundle
over X.

(i) L is called q-positive, if there exists a smooth Hermitian metric h on L and a smooth
Hermitian metric ω on X such that the Chern curvature R(L,h) = −

√
−1∂∂ log h has at

least (n− q) positive eigenvalues at any point on X (with respect to ω).

(ii) L is called uniformly q-positive, if there exists a Hermitian metric h on L and a smooth
Hermitian metric ω on X such that the summation of any distinct (q + 1) eigenvalues
(counting multiplicity) of the Chern curvature R(L,h) = −

√
−1∂∂ log h is positive at any

point of X (with respect to ω).
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The following result is obtained by changing the metric on the complex manifold and the

background idea dates back to [AV65, § 5].

Proposition 2.2. The following statements are equivalent:

(i) L is q-positive;

(ii) L is uniformly q-positive.

Proof. (2) =⇒ (1). Let ω be a Hermitian metric on X and h be a smooth Hermitian metric on L

such that R(L,h) = −
√
−1∂∂ log h is uniformly q-positive. Let λ1 > · · · > λn be the eigenvalues

of R(L,h) with respect to ω over some coordinate chart. We have λn−q > 0. Otherwise, the

summation of q + 1 eigenvalues λn−q + λn−q+1 + · · ·+ λn 6 0.

(1) =⇒ (2). We assume that there exists a smooth Hermitian metric h on L such that the

curvature R(L,h) = −
√
−1∂∂ log h has at least (n− q) positive eigenvalues at each point p ∈ X.

Let ω0 be a fixed Hermitian metric on X. For simplicity, we denote by R and Ω the local matrix

representations of the matrices R(L,h) and ω0 respectively, in some local holomorphic frames

of X. Let

λ1(z) > · · · > λn(z)

be the eigenvalues of R(L,h) with respect to ω0. It is obvious that λ1, . . . , λn are eigenvalues of the

matrix RΩ−1. Note that RΩ−1 represents a tensor in Γ(X,End(T 1,0X)), and so the eigenvalues

λi are independent of the choice of coordinates. Since λn−q is a continuous function, we set

λ0 =
log(n+ 1)

infX λn−q
. (2)

λ0 is a positive number since L is q-positive and X is compact. We define a new Hermitian metric

ω over X with local matrix representation Ω̃ by the following formula

Ω̃−1 = Ω−1 ·
(

Id +
∞∑
k=1

λk0(RΩ−1)k

(k + 1)!

)
. (3)

Note that the matrix Ω̃−1 is positive definite. Indeed, the eigenvalues of the matrix

Id +
∑∞

k=1 (λk0(RΩ−1)k/(k + 1)!) are given by

1 +
∞∑
k=1

λk0λ
k
i

(k + 1)!
=
eλ0λi − 1

λ0λi
> 0 if λi 6= 0.

It is not hard to see that the Hermitian metric ω is globally well-defined on X. Let κ1 > · · · > κn
be the eigenvalues of R(L,h) with respect to the new metric ω, i.e. they are the eigenvalues of

RΩ̃−1. Note also that

RΩ̃−1 = λ−10

( ∞∑
k=0

λk0(RΩ−1)k

k!
− Id

)
.

A straightforward computation shows

κn−q =
eλ0λn−q − 1

λ0
and κn =

eλ0λn − 1

λ0
.
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For any summation of (q + 1) (distinct) eigenvalues of R(L,h) with respect to the new metric ω,
we have the inequality

q+1∑
`=1

κi` > κn−q + · · ·+ κn

> κn−q + qκn

> λ−10 (eλ0λn−q + qeλ0λn − (q + 1))

> λ−10 (eλ0λn−q − (q + 1)) > 0

since eλ0λn−q = elog(n+1)(λn−q/infX λn−q) > n+ 1 by (2).

The following special case of Proposition 2.2 is of particular interest in complex geometry.

