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Resolvent-based predictions for turbulent flow
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Recent simulations indicate that streamwise-preferential porous materials have the
potential to reduce drag in wall-bounded turbulent flows (Gómez-de-Segura &
García-Mayoral, J. Fluid Mech., vol. 875, 2019, pp. 124–172). This paper extends
the resolvent formulation to study the effect of such anisotropic permeable substrates
on turbulent channel flow. Under the resolvent formulation, the Fourier-transformed
Navier–Stokes equations are interpreted as a linear forcing–response system. The
nonlinear terms are considered the endogenous forcing in the system that gives rise to
a velocity and pressure response. A gain-based decomposition of the forcing–response
transfer function – the resolvent operator – identifies response modes (resolvent modes)
that are known to reproduce important structural and statistical features of wall-bounded
turbulent flows. The effect of permeable substrates is introduced in this framework using
the volume-averaged Navier–Stokes equations and a generalized form of Darcy’s law.
Substrates with high streamwise permeability and low spanwise permeability are found
to suppress the forcing–response gain for the resolvent mode that serves as a surrogate
for the energetic near-wall cycle. This reduction in mode gain is shown to be consistent
with the drag reduction trends predicted by theory and observed in numerical simulations.
Simulation results indicate that drag reduction is limited by the emergence of spanwise
rollers resembling Kelvin–Helmholtz vortices beyond a threshold value of wall-normal
permeability. The resolvent framework also predicts the conditions in which such energetic
spanwise-coherent rollers emerge. These findings suggest that a limited set of resolvent
modes can serve as the building blocks for computationally efficient models that enable
the design and optimization of permeable substrates for passive turbulence control.
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1. Introduction

Many flows of engineering and scientific interest involve permeable substrates. The
presence of such complex substrates can significantly alter the behaviour of the
near-wall turbulence. A growing body of work suggests that appropriately designed
anisotropic permeable substrates have the potential to suppress the dynamically important
near-wall (NW) cycle (Robinson 1991; Waleffe 1997; Jiménez & Pinelli 1999) and
reduce drag in wall-bounded turbulent flows (Hahn, Je & Choi 2002; Itoh et al.
2006; Abderrahaman-Elena & García-Mayoral 2017; Gómez-de-Segura, Sharma &
García-Mayoral 2018; Rosti, Brandt & Pinelli 2018; Gómez-de-Segura & García-Mayoral
2019). Permeable materials can also be used to enhance turbulent mixing for applications
in the development of high-efficiency thermal management systems and chemical reactors
(Gad-el Hak 2007). Previous laboratory experiments and numerical simulations have
provided significant insight into the effect of both isotropic and anisotropic permeable
substrates on turbulent boundary layer and channel flows (e.g. Hahn et al. 2002; Breugem,
Boersma & Uittenbogaar 2006; Manes, Poggi & Ridolfi 2011; Zampogna & Bottaro 2016;
Efstathiou & Luhar 2018; Rosti et al. 2018; Gómez-de-Segura & García-Mayoral 2019;
Kim et al. 2020). For instance, it is well known that flows over porous materials are
susceptible to a Kelvin–Helmholtz (KH) instability that gives rise to spanwise-coherent
energetic rollers (Jiménez & Pinelli 1999; Breugem et al. 2006; Efstathiou & Luhar 2018).
The mechanism that could lead to drag reduction in turbulent flows over anisotropic
materials is also reasonably well understood (Gómez-de-Segura & García-Mayoral 2019).
Despite these advances, there are few reduced-complexity models that can be used to
predict how a given porous substrate will affect the turbulent flow, i.e. whether it will
suppress the NW cycle or give rise to KH rollers. Given the vast parameter space available
in the development of porous materials for passive flow control, such models can be useful
tools for design and optimization. In this study, we extend the resolvent analysis framework
(McKeon & Sharma 2010; McKeon 2017) to develop reduced-complexity models for
turbulent flows over porous substrates. We focus on evaluating the effect of anisotropic
permeable materials that can give rise to drag reduction. However, these models can also
be used to evaluate the effect of porous materials for other applications or to provide insight
into environmental flows over granular beds and vegetation canopies.

1.1. Previous work
Recent numerical simulations show that streamwise-preferential permeable materials have
the potential to yield as much as 25 % drag reduction in turbulent flows (Gómez-de-Segura
& García-Mayoral 2019). The physical mechanism underlying this drag reduction is
similar to the mechanism that yields drag reduction over riblets (Walsh & Lindemann
1984; Luchini, Manzo & Pozzi 1991; Luchini 1996; Bechert et al. 1997; García-Mayoral
& Jiménez 2011a). Specifically, for anisotropic materials that have larger streamwise
permeability than spanwise permeability, the streamwise mean flow penetrates into
the substrate to a larger extent compared with the spanwise cross-flows arising from
turbulent fluctuations (Luchini et al. 1991). In other words, there is an offset between
the virtual origins perceived by the mean flow and the turbulent fluctuations. The virtual
origin for the turbulent cross-flow can also be interpreted as the location for which
the quasi-streamwise vortices associated with the NW cycle perceive a no-slip wall
(Luchini 1996; García-Mayoral, Gómez de Segura & Fairhall 2019; Gómez-de-Segura &
García-Mayoral 2019). Importantly, the offset in virtual origins for the mean streamwise
flow and the turbulent cross-flows weakens the quasi-streamwise vortices associated with
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Figure 1. Schematic showing the symmetric channel flow configuration considered in this paper.

the NW cycle. This reduces turbulent momentum transfer towards the substrate, which
leads to a decrease in skin friction.

Building on this concept, Abderrahaman-Elena & García-Mayoral (2017) used the
Brinkman equations to establish a relationship between the streamwise and spanwise
permeabilities (K+x ,K+z ) and the streamwise and spanwise slip lengths (�+x , �+z ), i.e. the
lengths from the interface where the virtual wall would be perceived. As shown in figure 1,
x, y and z represent the streamwise, wall-normal and spanwise coordinates, respectively.
A superscript + denotes normalization with respect to the friction velocity, uτ , and
viscosity, ν. The analysis of Abderrahaman-Elena & García-Mayoral (2017) showed that
�+x ∝

√
K+x and �+z ∝

√
K+z if the height of the substrate, H, is much larger than the

permeability length scales
√

K+x and
√

K+z . The achievable drag reduction was estimated
to be proportional to the difference between the streamwise and spanwise slip lengths,
�D ∝ �+x − �+z , or equivalently,�D ∝ √K+x −

√
K+z . This is consistent with the findings

of Busse & Sandham (2012), who studied the effect of anisotropic slip length boundary
conditions in turbulent channel flow simulations.

Recent direct numerical simulation (DNS) results obtained by Gómez-de-Segura
& García-Mayoral (2019) provide further support for the scaling developed by
Abderrahaman-Elena & García-Mayoral (2017). For these simulations, the Brinkman
equations were used to model flow inside the permeable substrate and the Navier–Stokes
equations were used in the fluid domain. Stresses and velocities were matched at the
interface between the permeable substrate and the unobstructed flow. Simulations carried
out using this Brinkman model led to results that were very similar to the simulation results
obtained by Breugem et al. (2006) using the full volume-averaged Navier–Stokes (VANS)
equations for an isotropic permeable medium with permeability

√
K+ ≈ 1. Moreover,

Gómez-de-Segura & García-Mayoral (2019) also showed that the simplified Brinkman
equations captured the dominant dynamics emerging from the full VANS equations.
The anisotropic permeable substrates considered by Gómez-de-Segura & García-Mayoral
(2019) were characterized by a permeability tensor of the form K = diag(Kx,Ky,Kz),
and the wall-normal permeability was set to be equal to the spanwise permeability,
Ky = Kz. The effect of substrate anisotropy was evaluated by systematically varying the
streamwise and spanwise permeability, such that the anisotropy ratio φxy =

√
K+x /

√
K+y

ranged between 3.6 and 11.4. As predicted by Abderrahaman-Elena & García-Mayoral
(2017), these simulations show that for surfaces for which the permeability length scale
is smaller than the size of the near wall turbulent structures, the initial decrease in
drag is proportional to the difference in the slip length scales, �D ∝ √K+x −

√
K+z .
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However, the simulations also show that the achievable drag reduction is limited by the
appearance of energetic spanwise rollers resembling KH vortices. Such rollers have been
observed over isotropic permeable substrates (Breugem et al. 2006; Efstathiou & Luhar
2018), and they also contribute to performance degradation for riblets (García-Mayoral
& Jiménez 2011b, 2012). Linear stability analyses and simulation results show that
the appearance of these spanwise rollers is controlled primarily by the wall-normal
permeability (Abderrahaman-Elena & García-Mayoral 2017; Gómez-de-Segura et al.
2018; Gómez-de-Segura & García-Mayoral 2019). Specifically, simulation results show
that spanwise rollers become increasingly energetic as the wall-normal permeability
exceeds

