
Pmctedmgt of the Edinburgh Mathematical Society (1999) 42, 267-284 ©

THE "MAXIMAL" TENSOR PRODUCT OF
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In analogy with the maximal tensor product of C*-algebras, we define the "maximal" tensor product
Ex ®, E2 of two operator spaces E, and E2 and we show that it can be identified completely isometrically with
the sum of the two Haagerup tensor products: £, ®k E2 + E2 ®t E,. We also study the extension to more than
two factors. Let £ be an n-dimensional operator space. As an application, we show that the equality
£ * & „ £ = £ * &„(,, E holds isometrically iff E = Rn or £ = C, (the row or column n-dimensional Hilbert
spaces). Moreover, we show that if an operator space E is such that, for any operator space F, we have
F ®min £ = £ & „ £ isomorphically, then E is completely isomorphic to either a row or a column Hilbert
space.

1991 Mathematics subject classification: 47D15, 47D25, 46M05.

Introduction

In C*-algebra theory, the minimal and maximal tensor products (denoted by
^i ®min ^2 a n d Ax ®max A2) of two C*-algebras AX,A2, play an important role, in
connection with "nuclearity" (a C*-algebra Ax is nuclear if Ax <g>min A2 = At ®max A2 for
any A2). See [34] and [23] for more information and references on this. In the recently
developed theory of operator spaces [12-16, 32, 33, 4, 1-3], some specific new versions
of the injective and projective tensor products (going back to Grothendieck for Banach
spaces) have been introduced. The "injective" tensor product of two operator spaces
£,, E2 coincides with the minimal (or spatial) tensor product and is denoted by
£i ®min E2. Another tensor product of paramount importance for operator spaces is the
Haagerup tensor product, denoted by £, ®h E2 (cf. [9, 10, 25, 6, 7]). Assume given
two completely isometric embeddings E, c Ax, E2cA2. Then Et ®min E2 (resp.
£i ®» £2) c a n be identified with the closure of the algebraic tensor product £, ® E2

in A, ®min A2 (resp. in the "full" free product C*-algebra At * A2, see [8]). (The
"projective" case apparently cannot be described in this fashion and will not be
considered here.) It is therefore tempting to study the norm induced on £, ® E2 by
^1 ®mM A.2- When A, = B(H,) (i = 1,2) the resulting tensor product is studied in [19]
and denoted by £, ®M E2. See also [21] for other tensor products. In the present paper,
we follow a different route: we work in the category of (a priori non self-adjoint) unital
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268 TIMUR OIKHBERG AND GILLES PISIER

operator algebras, and we use the maximal tensor product in the latter category
(already considered in [24]), which extends the C*-case.

The resulting tensor product, denoted by £, &„ £2 is the subject of this paper. A brief
description of it is as follows: we first introduce the canonical embedding of any
operator space £ into an associated "universal" unital operator algebra, denoted by
OA(E), then we can define the tensor product £, ®fl E2 as the closure of £, ® E2 in

Our main result is Theorem 1 which shows that £, ®^ E2 coincides with a certain
"symmetrization" of the Haagerup tensor product. We apply this (see Corollary 10
and Theorem 16) to find which spaces £, have the property that £, ®^ E2 = £, <g>min E2

for all operator spaces E2. We give two proofs of the main result, in the bilinear case.
The second one (in Section 2) is shorter, but we feel the first proof is more instructive,
and easier to generalize to more general situations (cf. Remark 20). Besides, each proof
seems to yield a different n-linear extension for n > 2, not obtainable (as far as we
can see) by the other argument (see the extension of Theorem 1, stated after its proof,
and Theorem 19).

We refer the reader to the book [23] for the precise definitions of all the undefined
terminology related to operator spaces and complete boundedness, and to [26, 34] for
operator algebras in general. We recall only that an "operator space" is a closed
subspace E c B{H) of the C*-algebra of all bounded operators on a Hilbert space H.
We will use freely the notion of a completely bounded (in short c.b.) map u: £, -*• E2

between two operator spaces, as defined e.g. in [23]. We denote by ||M||cfc the
corresponding norm and by cb(Eu E2) the Banach space of all c.b. maps from £, to E2.
We will denote by A' the commutant of a subset A c B(H).