Corollary 2.3. The following statements are equivalent:

(i) L is (n− 1)-positive;

(ii) there exists a smooth Hermitian metric h on L and a Hermitian metric ω on X such that
the function

trω(−
√
−1∂∂ log h) > 0. (4)

Remark 2.4. The function trω(−
√
−1∂∂ log h) is globally defined on X and it is independent of

the choice of coordinates. It is also called the scalar curvature of the Chern curvature R(L,h) =
−
√
−1∂∂ log h with respect to the Hermitian metric ω.

3. The pseudo-effective line bundles on compact complex manifolds

A line bundle L on a compact complex manifold X is called pseudo-effective if there exists
a (possibly) singular Hermitian metric h on L such that its Chern curvature R(L,h) =
−
√
−1∂∂ log h > 0 in the sense of current. In order to describe pseudo-effective line bundles

in a differential geometric setting, we introduce the Bott–Chern cohomology on X:

Hp,q
BC(X) :=

Ker d ∩ Ωp,q(X)

Im ∂∂ ∩ Ωp,q(X)
.

Let Pic(X) be the set of holomorphic line bundles over X. As similar as the first Chern class
map c1 : Pic(X) → H1,1

∂
(X), there is a first Bott–Chern class map

cBC
1 : Pic(X) → H1,1

BC(X). (5)

Given any holomorphic line bundle L → X and any Hermitian metric h on L, we define cBC
1 (L)

to be the class of its curvature form R(L,h) = −
√
−1∂∂ log h in H1,1

BC(X) (modulo a constant
2π). A Hermitian metric ω is called a Gauduchon metric if ∂∂ωn−1 = 0 where dimCX = n. It
is proved by Gauduchon [Gau77a] that, in the conformal class of each Hermitian metric, there
exists a unique Gauduchon metric (up to constant scaling).

Proposition 3.1. The following statements are equivalent:

(i) L is pseudo-effective;
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(ii) for any Gauduchon metric ωG on X, one has∫
X
cBC
1 (L) ∧ ωn−1G > 0. (6)

Proof. The proof is essentially contained in [Yan17, Theorem 1.1] or [Yan17, Theorem 3.4] which
relies on Lamari’s positivity criterion [Lam99] and an observation of Michelsohn [Mic82]. For
readers’ convenience, we include a proof here.

(1) =⇒ (2). Suppose L is pseudo-effective, it is well-known that there exist a smooth
Hermitian metric h on L and a real valued function ϕ ∈ L 1(X,R) such that

R(L,h) +
√
−1∂∂ϕ > 0

in the sense of current where R(L,h) = −
√
−1∂∂ log h. Then for any smooth Gauduchon metric

ωG, we have ∫
X
cBC
1 (L) ∧ ωn−1G =

∫
X
R(L,h) ∧ ωn−1G

= (R(L,h) +
√
−1∂∂ϕ, ωn−1G ) > 0

since ∂∂ωn−1G = 0 and R(L,h) +
√
−1∂∂ϕ > 0 in the sense of current.

(2) =⇒ (1). We define several sets:

– E is the set of real ∂∂-closed (n− 1, n− 1) forms on X;

– V is the set of real positive ∂∂-closed (n− 1, n− 1) forms on X;

– G = {ωn−1 | ω is a Gauduchonmetric}.

In [Mic82, pp. 279–280], Michelsohn observed that V = G . Let W be the space of smooth
Gauduchon metrics on X. We also define F : W → R by

F (ω) =

∫
X
cBC
1 (L) ∧ ωn−1.

Hence, by the assumption of (2), we have F (ω) > 0 for every ω ∈ W . Fix an arbitrary smooth
Hermitian metric h on L. Since V = G , for any ∂∂-closed positive (n − 1, n − 1) form ψ ∈ V ,
there exists a smooth Gauduchon metric ω such that ωn−1 = ψ. Hence∫

X
R(L,h) ∧ ψ =

∫
X
R(L,h) ∧ ωn−1 =

∫
X
cBC
1 (L) ∧ ωn−1 = F (ω) > 0. (7)

That means, as a functional on V , R(L,h) is non-negative. Note that V is a hyperplane in E . As
proved in [Lam99, Lemma 3.3], by Hahn-Banach theorem, cBC

1 (L) is pseudo-effective, and there
exists a locally integrable function ϕ ∈ L 1(X,R) such that

R(L,h) +
√
−1∂∂ϕ > 0

in the sense of current. That means, L is pseudo-effective.