√
K+y ≈ 0.4. The additional Reynolds shear stress produced by these rollers causes

performance to deteriorate and ultimately leads to an increase in drag.
These prior efforts show that the drag-reducing performance of anisotropic permeable

substrates is dictated by two key factors: the suppression of NW cycle and the emergence
of energetic spanwise-coherent rollers. The physically motivated slip length arguments
presented earlier provide useful insight into the first effect. These arguments predict that
the initial decrease in drag is proportional to the difference between the streamwise and
spanwise permeability length scales, �D ∝ √K+x −

√
K+z . However, it is unclear if this

relationship also holds for more complex surfaces that are not characterized by diagonal
permeability tensors of the form K = diag(Kx,Ky,Kz). Moreover, these slip length
arguments are based on solutions to the Brinkman equations in the porous medium, which
are coupled to the fluid domain via velocity and stress-matching boundary conditions at the
fluid–substrate interface. Recent studies show that the interfacial boundary conditions may
be better characterized by a slip-length tensor (Lācis & Bagheri 2017; Bottaro 2019; Lācis
et al. 2020). The effect of such slip-length models on the near-wall turbulence remains
to be studied. Similarly, linear stability analyses are able to predict the emergence of
spanwise-coherent KH rollers over permeable substrates as the wall-normal permeability
increases. However, such analyses fail to accurately predict the exact threshold for

√
K+y

beyond which KH rollers become energetic (Abderrahaman-Elena & García-Mayoral
2017; Gómez-de-Segura et al. 2018). Furthermore, the streamwise wavelengths predicted
to be most unstable do not match the length scale of the spanwise rollers observed in
simulations.

1.2. Contribution and outline
In this study, we develop a reduced-order modelling framework grounded in resolvent
analysis (McKeon & Sharma 2010; McKeon 2017) that can be used to predict the effect
of substrates with known permeability on the NW cycle and test for the emergence of
KH rollers. Under the resolvent formulation, the Navier–Stokes equations are interpreted
as a forcing–response system in which the nonlinear convective terms are treated as the
forcing to the linear system that generates a velocity and pressure response. A gain-based
decomposition of the resolvent operator, which is the linear transfer function that maps
the nonlinear forcing to the velocity and pressure response, is used to identify high-gain
forcing and response modes across spectral space. Specific high-gain response modes
(resolvent modes) have been shown to serve as useful models for dynamically important
flow features such as the NW cycle (Moarref et al. 2013). This means that, as a starting
point, the effect of any control can be evaluated on these individual resolvent modes
instead of the full turbulent flow field. Indeed, previous studies show that the gain for
the NW resolvent mode is a useful predictor of drag reduction performance for both
active (Luhar, Sharma & McKeon 2014; Nakashima, Fukagata & Luhar 2017; Toedtli,
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Resolvent-based predictions for turbulent flow

Luhar & McKeon 2019) and passive (Luhar, Sharma & McKeon 2015; Chavarin &
Luhar 2020) control techniques in wall-bounded turbulent flows. In particular, recent
work by Chavarin & Luhar (2020) shows that the gain for the NW resolvent mode
is a useful surrogate for total drag reduction in turbulent flows over riblets. Riblet
geometries that lead to drag reduction in experiments and high-fidelity simulations
are found to reduce the forcing–response gain for the NW resolvent mode relative to
its smooth wall value. In addition, Chavarin & Luhar (2020) show that the resolvent
framework is also able to predict the emergence of spanwise rollers resembling KH
rollers over certain riblet geometries, which is consistent with previous DNS results
(García-Mayoral & Jiménez 2011b). Motivated by these prior modelling successes, we
consider the effect of anisotropic porous substrates on resolvent modes resembling the
NW cycle and spanwise-coherent structures resembling KH rollers. To enable a direct
comparison with the simulation results of Gómez-de-Segura & García-Mayoral (2019),
we consider a symmetric channel geometry at friction Reynolds number Reτ = 180 and
substrates with identical wall-normal and spanwise permeabilities, i.e. substrates with
φyz =

√
K+y /

√
K+z = 1. We model the flow in the substrate using the VANS equations, in

which the effect of the permeable substrate is included via a permeability tensor. However,
this modelling framework can be extended to include more sophisticated interfacial
boundary conditions (Lācis & Bagheri 2017; Lācis et al. 2020), and to account for inertial
effects via the so-called Forchheimer term (Whitaker 1999; Breugem et al. 2006).

The remainder of this paper is structured as follows. Section 2 describes the permeable
substrate model used here, the extended resolvent formulation, as well as the numerical
methods used for resolvent analysis. Section 3 presents model predictions for the effect of
anisotropic permeable substrates on the NW resolvent mode as well as spanwise-coherent
resolvent modes resembling KH rollers. These predictions are compared with DNS results
from Gómez-de-Segura & García-Mayoral (2019). We also pursue a limited sensitivity
analysis of model predictions to the exact form of the mean profile used to construct
the resolvent operator. Specifically, we compare predictions made using a synthetic mean
profile that is computed using an eddy viscosity model with predictions generated using
the mean velocity profiles obtained in DNS by Gómez-de-Segura & García-Mayoral
(2019). Section 4 concludes the paper.

2. Methods

In this section, we present the equations used to model flow in the porous
medium (§ 2.1), briefly describe the resolvent formulation and discuss its extension to
account for permeable substrates (§ 2.2), present the boundary conditions imposed at
the fluid–substrate interface (§ 2.3), discuss the mean velocity profiles used to construct
the resolvent operator (§ 2.4) and describe the numerical method used to implement the
analysis (§ 2.5).

2.1. Accounting for permeable substrates
The resolvent framework is reformulated using the VANS equations. Volume-averaging
gives rise to two additional terms: a term representing the subfilter scale stresses and
a surface filter term that accounts for the force exerted by the solid phase of the
permeable medium on the fluid phase (Whitaker 1969, 1996, 1999). A typical closure
model for the surface filter term involves parameterizing the flow resistance using the
Darcy permeability tensor and the so-called Forchheimer correction term that accounts
for inertial effects (Whitaker 1996). This model has been used in previous numerical
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simulations of flow over porous substrates (Breugem et al. 2006; Rosti, Cortelezzi &
Quadrio 2015; Rosti et al. 2018) as well as in linear stability analyses (Tilton & Cortelezzi
2006, 2008). The VANS equations and continuity constraint for flow through a porous
medium with porosity ε, dimensionless permeability K and dimensionless Forchheimer
resistance F can be expressed as

∂〈u〉
∂t
+ 1
ε
∇ · (ε〈u〉〈u〉 + ετ ) = −1

ε
∇(ε〈p〉)+ 1

εReτ
∇2(ε〈u〉)− ε

Reτ
K−1(I + F )〈u〉

(2.1a)

and
∇ · (ε〈u〉) = 0. (2.1b)

In the equations above, 〈·〉 denotes an intrinsic volume average, 〈u〉 is the dimensionless
velocity, 〈p〉 is the dimensionless pressure and t is dimensionless time. The equations
presented above have been normalized using the channel half-height h and the friction
velocity uτ . The friction Reynolds number is given by Reτ = uτh/ν and the dimensionless
permeability defined as K = K†/h2, where K† is the dimensional permeability. As
discussed in Breugem et al. (2006), the volume averaging operation serves to filter the
flow field and only passes on information on the large-scale structure. The quantity τ =
〈uu〉 − 〈u〉〈u〉 represents the subfilter scale stresses which arise from volume averaging
the Navier–Stokes equations. Note that the averaging volume must be chosen to ensure
that the resulting flow field is continuous, i.e. defined in both the solid and the fluid phase.
Moreover, the resulting flow field must contain negligible variations at scales smaller than
the dimensions of the averaging volume. Thus, the size of the averaging volume must be
larger than the characteristic length scales associated with the pore-scale geometry of the
material being considered.

For our analysis we consider the following simplifications. Consistent with prior
numerical simulations (Gómez-de-Segura & García-Mayoral 2019), we focus on substrates
characterized by a permeability tensor of the form K = diag(Kx,Ky,Kz) with the ratio
of the wall-normal and spanwise permeabilities set to unity, i.e. Ky = Kz. Note that
the permeability tensor is symmetric, and so an eigenvalue decomposition can be
used to identify its principal values and directions (or axes). The assumed form of
the permeability tensor implies that its principal directions align with the streamwise,
wall-normal and spanwise directions of the flow. Furthermore, we omit the nonlinear
Forchheimer correction term, F , that is used to account for inertial effects in flows through
porous media (Ochoa-Tapia & Whitaker 1995a,b; Whitaker 1999; Breugem et al. 2006).
This assumption is made for several reasons. First, the Forchheimer term is expected
to be small for the low values of

√
K+x ,

√
K+y and

√
K+z considered below (

√
K+x � 11

and
√

K+y =
√

K+z � 1 in all cases). Second, neglecting the Forchheimer term ensures
consistency with the Brinkman model employed by Gómez-de-Segura & García-Mayoral
(2019) in the numerical simulations that serve as a basis for comparison for our model
predictions. Third, including the Forchheimer term would introduce several additional
parameters that are dependent on the pore-scale geometry and Reynolds number. Finally,
resolvent analysis probes the linear forcing–response characteristics of the governing
equations and therefore, only a linearized version of the Forchheimer term would be
retained explicitly in the analysis. This is equivalent to simply considering a substrate
with a lower apparent permeability (see e.g. Zampogna & Bottaro 2016). We also assume
that the porosity of permeable substrates is ε ≈ 1 to maximize any potential drag reduction
(Abderrahaman-Elena & García-Mayoral 2017). Finally, since we are primarily interested
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in structures that are much larger than the characteristic length scale of the porous medium
(i.e. NW cycle and KH rollers), we neglect the subfilter scale stresses (Breugem et al.
2006). With these assumptions, (2.1a) and (2.1b) can be expressed as

∂u
∂t
+∇ · (uu) = −∇( p)+ 1

Reτ
∇2u− 1

Reτ
K−1u (2.2a)

and

∇ · u = 0, (2.2b)

where the 〈·〉 notation has been eliminated for simplicity. The unobstructed fluid domain
is characterized by infinite permeability. In this region, the permeability term goes to zero
and (2.2a) reduces to the standard Navier–Stokes momentum equation.

Figure 1 shows the symmetric channel flow configuration considered in this study. The
unobstructed region corresponds to y ∈ [−1, 1]. The regions occupied by the permeable
substrates correspond to y ∈ [−(1+ H),−1) and y ∈ (1, 1+ H]. The height of the
permeable substrate is H. Note that all lengths are normalized by the channel half-height.

2.2. Modified resolvent analysis
The resolvent formulation for wall-bounded turbulent flows proposed by McKeon &
Sharma (2010) – and employed in several recent flow control studies (Luhar et al. 2014,
2015; Nakashima et al. 2017; Toedtli et al. 2019; Chavarin & Luhar 2020) – is extended to
account for the presence of permeable substrates as follows. For an extended discussion of
resolvent analysis and its applications, the reader is referred to McKeon (2017).

Construction of the modified resolvent operators begins with a standard Reynolds
decomposition of the simplified VANS equations in (2.2). The velocity and pressure
fields are decomposed into a time-averaged component (denoted by (·)) and a fluctuating
component about this average (denoted by (·)′). Under this decomposition, the velocity
field is expressed as u(t, x) = Ū(x)+ u′(t, x) and the pressure field is expressed as
p(t, x) = P̄(x)+ p′(t, x). Note that Ū(x) = [Ū( y), 0, 0]T represents the turbulent mean
profile. Next, the velocity and pressure fluctuation are Fourier-transformed in the
homogeneous streamwise and spanwise directions as well as in time as follows:

[
u′(t, x)
p′(t, x)

]
=

� [
uκ ( y)
pκ ( y)

]
exp(−iωt + iκxx+ iκzz) dω dκx dκz. (2.3)

In the expression above, κx is the streamwise wavenumber, κz is the spanwise wavenumber
and ω is the frequency. The Fourier coefficients for the velocity and pressure field at a
given wavenumber–frequency combination, κ = (κx, κz, ω), are denoted uκ and pκ . Under
the Fourier transform, the equations in (2.2) can be expressed compactly as

[
uκ

pκ

]
=
(
−iω

[
I

0

]
−
[

Lκ −∇̃
−∇̃T 0

])−1 [
I
0

]
f κ =Hκ f κ . (2.4)
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In the expression above, the first row represents the momentum equations and the second
row represents the continuity constraint. The operator

Lκ = −Re−1
τ K−1 +

⎡
⎢⎢⎢⎢⎣
−iκxŪ + Re−1

τ ∇̃2 −dŪ
dy

0

0 −iκxŪ + Re−1
τ ∇̃2 0

0 0 −iκxŪ + Re−1
τ ∇̃2

⎤
⎥⎥⎥⎥⎦ (2.5)

represents the linear dynamics in (2.2) and fκ is the Fourier coefficient for the nonlinear
terms. The differential operator ∇̃ is defined as ∇̃ = (iκx, ∂/∂y, iκz), and so the symbols
∇̃T and ∇̃ essentially represent the Fourier-transformed divergence and gradient operators,
respectively. Similarly, the Laplacian is defined as ∇̃2 = (−κ2

x − κ2
z + ∂2/∂y2). Note

that the velocity and pressure response at a given wavenumber–frequency combination
constitute a travelling wave flow field with streamwise wavelength λx = 2π/κx and
spanwise wavelength λz = 2π/κz that is moving downstream at speed c = ω/κx. The
transfer function that maps the nonlinear forcing fκ to the velocity and pressure response
[uκ , pκ ]T in (2.4) is the resolvent operator, Hκ . The central difference between this
resolvent operator for channel flow over permeable substrates and its smooth wall
counterpart is the inclusion of the Darcy permeability tensor K in (2.5). Note that the
resistance exerted by the Darcy term is linear with respect to u.

As detailed in prior studies (McKeon & Sharma 2010; Moarref et al. 2013; Luhar et al.
2014, 2015), a singular value decomposition (SVD) of the discretized resolvent operator
(see § 2.5) is used to identify a set of orthonormal forcing and response modes that are
ordered based on their forcing–response gain under an L2 energy norm. To enforce this
norm, the discretized resolvent operator in (2.4) is scaled as follows:

[W u 0]
[

uκ

pκ

]
=
(

[W u 0] HκW−1
f

)
W f f κ (2.6a)

or
W uuκ =Hw

κ W f f κ . (2.6b)

Here, W u and W u incorporate numerical quadrature weights for the entire domain
spanning y ∈ [−(1+ H), (1+ H)]. With this weighting, the SVD of the scaled resolvent,

Hw
κ =

∑
m

ψκ,mσκ,mφ
∗
κ,m, (2.7a)

where
σκ,1 > σκ,2 > · · · > 0, ψ∗κ,lψκ,m = δlm, φ∗κ,lφκ,m = δlm (2.7b)

yields forcing modes fκ,m = W−1
f φκ,m and velocity responses uκ,m = W−1

u ψκ,m that have
unit energy when integrated across the entire domain spanning y ∈ [−(1+ H), (1+ H)].
In other words, this scaling ensures that∫ (1+H)

−(1+H)
u∗κ,luκ,m dy = δlm,

∫ (1+H)

−(1+H)
f ∗κ,l f κ,m dy = δlm. (2.8a,b)

In (2.7) and (2.8a,b), the superscript (·)∗ denotes a conjugate transpose.
A major contribution of the resolvent framework lies in the finding that the

forcing–response transfer function tends to low rank at κ combinations that are energetic
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Resolvent-based predictions for turbulent flow

in wall-bounded turbulent flows. Often, the first singular value is an order of magnitude
larger than subsequent singular values, σκ,1 
 σκ,2 > · · · , and so the resolvent operator
can be well approximated using a rank-1 truncation after the SVD (McKeon & Sharma
2010; Moarref et al. 2013),

Hw
κ ≈ ψκ,1σκ,1φ

∗
κ,1. (2.9)

The expressions in (2.6)–(2.9) show that forcing in the direction of the first forcing mode
fκ,1 = W−1

f φκ,1 generates a velocity response uκ,1 = W−1
u ψκ,1 that is amplified by factor

σκ,1. Put another way, a forcing of the form fκ,1 to the unscaled resolvent operator in (2.4)
generates a velocity and pressure response σκ,1[uκ,1, pκ,1]T. Under the L2 scaling used
here, σ 2

κ,1 is a measure of energy amplification.
Recent modelling efforts for active and passive flow control techniques show that

specific rank-1 modes serve as useful surrogates for the dynamically important NW cycle.
Specifically, the ability of a control technique to suppress the forcing–response gain for
modes with wavenumber–frequency combinations corresponding to λ+x ≈ 103, λ+z ≈ 102

and c+ ≈ 10 (i.e. similar to the length and velocity scales associated with NW streaks)
has been shown to be a useful predictor of drag reduction performance (Luhar et al. 2014;
Nakashima et al. 2017; Chavarin & Luhar 2020). Building on these prior efforts, in this
study we evaluate the effect of anisotropic permeable substrates on the rank-1 resolvent
mode that serves as a surrogate for the NW cycle. A reduction in gain for this mode relative
to the smooth-wall value is interpreted as mode suppression, which is indicative of drag
reduction. In addition, we also test whether the permeable substrates lead to an increase
in principal singular values for spanwise-coherent modes (e.g. with κz = 0) that resemble
KH rollers. Since we only consider the rank-1 truncation shown in (2.9) for the remainder
of this paper, we drop the additional subscript 1 to simplify notation.