Of course, Proposition 3.1 has the following variant.

Proposition 3.2. The following statements are equivalent:

(i) the dual line bundle L−1 is not pseudo-effective;

(ii) there exists a Gauduchon metric ωG such that∫
X
cBC
1 (L) ∧ ωn−1G > 0.
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4. The proofs of Theorems 1.4 and 1.5

In this section, we prove Theorems 1.4, 1.5 and Proposition 1.7.

The proof of Theorem 1.5. (1) =⇒ (2). By Corollary 2.3, there exist a smooth Hermitian metric
h on L and a Hermitian metric ω on X such that the function

trω(−
√
−1∂∂ log h) > 0. (8)

Let ωG = efω be a Gauduchon metric in the conformal class of ω [Gau77b], then by (8), we
obtain

trωGR
(L,h) = e−f · trωR(L,h) > 0,

where R(L,h) = −
√
−1∂∂ log h. In particular, we have∫

X
trωGR

(L,h) · ωnG = n

∫
X
R(L,h) ∧ ωn−1G = n

∫
X
cBC
1 (L) ∧ ωn−1G > 0. (9)

By Proposition 3.2, the dual line bundle L−1 is not pseudo-effective.
(2) =⇒ (1). If L−1 is not pseudo-effective, by Proposition 3.2, there exists a Gauduchon

metric ωG such that ∫
X
cBC
1 (L) ∧ ωn−1G > 0.

We shall use Gauduchon’s conformal trick ([Gau77a, Gau84], see also [Yan16, Yan17]) to
construct a smooth Hermitian metric h on L such that trωG(−

√
−1∂∂ log h) > 0. Hence, by

Corollary 2.3, L is (n− 1)-positive.
Fix a smooth Hermitian metric h0 on L. Let

R0 = −
√
−1∂∂ log h0

be the Chern curvature of (L, h0). It is easy to see that∫
X

trωGR0 · ωnG = n

∫
X
R0 ∧ ωn−1G = n

∫
X
cBC
1 (L) ∧ ωn−1G . (10)

Since ωG is Gauduchon, i.e. ∂∂ωn−1G = 0 and the integration∫
X

(
trωGR0 −

n
∫
X c

BC
1 (L) ∧ ωn−1G∫
X ω

n
G

)
ωnG = 0,

the equation

trωG

√
−1∂∂f = trωGR0 −

n
∫
X c

BC
1 (L) ∧ ωn−1G∫
X ω

n
G

(11)

has a solution f ∈ C∞(X) which is well-known (e.g. [Gau77a] or [CTW16, Theorem 2.2]). Let
h = ef · h0 be a smooth Hermitian metric on L. The Hermitian line bundle (L, h) has Chern
curvature

R(L,h) = −
√
−1∂∂ log h = R0 −

√
−1∂∂f.

The scalar curvature of R(L,h) with respect to ωG is

trωGR
(L,h) = trωGR0 − trωG

√
−1∂∂f =

n
∫
X c

BC
1 (L) ∧ ωn−1G∫
X ω

n
G

> 0.

The proof of Theorem 1.5 is completed. 2
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By Corollary 2.3, Proposition 3.2 and Theorem 1.5, we obtain the following.

Theorem 4.1. Let L be a line bundle over a compact complex manifold X with dimCX = n.
The following statements are equivalent:

(i) the dual line bundle L−1 is not pseudo-effective;

(ii) there exists a smooth Gauduchon metric ωG on X such that∫
X
cBC
1 (L) · ωn−1G > 0;

(iii) there exist a smooth Hermitian metric h on L and a Hermitan metric ω on X such that
the scalar curvature of the Chern curvature R(L,h) = −

√
−1∂∂ log h with respect to ω is

positive, i.e.
s = trωR

(L,h) > 0;

(iv) L is (n− 1)-positive.