2.3. Boundary and interface conditions
As will be discussed in § 2.5 below, the resolvent operator is discretized using spectral
discretization and rectangular block matrices as described by Aurentz & Trefethen (2017).
This approach enables us to use two different sets of equations in the unobstructed region
and porous domain (i.e. without and with the permeability term), and couple the two
via appropriate interfacial conditions. As shown in figure 1, the unobstructed channel
corresponds to the region corresponding to y ∈ [−1, 1] and the upper and lower permeable
regions correspond to y ∈ (1, 1+ H] and y ∈ [−(1+ H),−1), respectively. At the lower
and upper substrate walls, y = ±(1+ H), we apply no-slip boundary conditions. At the
interfaces between the porous medium and the unobstructed flow, y = ±1, we impose
continuity in all three components of velocity and pressure. We also impose continuity
in the streamwise and spanwise shear at the interface. These boundary conditions can be
summarized as follows:

u = 0 at y = ±(1+ H), (2.10a)

u|y+ = u|y− and p|y+ = p|y− at y = ±1, (2.10b)

∂u
∂y

∣∣∣∣
y+
= 1
ε

∂u
∂y

∣∣∣∣
y−

and
∂w
∂y

∣∣∣∣
y+
= 1
ε

∂w
∂y

∣∣∣∣
y−

at y = −1, (2.10c)

∂u
∂y

∣∣∣∣
y−
= 1
ε

∂u
∂y

∣∣∣∣
y+

and
∂w
∂y

∣∣∣∣
y−
= 1
ε

∂w
∂y

∣∣∣∣
y+

at y = 1. (2.10d)
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In the expressions above, y+ and y− denote values taken on either side of the
porous substrate-unobstructed flow interface. Note that the boundary conditions shown
in (2.10c,d) do not penalize momentum transfer into the permeable substrate. These
conditions also assume that the effective viscosity in the porous medium is ν̃ = ν/ε.
As per the discussion presented in Abderrahaman-Elena & García-Mayoral (2017) and
Gómez-de-Segura & García-Mayoral (2019), these assumptions are reasonable for a highly
connected medium with high porosity, ε ≈ 1. For a poorly connected medium, previous
studies show that a stress jump boundary condition may be more appropriate, and that
more complex effective viscosity models may be needed (see e.g. Ochoa-Tapia & Whitaker
1995a; Minale 2014). Also keep in mind that the equations above imply a sharp transition
between the porous medium and the unobstructed fluid. Previous studies employing the
VANS equations have typically assumed the existence of a finite transition zone between
the homogeneous porous and homogeneous fluid regions (Ochoa-Tapia & Whitaker 1995a;
Breugem et al. 2006). This continuous approach was also considered for the present study,
but it led to poorer numerical convergence in singular values. Moreover, the converged
values showed a significant dependence on the size of the transition zone.

Finally, since we are interested in permeable substrates that have the highest potential
for drag reduction, we assume a porosity of ε = 1. For this value of porosity, the boundary
conditions shown in (2.10) are similar to those used in previous high-fidelity simulations
(Gómez-de-Segura & García-Mayoral 2019). Emulation of the channel configuration and
boundary conditions used by Gómez-de-Segura & García-Mayoral (2019) allows for a
direct comparison between model predictions and simulation results.

2.4. Mean velocity profile
As shown in (2.5), construction of the resolvent operator requires knowledge of the
mean velocity profile Ū( y). Here, we use two different sets of mean velocity profiles to
generate model predictions: (i) mean profiles obtained in DNS by Gómez-de-Segura &
García-Mayoral (2019); and (ii) mean profiles generated using a synthetic eddy viscosity
profile. The DNS mean profile dataset consists of 22 different cases: eight profiles for
φxy = 3.6; seven profiles for φxy = 5.5; and seven profiles for φxy = 11.4. For all 22 cases
tested in DNS, the ratio between the wall-normal and spanwise permeability length scales
was φyz =

√
K+y /

√
K+z = 1. Each of the DNS profiles contained 153 points spanning the

unobstructed region, y ∈ [−1, 1]. Within the permeable medium, the analytical solutions
developed by Gómez-de-Segura & García-Mayoral (2019) were used. These mean profiles
were interpolated onto our Chebyshev grid using the modified Akima interpolation
algorithm.

For each of the 22 different DNS cases, the synthetic profiles were generated as follows.
The modified governing equation (2.2) was Reynolds-averaged to yield the following
equation for the streamwise mean flow:

1
Reτ

d2Ū
dy2 −

Ū
ReτKx

− d(u′v′)
dy

= dp̄
dx
, (2.11)

where Kx is the streamwise component of the permeability tensor. The Reynolds shear
stress term in (2.11) was estimated using a modified version of the eddy viscosity
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Resolvent-based predictions for turbulent flow

formulation proposed by Reynolds & Tiederman (1967) as follows:

νe =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

[
1+

{
c2Reτ

3
(2y− y2)(3− 4y+ 2y2)

×
(

1− exp
(
(|y− 1| − 1)

Reτ
c1

))}2
]1/2

− 1
2
, |y| � 1,

0, |y| > 1.

(2.12)

Here, the eddy viscosity has been normalized by the fluid viscosity ν. To generate the
synthetic profiles, we used the values c1 = 46.2 and c2 = 0.61, which were identified
by Moarref & Jovanović (2012) as yielding the best fit to the mean profiles obtained in
smooth wall DNS at Reτ ≈ 180. Thus, the Reynolds shear stress term was modelled using
a standard smooth-wall eddy viscosity profile in the unobstructed region of the channel
and assumed to be zero in the permeable substrate. In other words, this eddy viscosity
model assumes that there is no turbulence penetration into the porous medium. In reality,
the penetration of turbulent cross-flows into the permeable substrate will depend on the
spanwise and wall-normal components of permeability, and so the model above is only
valid for small Ky and Kz. Finally, (2.11) and (2.12) were combined to yield the following
equation for the mean velocity profile:

1
Reτ

(
(1+ νe)

d2

dy2 +
dνe

dy
d
dy
− 1

Kx

)
Ū = dp̄

dx
, (2.13)

which was solved numerically to yield Ū( y).
We recognize that the procedure outlined above to estimate the synthetic mean profile

involves significant assumptions. However, as we show below, the interfacial slip velocities
generated using this model are in good agreement with the DNS mean profiles in the
initial drag reduction regime over anisotropic permeable substrates, i.e. until the point of
performance degradation. Moreover, the resolvent-based predictions obtained using these
profiles are also similar to those computed using the DNS mean profiles. Note that the
resolvent operator shown in (2.4) is formulated using the full VANS equations inside the
permeable substrate, even though the eddy viscosity used to compute the synthetic mean
profiles is set to zero in this zone. In other words, the fluctuating velocity field associated
with resolvent modes is allowed to penetrate into the porous substrate.

2.5. Numerical methods
The resolvent operator and the equations used to synthesize the mean velocity profile are
discretized in the wall-normal direction using spectral discretization methods involving
rectangular block operators, as described by Aurentz & Trefethen (2017). Each differential
operator is discretized using Chebyshev polynomials and the resulting matrices are
rectangular. The size of these matrices is [N × N + n] where n represents the dimension
of the operator null space. The overall block operator is made square by appending n
boundary conditions. By using these block operators, we can deal with a system of
boundary value problems coupled through boundary conditions. For a more thorough
discussion of these methods readers are directed to Aurentz & Trefethen (2017).

As shown in figure 1, for our problem configuration the channel is separated into
three regions: the lower permeable substrate spanning y ∈ [−(H + 1),−1); the free
channel spanning y ∈ [−1, 1]; and the upper permeable substrate spanning y ∈ (1,H + 1].
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Although the configuration is symmetric across the channel centreline, we consider the
entire channel to retain resolvent modes that are both symmetric and anti-symmetric across
the channel centreline (Moarref et al. 2013; Luhar et al. 2015). Each of the three regions
is discretized using N Chebyshev points and so the total number of Chebyshev points
for the channel is 3N. A grid convergence study showed that the normalized change in
singular values is of O(10−6) for grid sizes N = 80, N = 112, and N = 200. Each resolvent
mode computation takes approximately 0.7 s for N = 80, approximately 2.0 s for N = 112
and 7.0 s for N = 200. The results presented below were generated using N = 112, which
corresponds to a total of 3N = 336 grid points across the entire channel.

3. Results and discussion

In this section, we compare resolvent-based predictions for the NW mode (§ 3.2) and the
emergence of energetic spanwise rollers (§ 3.3) with DNS observations. Before that, we
briefly compare the mean velocity profiles obtained from DNS with the synthetic profiles
generated using the eddy viscosity model (§ 3.1).

3.1. Mean velocity profiles
Figure 2 compares the interfacial slip velocity Ū+s predicted using the synthetic
eddy viscosity profile (2.12) with those obtained in DNS by Gómez-de-Segura &
García-Mayoral (2019) for each of the 22 different cases being considered here, with
anisotropy ratios φxy = 3.6, 5.5 and 11.4. The slip velocities for the synthetic profiles all
collapse together onto a straight line corresponding to Ū+s ≈

√
K+x . In other words, the slip

velocity only depends on the streamwise component of permeability, which is consistent
with the assumptions outlined in § 2.4. The synthetic mean profiles do not account for the
effect of wall-normal or spanwise permeability, which are likely to determine the extent to
which turbulence penetrates into the permeable substrate.

The synthetic slip velocities (white symbols) show close agreement with DNS results
(black symbols) for low streamwise permeabilities, but begin to deviate from DNS results
at higher

√
K+x . Moreover, the threshold values of

√
K+x above which the synthetic

predictions begin to deviate from DNS results depend on the anisotropy ratio, φxy. As
an example, for φxy = 3.6, synthetic Ū+s begin deviating from DNS results for

√
K+x � 2

(see figure 2a). For φxy = 11.4, the predicted slip velocities deviate significantly from
DNS results for

√
K+x � 6 (see figure 2c). Closer inspection of this trend shows that the

synthetic slip velocities deviate from DNS data above a constant threshold value for the
wall-normal permeability for all anisotropy ratios,

√
K+y � 0.4 (vertical dashed lines in

figure 2). This value of
√

K+y corresponds closely to the conditions in which KH-type
rollers appear over the permeable substrates in the simulations of Gómez-de-Segura &
García-Mayoral (2019). The appearance of these rollers is likely to generate significant
interfacial turbulence that penetrates the porous medium. The eddy viscosity model used to
generate the synthetic mean profiles does not account for these effects. The eddy viscosity
model shown in (2.12) assumes that no turbulence penetrates into the porous medium, and
that the turbulence in the unobstructed region remains similar to that over a smooth wall
regardless of the value of

√
K+y and

√
K+z .

For cases in which the interfacial slip velocities agree, the synthetic mean profiles are
similar to the DNS profiles across the entire channel (data not shown here for brevity). For
these cases, resolvent-based predictions are not very sensitive to the choice of mean profile.
Moreover, as we show in § 3.3, resolvent analysis is able to predict the emergence of
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Figure 2. Predicted slip velocity at the porous interface as a function of streamwise permeability
√

K+x for
anisotropy ratios (a) φxy = 3.6, (b) φxy = 5.5 and (c) φxy = 11.4. Black symbols show DNS results from
Gómez-de-Segura & García-Mayoral (2019). White symbols show predictions made using (2.13). The vertical
dashed lines show where the wall-normal permeability is

√
K+y ≈ 0.4. This is roughly the threshold above

which drag reduction performance deteriorates in DNS.

high-gain KH rollers over permeable substrates as the wall-normal permeability increases
beyond

√
K+y � 0.4. These observations indicate that resolvent analysis carried out using

the synthetic mean profile can be a useful design tool for the design of passive flow control
using anisotropic permeable substrates.

3.2. Near-wall resolvent mode
Previous studies have shown that the resolvent mode with streamwise wavelength λ+x =
103, spanwise wavelength λ+z = 102 and phase speed c+ = (ω/κx)

+ = 10 serves as a
useful surrogate for the dynamically important NW cycle characterized by the presence
of quasi-streamwise vortices and alternating high- and low-speed streaks (McKeon &
Sharma 2010; Sharma & McKeon 2013). The forcing–response gain (i.e. singular value)
for this resolvent mode has also proven to be a useful predictor of control performance
for both active (Luhar et al. 2014; Nakashima et al. 2017; Toedtli et al. 2019) and
passive (Luhar et al. 2015; Luhar, Sharma & McKeon 2016; Chavarin & Luhar 2020)
techniques. Here, we evaluate whether it can serve as a useful reduced-complexity tool
for the evaluation of anisotropic permeable substrates for passive drag reduction. Since
the resolvent-based predictions are evaluated against DNS results from Gómez-de-Segura
& García-Mayoral (2019) carried out at Reτ = 180, the resolvent mode with streamwise
wavenumber κx = 2πReτ /103 ≈ 1.1, spanwise wavenumber κz = 2πReτ /102 ≈ 11 and
frequency ω = 10κx ≈ 11 is used as a surrogate for the NW cycle.

Figure 3(a) shows the forcing-gain for the NW resolvent mode over the porous
substrate σκ,p normalized by the smooth-wall value σκ,s at Reτ = 180 for all 22
substrates tested by Gómez-de-Segura & García-Mayoral (2019). Resolvent-based gain
predictions (black symbols) are compared with the drag reduction measured in DNS
(grey symbols). Following Gómez-de-Segura & García-Mayoral (2019), the outward shift
in the logarithmic region of the mean profile is used to quantify the change in drag:
�Ū+ > 0 denotes a decrease in drag and �Ū+ < 0 denotes an increase in drag. For
all three anisotropy ratios, there is qualitative agreement between NW mode suppression
and drag reduction. For a given value of

√
K+y , materials with higher anisotropy ratios

are predicted to yield greater suppression of the NW resolvent mode, which is consistent
with the drag reduction trends observed in DNS. Furthermore, mode suppression and drag
reduction both increase monotonically up to a value of

√
K+y ≈ 0.4. Agreement between
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Figure 3. Predictions for the NW resolvent mode. (a) Comparison between normalized mode gain (σκ,p/σκ,s,
black symbols) and drag reduction observed in DNS (�Ū+, light grey symbols) by Gómez-de-Segura &
García-Mayoral (2019), plotted as a function of

√
K+y . The resolvent-based predictions shown in this panel

are obtained using the velocity profiles from DNS. (b) Comparison between normalized gains predicted using
the DNS mean profiles (black symbols) and the synthetic mean profiles (white symbols) plotted as a function
of
√

K+y . (c) Comparison between normalized gains predicted using the DNS mean profiles (black symbols)
and the synthetic mean profiles (white symbols) plotted as a function of

√
K+x −

√
K+y . The black and red

dashed lines show linear fits to the initial decrease in normalized gain for the DNS mean and synthetic
mean predictions, respectively. For all panels, the � symbols represent substrates with φxy = 3.6, � symbols
represent substrates with φxy = 5.5 and � symbols represent substrates with φxy = 11.4.

drag reduction and mode suppression is particularly good for substrates with anisotropy
ratios φxy = 3.6 and 5.5. For

√
K+y � 0.4, the normalized gain begins to increase again

for the substrates with φxy = 3.6 and 5.5, which is consistent with DNS drag reduction
trends. The DNS results show an increase in drag relative to smooth-wall values for√

K+y � 0.55 for the substrates with φxy = 3.6 and 5.5. Resolvent-based predictions show
that the gain of the NW mode over the permeable substrate exceeds the smooth-wall value
beyond

√
K+y � 0.7 for these substrates. For substrates with the higher anisotropy ratio,

φxy = 11.4, there are visible discrepancies between the predicted change in NW mode
gain and the measured drag reduction, particularly for higher values of the wall normal
permeability,

√
K+y . For instance, the increase in normalized gain beyond

√
K+y � 0.4 is

less pronounced for the material with φxy = 11.4. For this substrate, DNS results show
an increase in drag for

√
K+y � 0.7. However, the resolvent predictions do not show an

increase in gain beyond the smooth-wall value for the conditions tested (up to
√

K+y ≈ 1).
Note that the observed disagreement between NW mode gain and drag reduction for√
K+y � 0.4 is not surprising. As discussed in prior studies (Abderrahaman-Elena &

García-Mayoral 2017; Gómez-de-Segura et al. 2018; Gómez-de-Segura & García-Mayoral
2019), the initial decrease in drag over anisotropic permeable substrates depends on the
shift in the virtual origins for the streamwise mean flow and the turbulent cross-flow
fluctuations produced by the quasi-streamwise vortices associated with the NW cycle.
As we show below, this effect is reproduced by the NW resolvent mode. However, the
increase in drag beyond

√
K+y ≈ 0.4 is associated with the emergence of spanwise rollers

resembling KH vortices. This phenomenon cannot be captured by resolvent modes that
serve as surrogates for the streamwise-elongated structures constituting the NW cycle. We
use the resolvent framework to test for the emergence of energetic spanwise rollers in § 3.3.