It is easy to see that Theorem 4.1 has the following version on Bott–Chern classes.

Theorem 4.2. Let X be a compact complex manifold X with dimCX = n and [α] ∈ H1,1
BC(X).

The following statements are equivalent:

(i) the class −[α]BC is not pseudo-effective;

(ii) there exists a smooth Gauduchon metric ωG on X such that∫
X

[α]BC · ωn−1G > 0;

(iii) there exist a smooth (1, 1) form χ ∈ [α]BC and a Hermitian metric ω on X such that

trωχ > 0;

(iv) [α]BC is (n− 1)-positive.

Now we are ready to prove our main theorem.

The proof of Theorem 1.4. The proof follows from Theorem 1.5 and a simple argument by the
Serre duality.

Since L is (n− 1)-ample, by Definition 1.1, for any ample line bundle A, there exists a positive
number m0 = m0(KX ⊗A−1) such that when m > m0, we have

Hn(X,KX ⊗A−1 ⊗ Lm) = 0

which is also equivalent to
H0(X,A⊗ L−m) = 0 (12)

by the Serre duality.
We argue by contradiction, i.e. suppose L is (n− 1)-ample, but L is not (n− 1)-positive. In

this case, by Theorem 1.5, we know the dual line bundle L−1 must be pseudo-effective. For the
pseudo-effective line bundle L−1, it is well-known that, there exists an ample line bundle A on
X such that for every positive integer m

H0(X,A⊗ L−m) 6= 0. (13)

This contradicts with (12).
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For readers’ convenience, we present a sketched analytical proof of (13) following [DPS96,
Proposition 1.5]. Indeed, for a fixed very ample line bundle H, we choose an ample line bundle
A such that A ⊗ K−1X ⊗ H−n is also ample. Hence, there exists a positive rational number ε0,
such that for all m > 0 and rational number ε ∈ (0, ε0),

c1(L
−m ⊗A⊗K−1X ⊗H

−(n+ε))

lies in the interior of the effective cone of X. It implies that L−m⊗A⊗K−1X ⊗H−(n+ε) is linearly
equivalent to an effective Q-divisor D plus a numerically trivial line bundle T . Hence

OX(L−m ⊗A) ' OX(KX ⊗H(n+ε) ⊗D ⊗ T ). (14)

Now, fix a point x0 /∈ D. Let {sj} ⊂ H0(X,H) be a basis such that all sj vanish at point x0. Fix
a local holomorphic basis eH of H and write sj = hjeH . Then

h =
1

(
∑

j |hj |2)n

is a singular Hermitian metric on Hn with semi-positive curvature in the sense of current.
Moreover, the weight function of h is not integrable at point x0 and the Lelong number of
the curvature current is > n. On the other hand, we can put a singular metric hε on Hε⊗D⊗T
such that the curvature current of hε equals εω + [D] where ω is a Kähler form in c1(H) and
[D] is the current of integration over D. Since x0 /∈ D, the weight function of the singular metric
hhε on H(n+ε) ⊗D ⊗ T has isolated singularity at point x0. Moreover,

−
√
−1∂∂ log(hhε) > εω

in the sense of current and the weight function of hhε has Lelong number > n at point x0. By
Hörmander’s L2 existence theorem (e.g. [Dem92, Corollary 3.3]), we know

H0(X,KX ⊗H(n+ε) ⊗D ⊗ T ) 6= 0.

By (14), we obtain (13). The proof of Theorem 1.4 is completed. 2

The proof of Proposition 1.7. Let f : Y →X be the inclusion map. Using the projection formula
and the Leray spectral sequence, one has

H i(Y,F ⊗ (f∗L)⊗m) = H i(X, f∗(F)⊗ L⊗m).

Hence, if L → X is q-ample, f∗L → Y is also q-ample. On the other hand, since dimC Y = q+ 1
and by Theorem 1.4, the q-ample line bundle L|Y is q-positive. 2
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