Figure 3(b) shows normalized gain predictions made using the DNS mean profile (black
symbols) and the synthetic mean profile (white symbols) for the NW resolvent mode,
plotted as a function of

√
K+y . For values of

√
K+y � 0.4, the normalized gain predictions
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are in close agreement. For this range of wall-normal permeabilities, the normalized gain
predictions made using the synthetic mean profile are within 6 % of those made using
the DNS mean profile. However, for

√
K+y � 0.4, the synthetic profile predictions show a

continued decrease in NW mode gain, while the DNS profile predictions show an increase
in gain. Discrepancy between the predictions for higher values of

√
K+y is consistent with

the slip velocities shown in figure 2. The synthetic profile agrees with the DNS mean
profile for

√
K+y � 0.4, but not beyond this value. As discussed earlier, this is because

higher wall-normal permeabilities give rise to spanwise rollers resembling KH vortices
in the simulations. The effect of the additional interfacial turbulence generated by these
rollers is not captured in the eddy viscosity model (2.12). Instead, the eddy viscosity model
assumes smooth-wall-like turbulence regardless of the value of

√
K+y and

√
K+z .

Figure 3(c) shows normalized gain predictions made using the DNS mean profile (black
symbols) and the synthetic mean profile (white symbols) for the NW resolvent mode,
plotted as a function of

√
K+x −

√
K+y . Since the permeable substrate model used here has

identical wall-normal and spanwise permeabilities, the difference between streamwise and
wall-normal permeability is also equal to the difference between streamwise and spanwise
permeabilities, i.e.

√
K+x −

√
K+y =

√
K+x −

√
K+z . Slip length arguments (Luchini et al.

1991; Abderrahaman-Elena & García-Mayoral 2017) suggest that the initial decrease in
drag over anisotropic permeable substrates is proportional to the difference between the
streamwise and spanwise permeability length scales, which determine the virtual origins
felt by the mean streamwise flow and turbulent cross-flow fluctuations, respectively.
In other words, we expect �Ū+ ∝ √K+x −

√
K+z . These arguments are supported by

the simulation results of Gómez-de-Segura & García-Mayoral (2019), which show a
linear decrease in drag that is proportional to

√
K+x −

√
K+z for substrates with small

permeabilities. The NW mode gains shown in figure 3(c) agree well with this model.
Specifically, the normalized NW-mode gains initially decrease linearly with

√
K+x −√

K+y (=
√

K+x −
√

K+z ) across all anisotropy ratios. Moreover, there is little difference
between the predictions made using the synthetic and DNS mean profiles. Linear
relationships fitted to the initial decrease in normalized gain are nearly identical for the
predictions based on the DNS profiles (dashed black lines) and those based on the synthetic
mean profiles (dashed red lines). Note that the predictions based on the synthetic mean
profile all collapse together. This suggests that NW mode behaviour is self-similar when
appropriately normalized. Predictions made using the DNS profiles diverge from this
self-similarity when

√
K+y � 0.4.

Figure 4 provides physical insight into the observed changes in mode gain. The
structure of the NW resolvent mode for the smooth-wall case is shown in figure 4(a).
By construction, the mode structure shows alternating regions of positive and negative
velocity fluctuations with spanwise wavelength λ+z = 102. The wall-normal and spanwise
velocity fluctuations show the presence of counter-rotating streamwise vortices. Regions
of downwelling (v′ towards wall) coincide with regions of high streamwise velocity
(red shading) and regions of upwelling (v′ away from wall) coincide with regions of
low streamwise velocity (blue shading). These observations are consistent with known
features of the NW cycle (Robinson 1991; Waleffe 1997; Jiménez & Pinelli 1999). When
the solid wall is replaced by anisotropic permeable substrates with φxy = 5.5, there are
some subtle but important changes in mode structure. For the permeable substrates that
yield mode suppression – and drag reduction – there is a downward shift in the velocity
fluctuations and the mode is compressed in the wall-normal direction (see figure 4c,d
for

√
K+y = 0.18 and figure 4e, f for

√
K+y = 0.45). To explain why these changes lead
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Figure 4. The NW mode structure predictions made using the DNS velocity profiles for (a,b) the smooth-wall
case; (c,d) the substrate with φxy = 5.5 and

√
K+y = 0.18; (e, f ) the substrate with φxy = 5.5 and

√
K+y = 0.45;

(g,h) the substrate with φxy = 5.5 and
√

K+y = 1.0. In panels (a,c,e, g), the shading shows normalized contours
of positive (red) and negative (blue) streamwise velocity normalized by the maximum value. The vectors show
the wall-normal and spanwise velocity fluctuations. In panels (b,d, f,h), the solid lines show the magnitude
of the streamwise velocity for this resolvent mode, |uκ | and the dashed lines show the wall-normal velocity
magnitude multiplied by a factor of ten, 10|vκ |. The black lines represent the smooth-wall case while the grey
lines represent the permeable substrates. These plots make use of the shifted coordinate ŷ = 1+ y, such that
ŷ = 0 represents the location of the smooth wall or the porous interface.

to mode suppression, we briefly review two mechanisms responsible for high gain in
the resolvent framework (McKeon & Sharma 2010; McKeon 2017). First, resolvent
modes tend to localize around the critical layer, yc, where the mode speed matches the
local mean velocity, Ū( yc) = c = ω/κx. This minimizes the term −iω + iκxŪ inside the
inverted operator shown on the right-hand side of (2.4). Second, energy is extracted from
the mean flow via the interaction between the wall-normal velocity fluctuations and the
mean shear, i.e. the so-called lift-up mechanism that leads to energy transfer from the
mean flow to the fluctuations via the term −u′v′(dŪ/dy) in the turbulent kinetic energy
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equation. As the streamwise permeability of the substrate increases, there is a shift in the
virtual origin of the mean profile and so the critical layer location moves closer to the
permeable interface, from ŷ+c ≈ 13 for the smooth-wall case to ŷ+c ≈ 9.7 for the case with√

K+y = 0.45. Here, ŷ = 1+ y such that ŷ = 0 represents the porous interface at y = −1
(see figure 1). As noted in the introduction, this shift in the mean profile depends on√

K+x . A downward shift in the critical layer location causes the NW resolvent mode to
localize closer to the porous interface (see→−← in figure 4). However, the downward
shift for the NW mode is constrained by the low wall-normal and spanwise permeabilities,√

K+y =
√

K+z , which leads to the observed wall-normal compression in mode structure.
This wall-normal compression in mode structure reduces the energy extracted from the
mean flow, which depends on the wall-normal integral of the product of the Reynolds
shear stress and mean shear, i.e. ∝ ∫ Re(−u∗κvκ )(dŪ/dy) dy. Note that Re(·) represents
the real component and so the Reynolds shear stress contribution from the NW resolvent
mode is proportional to Re(−u∗κvκ ) (Luhar et al. 2014). A reduction in energy extraction
from the mean flow leads to a reduction in mode gain. Importantly, this observation is
consistent with the interpretation that drag reduction is only expected if the slip length
for the mean streamwise flow �+x ∝

√
K+x is larger than that for the turbulent cross-flows,

�+z ∝
√

K+z , i.e. if the virtual origin for the mean flow is offset from the virtual origin for
the turbulence. Additional resolvent-based predictions for

√
K+z >

√
K+x (�+z > �+x ) lead

to an increase in mode gain (data not shown).
Figure 4(g,h) show predictions for NW mode structure for the anisotropic permeable

substrate with φxy = 5.5 and
√

K+y = 1.0 that leads to an increase in drag and
forcing–response gain (see figure 3). Compared with the cases that lead to mode
suppression and drag reduction, the wall-normal footprint for the NW mode increases
substantially for this case. This can be attributed to the change in the DNS mean profiles
for

√
K+y � 0.4, for which spanwise-coherent structures resembling KH vortices emerge

over the permeable substrate. The emergence of these rollers leads to a substantial
increase in turbulent mixing which causes the mean profile to flatten in the interfacial
region (Gómez-de-Segura & García-Mayoral 2019). For the substrate with φxy = 5.5 and√

K+y = 1.0, this pushes the critical layer for the NW mode outwards to ŷ+c ≈ 26. This
means that the NW mode is again able to localize around the critical layer, and there is
no vertical compression in mode structure. This allows for greater energy extraction from
the mean flow and leads to the observed increase in NW mode gain over the material with
φxy = 5.5 and

√
K+y = 1.0 in figure 3(a).

Note that the NW mode gain decreases monotonically with increasing
√

K+x −
√

K+y
for predictions made using the synthetic mean profiles (see figure 3c). This is because the
synthetic mean profiles assume no change in turbulence characteristics near the interface
relative to smooth-wall conditions, i.e. they do not account for the emergence of spanwise
rollers and turbulence penetration into the porous medium. As shown in figure 3(a),
NW mode gain begins to increase again for

√
K+y � 0.4 when the DNS mean profiles

are used in the resolvent operator. In the DNS, spanwise rollers resembling KH vortices
emerge beyond this value of wall-normal permeability and alter the form of the mean
profile.

The preceding discussion assumes that the phase speed of the near-wall structures
(c+ ≈ 10) remains unchanged relative to smooth wall conditions. It could also be argued
that the phase speed changes over the permeable medium to reflect the interfacial slip
velocity, which depends on the streamwise slip length (Ū+s ≈ �+x for small �+x ), and
turbulence penetration into the permeable medium, which depends on the spanwise slip
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length (�+z ). To account for these effects, the phase speed can be modified to c+ = 10+
�+x − �+z ≈ 10+√K+x −

√
K+z . Figure 8 in the Appendix shows additional predictions

for NW mode gain made using this modified phase speed. These additional predictions
are broadly similar to the predictions shown in figure 3 for c+ = 10. Specific observations
are discussed further in the Appendix.

Together, the predictions shown in figures 3 and 4 confirm that suppression of
the dynamically important NW cycle requires high streamwise permeability and low
spanwise/wall-normal permeabilities. In other words, materials with high anisotropy ratios
(φxy 
 1) are expected to yield the largest suppression of NW turbulence. However, the
absolute value of the wall-normal permeability also plays an important role in dictating
drag reduction performance. Specifically, the emergence of energetic spanwise coherent
rollers is dictated primarily by

√
K+y .

3.3. Spanwise-coherent resolvent modes
In this section, we use the resolvent analysis framework to evaluate the conditions
in which energetic spanwise-coherent rollers resembling KH vortices emerge over
anisotropic permeable substrates. Snapshots of the flow field from the simulations of
Gómez-de-Segura & García-Mayoral (2019) show that for

√
K+y < 0.4, the flow is

dominated by streamwise-elongated structures associated with the NW cycle. As the
wall-normal permeability increases to

√
K+y � 0.4 the flow becomes dominated by

spanwise coherent rollers with an approximate streamwise spacing of λ+x ≈ 100− 300.
Furthermore, using momentum balance arguments, Gómez-de-Segura & García-Mayoral
(2019) showed that the Reynolds stress contribution from structures with λ+x ≈ 70− 320
and λ+z � 120 is responsible for the increase in drag observed for substrates with√

K+y � 0.4. We note that spanwise-coherent rollers have also been observed in previous
simulations over isotropic porous materials (Breugem et al. 2006; Rosti et al. 2015).

Linear stability analyses successfully predict the emergence of KH vortices in channel
flows over anisotropic permeable substrates (Abderrahaman-Elena & García-Mayoral
2017; Gómez-de-Segura et al. 2018). Gómez-de-Segura et al. (2018) also show that the
wall-normal permeability becomes the driving parameter for the onset of KH rollers for
streamwise-preferential substrates of large depth, i.e. substrates with

√
K+x 


√
K+y and

H+ 
 √
K+y . However, models based on linear stability theory do not accurately predict

the threshold value of
√

K+y for the onset of the rollers or the wavelength of the rollers.
Linear stability analyses predict structures with streamwise wavelength λ+x ≈ 50–70 to be
most unstable, while DNS results suggest that structures with λ+x ≈ 150 are most energetic
initially.

Figure 5 shows resolvent-based predictions for the normalized amplification of
spanwise-coherent structures over the anisotropic permeable substrate with φxy = 5.5
and varying

√
K+y . Based on the DNS results of Gómez-de-Segura & García-Mayoral

(2019), we limit ourselves to the evaluation of structures with streamwise wavelength
λ+x ∈ [50, 500] and mode speed c+ ∈ [4, 10]. In addition, we consider structures that are
infinitely long in the spanwise direction (κz = 0) as well as structures with a finite, but
large, spanwise wavelength (κz ≈ 2.3; λ+z = 500).

Figure 5(a,e) shows that for low wall-normal permeability,
√

K+y = 0.18, resolvent
analysis predicts minimal amplification of spanwise-coherent structures over the
anisotropic permeable substrate. The maximum increase in gain relative to smooth-wall
values is less than 25 %, i.e. σκ,p/σκ,s < 1.25 for both κz = 0 and κz ≈ 2.3.
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Figure 5. Normalized gain for spanwise-coherent structures plotted as a function of streamwise length λ+x
and wave speed c+ for substrates with an anisotropy φxy = 5.5. These predictions make use of the synthetic
mean profile. Panels (a–d) represent structures with spanwise wavenumber κz ≈ 2.3 (λ+z = 500). Panels (e–h)
represent structures with spanwise wavenumber κz = 0. Red and blue shading represent mode amplification
and suppression relative to the smooth-wall case, respectively. Wall-normal permeability increases from left to
right. Structures with the largest amplification are labelled with a (•) marker.

Moreover, the gain for these spanwise-coherent structures is also small in absolute terms.
This is consistent with the simulation results of Gómez-de-Segura & García-Mayoral
(2019), which show that the Reynolds stress contributions from structures with
λ+x ≈ 70–300 and λ+z � 120 are negligible for materials with

√
K+y � 0.31. In other

words, spanwise-coherent modes do not have a significant effect on drag for these
conditions.

However, the amplification of these spanwise-coherent structures increases significantly
for

√
K+y � 0.39. Figure 5(b, f ) shows a clear increase in the size and intensity of

the region showing mode amplification. For λ+z = 500, the region of highly amplified
structures is localized around (λ+x , c+) ≈ (130, 7) and the normalized gain for the most
amplified structure is σκ,p/σκ,s ≈ 2. For spanwise constant structures, the region of high
amplification is localized around (λ+x , c+) ≈ (180, 6.7) and extends to structures with
λ+x ≈ 300. The normalized gain for structures in this region is as high as σκ,p/σκ,s ≈ 3,
indicating a 200 % increase in gain relative to smooth-wall values. The extent and intensity
of these high-gain regions continue to increase as wall-normal permeability increases
further, as shown in figures 5(c,d) and 5(g,h). Indeed, for the case with

√
K+y = 0.66

shown in figure 5(d), the region of high amplification extends from λ+x ≈ 100–500 and
c+ ≈ 4–9. The highest-amplification structures in this region show normalized gains
σκ,p/σκ,s � 100.

The substantial increase in amplification of spanwise-coherent structures for
√

K+y �
0.39 is again consistent with the DNS results of Gómez-de-Segura & García-Mayoral
(2019), which show that the drag-reducing performance of anisotropic substrates begins
to degrade for

√
K+y � 0.39 due to the additional Reynolds shear stresses contributed
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Figure 6. Flow structure associated with the most amplified spanwise-constant resolvent mode over the
permeable substrate with φxy = 5.5 and

√
K+y = 0.39; see • in figure 5( f ). The red and blue shaded contours

show regions of positive and negative pressure, normalized by the maximum value.

by spanwise coherent structures with λ+x ≈ 70–300 and λ+z > 120. The DNS results
also show the emergence of a new peak in the premultiplied spectra for wall-normal
velocity near λ+x ≈ 150 for

√
K+y = 0.39. This is very close to the streamwise wavelength

of the most amplified modes in figure 5(b, f ). Moreover, the streamwise extent of
the high-intensity region in the DNS premultiplied spectra increases with increasing√

K+y , which is similar to the expansion of the high-amplification region evident in
figure 5(c,d,g,h).

Figure 6 shows a snapshot of the flow field associated with the highest-gain resolvent
mode in figure 5( f ) with λ+x ≈ 180 and c+ ≈ 6.7. As expected for KH type vortices, the
structure shows the presence of counter-rotating rollers in the x–y plane, localized near
the porous interface. Regions of prograde rotation (i.e. in the direction of the mean shear)
are associated with negative pressure fluctuations and regions of retrograde rotation are
associated with positive pressure fluctuations. Moreover, the velocity and pressure fields
associated with these rollers span a significant portion of the buffer region of the flow,
which is consistent with DNS observations.

Importantly, the model predictions shown in figure 5 for φxy = 5.5 are representative
of what is observed over the permeable substrates with φxy = 3.6 and φxy = 11.4 as well.
This is illustrated well in figure 7, which shows the normalized gain for the most amplified
resolvent mode in the window spanning λ+z ∈ [50, 500] and c+ ∈ [4, 10], for both κz ≈ 2.3
and κz = 0. For all three anisotropy ratios, the normalized gain show a sharp increase
for

√
K+y � 0.4. For structures with λ+z = 500 (κz ≈ 2.3), model predictions for all three

anisotropy ratios collapse together nicely (figure 7a). For spanwise-constant structures
(κz = 0), there is a bit more scatter in the normalized gain values but the overall trend
remains similar.

The DNS results in figure 3(a) clearly show drag reduction performance deteriorating
for

√
K+y � 0.4 for all three anisotropy ratios. The flow field snapshots, velocity

spectra, and momentum-based analyses pursed by Gómez-de-Segura & García-Mayoral
(2019) attribute this deterioration in performance to the emergence of high-gain
spanwise-coherent structures resembling KH vortices. The results presented in this section
confirm that resolvent analysis – based on synthetic mean profiles – is able to successfully
predict the emergence of such spanwise-coherent structures over anisotropic permeable
substrates. Since the synthetic mean profiles are generated using an eddy viscosity model,
these results also show that the resolvent framework can generate a priori predictions
for whether a porous substrate with known K will give rise to KH rollers. Moreover,
the resolvent-based predictions are in better quantitative agreement with the DNS results
than linear stability predictions. Specifically, resolvent analysis yields better predictions for
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Figure 7. Comparison of resolvent-based gain predictions for spanwise-coherent structures with anisotropy
ratios φxy = 3.6 (�), 5.5 (�) and 11.4 (�). The maximum normalized gain obtained for resolvent modes
with λ+x ∈ [50, 500] and c+ ∈ [4, 10] is shown as a function of wall-normal permeability for (a) κz ≈ 2.3
(λ+z = 500) and for (b) κz = 0 (λ+z = ∞). All of these predictions were obtained using the synthetic mean
profiles.

the wall-normal permeability threshold beyond which such structures become important
(
√

K+y ≈ 0.4), as well as the streamwise wavelength of the structures that emerge first
(λ+x ≈ 150).

4. Conclusion

Recent theoretical efforts and numerical simulations show that anisotropic permeable
substrates have the potential to yield significant drag reduction in wall-bounded turbulent
flows. Specifically, numerical simulations by Gómez-de-Segura & García-Mayoral (2019)
indicate that a drag reduction of up to 25 % can be achieved by appropriately tuning the
streamwise, wall-normal and spanwise permeabilities of such substrates. The mechanism
through which these substrates reduce drag is similar to that for riblets, and can be
rationalized in terms of the offset in the virtual origin felt by the mean flow, which depends
on streamwise permeability, and the virtual origin felt by the turbulent fluctuations,
which depends primarily on spanwise permeability. Maximum drag reduction is limited
by the appearance of spanwise rollers resembling KH vortices. The emergence of these
vortices is linked to a relaxation in the wall-normal permeability. The extended resolvent
analysis framework described in this paper reproduces all of these features with minimal
computation.

As shown in § 3.2, the gain for a single resolvent mode that serves as a surrogate for the
NW cycle reproduces the initial drag reduction trends observed in numerical simulations.
Model predictions show that the reduction in gain for this mode depends on the difference
between the streamwise and spanwise permeability length scales,

√
K+x −

√
K+z , such

that substrates with higher anisotropy ratios lead to greater mode suppression. This is
consistent with the trends observed in numerical simulations. Moreover, the link between
resolvent mode gain and drag reduction also provides a complementary explanation to
the slip-length based arguments used in previous studies. Specifically, resolvent-based
predictions suggest that the difference between

√
K+x and

√
K+z leads to a wall-normal

compression of the quasi-streamwise vortices associated with the NW cycle, and this
compression limits energy extraction from the mean flow. Furthermore, as we show
in § 3.3, resolvent analysis also predicts the emergence of energetic spanwise rollers
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with streamwise wavelength λ+x ≈ 150 as the wall-normal permeability increases beyond√
K+y ≈ 0.4. These features are quantitatively consistent with simulation results.
One weakness of the extended resolvent framework developed here is the requirement

of a mean velocity profile over the permeable substrate. For turbulent flows over smooth
walls, mean profile estimates can be generated using a variety of simplified models or
obtained from previous simulations and experiments. However, such models or data are
not readily available yet for flows over anisotropic permeable substrates. Since the form
of the mean profile can have a significant effect on resolvent-based predictions, it would
be interesting to revisit the predictions made in this study as more accurate eddy viscosity
models become available for flows over (and within) anisotropic porous materials. Indeed,
the comparison between predictions made using the mean profiles obtained in DNS
and those generated using an eddy viscosity model presented in § 3.2 shows important
differences in the gain for the near-wall mode for

√
K+y � 0.4, i.e. when drag reduction

performance begins to deteriorate. This is because the emergence of the spanwise rollers
leads to a substantial increase in interfacial turbulence. This effect is not captured by
the eddy viscosity model used to generate the synthetic profiles, which assumes that the
turbulence remains smooth-wall-like and does not penetrate the permeable substrate (see
§ 2.4). Yet, resolvent analysis with the synthetic mean profile does show the emergence of
these spanwise rollers beyond

√
K+y ≈ 0.4. In other words, resolvent analysis can generate

useful a priori predictions even with a synthetic mean profile. Near-wall mode gain
can be used as a measure of initial drag reduction performance, and the emergence of
spanwise-coherent rollers can be used to estimate the point at which performance is likely
to deteriorate. Since evaluation of these features does not require significant computation,
resolvent analysis can serve as a useful design tool for more complex permeable substrates.
For instance, resolvent analysis could be used to pursue formal optimization efforts for the
full permeability tensor.

We also recognize that the VANS equations used in this study involved significant
simplifying assumptions (see § 2.1). These simplifying assumptions were made primarily
to allow for a direct comparison with previous simulation results. Moving forward,
resolvent analysis could be used to consider how the inclusion of inertial effects (e.g. via
the Forchheimer term) or more complex interfacial boundary conditions (e.g. involving
stress jumps, or more complex slip and transpiration models) is likely to affect control
performance. Recent work by Morra et al. (2019) also shows that the statistical predictions
made using resolvent analysis improve significantly when the effect of the Reynolds
stresses is included explicitly in the resolvent operator via an eddy viscosity term, i.e.
if the linear operator in (2.5) is formulated using both molecular and eddy viscosities.
In the context of the present study, the inclusion of an appropriate eddy viscosity model
in the resolvent operator itself would enable an evaluation of how turbulent momentum
and energy exchanges across the permeable interface are likely to modify NW cycle and
influence the emergence of spanwise rollers.
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Figure 8. Predictions for the NW resolvent mode with a modified phase speed of c+ ≈ 10+√K+x −
√

K+z .
(a) Comparison between normalized mode gain (σκ,p/σκ,s, black symbols) and drag reduction observed in
DNS (�Ū+, light grey symbols) by Gómez-de-Segura & García-Mayoral (2019), plotted as a function of√

K+y . The resolvent-based predictions shown in this panel are obtained using the velocity profiles from DNS.
(b) Comparison between normalized gains predicted using the DNS mean profiles (black symbols) and the
synthetic mean profiles (white symbols) plotted as a function of

√
K+y . (c) Comparison between normalized

gains predicted using the DNS mean profiles (black symbols) and the synthetic mean profiles (white symbols)
plotted as a function of

√
K+x −

√
K+y . The black and red dashed lines show linear fits to the initial decrease in

normalized gain for the DNS mean and synthetic mean predictions, respectively. For all panels, the � symbols
represent substrates with φxy = 3.6, � symbols represent substrates with φxy = 5.5 and � symbols represent
substrates with φxy = 11.4.

Appendix

As noted earlier, the predictions shown in § 3.2 assume that the phase speed of the resolvent
mode that serves as a surrogate for the NW cycle (c+ ≈ 10) remains unchanged over the
permeable substrate. Figure 8 shows additional predictions for mode gain assuming the
phase speed change with substrate permeability as c+ = 10+ �+x − �+z ≈ 10+√K+x −√

K+z . In effect, this modification accounts for the interfacial slip velocity, which depends
on the streamwise slip length �+x ≈

√
K+x , and the virtual origin for the turbulence inside

the permeable substrate, which depends on the spanwise slip length �+z ≈
√

K+z .
The modified phase speed does not lead to significant changes in mode gain compared

with the predictions shown in figure 3 for c+ ≈ 10. Figure 8(a) shows that mode gain
predictions made using the DNS mean profile are consistent with drag reduction trends
obtained in DNS. Compared with the predictions shown in figure 3(a), singular value
ratios for the substrates with φxy = 3.6 and φxy = 5.5 show slightly better agreement
with the drag reduction trends from DNS for

√
K+y < 0.6. However, for

√
K+y � 0.6,

the predictions are more scattered with the modified phase speed. For the substrate with
φxy = 11.4, the modified phase speed leads to reduced mode suppression. Furthermore,
the deterioration in performance – in terms of mode suppression – commences at a lower
value of wall-normal permeability,

√
K+y ≈ 0.2, compared with the threshold observed in

DNS.
Figure 8(b) shows that the predictions made using the synthetic mean profile are

consistent with those made using the DNS mean profiles for small values of
√

K+y , i.e. until
the emergence of spanwise rollers resembling KH vortices in the DNS. Figure 8(c) shows
that the initial reduction in mode gain depends primarily on

√
K+x −

√
K+z , even with

the modified phase speed. These observations are again consistent with the predictions
shown in figure 3(b,c). However, linear fits to the initial decrease in mode gain show that
the modified phase speed leads to less pronounced mode suppression; see red and black
dashed lines in figures 3(c) and 8(c).
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