Let £ , , . . . ,£„ be a family of operator spaces. Let at: £,• -»• B(H) be complete
contractions (i = 1,2 n). We denote by CT, • . . . • an: £, ® • • • <8> En -*• B(H) the linear
map taking x, ® • •• ® xn to the operator cri(xi)(T2(x2)• • • ^nOO-

We define the norm || H,, on £, ® • • • ® En as follows:

VxeEx®--®En ||x|L, = sup||ff,-...-ffll(jc)||B,H) (1)

where the supremum runs over all possible H and all n-tuples {at) of complete
contractions as above, with the restriction that we assume that for any i / ; , the range
of <7, commutes with the range of o). We will denote by (£, <g> E2 •• • <g> £„),, the
completion of Ex <8> • • • ® En for this norm, in the particular case n = 2, we denote this
simply by Et ^ E2, so we have for any x = J2 xl ® x? £ Et ® E2

where the supremum runs over all possible pairs (a,, a2) of complete contractions (into
some common B(H)) with commuting ranges, i.e., such that <TI(X,)<T2(X2) = ff2(x2)CTi(xi)
for all x, 6 £,, x2 e £2-

The space (£, ® • • • ® £n)p can obviously be equipped with an operator space
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structure associated to the embedding

/ \
(2)

where the direct sum runs over all n-tuples a = (er, <7n) with <x,: £, -*• B{Ha) such
that IKHci, < 1 and the o-,'s have commuting ranges. Here as well as throughout this
paper, we observe that we can always restrict ourselves in the above direct sum to the
case when the cardinal of Ha is majorized by a suitably fixed cardinal, thus eliminating
set theoretic objections.

We note in passing that if we define <r,: Et -+ ®aB(Ha) c B(®aHa) by a,(x) = ©ffCT,(x),
then we have J(x) — a, . . . an and the maps a, have commuting ranges.

Thus we can now unambiguously refer to (£, ® • • • ® £„),,, and in particular to
£, (8)̂  £2 as operator spaces.

We will give more background on operator spaces and c.b. maps below. For the
moment, we merely define a "complete metric surjection": by this we mean a surjective
mapping Q :£,-»• £2 between two operator spaces, which induces a complete isometry
from £,/ker(g) onto E2.

To state our main result, we also need the notion of lt-direct sum of two operator
spaces £,,£2: this is an operator space denoted by Ex ©, E2. The norm on the latter
space is as in the usual tx-direct sum, i.e., we have

but the operator space structure is such that for any pair « , :£ , -> B(H),
u2:E2-*B(H) of complete contractions, the mapping (e,, i2) -*• w,(e,) -I- u2(e2) is a
complete contraction from Et ©, E2 to B(H).

The simplest way to realize this operator space £, ©, E2 as a subspace of B(H) for
some H is to consider the collection / of all pairs p = (u,, u2) as above with H = Hp

(say) and to define the embedding

J:E

defined by J(e,, e2) = ©(u^jgfKte,) + u2(e2)]. Then, we may as well define the operator
space structure of £, ©, £2 as the one induced by the isometric embedding J. In other
words £, ©, £2 can be viewed as the "maximal" direct sum for operator spaces, in
accordance with the general theme of this paper.

We will denote by £, ® £2 the linear tensor product of two vector spaces and by
v -*• 'v the transposition map, i.e., for any i> = X)x,®.y1 in £ ,®£2 , we set
'v = 52yj® x,-. The identity map on a space £ will be denoted by IdE.

We will denote by £, ®h £2 the Haagerup tensor product of two operator spaces
for which we refer to [9, 10, 25].
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270 TIMUR OIKHBERG AND GILLES PISIER

Convention. We reserve the term "morphism" for a unital completely contractive
homomorphism u: A -*• B between two unital operator algebras.

1. Main results

Our main result is the following one.

Theorem 1 (bilinear case). Let £, , £2 be two operator spaces. Consider the mapping

Q: (£, ®h £2) ffi, (£2 ®h £,) -» £, ®M E2

defined on the direct sum of the linear tensor products by Q(u © v) — u + 'v. Then Q
extends to a complete metric surjection from (£, ®h £2) ©, (£2 ®A £,) onto £, ®^ £2. In
particular, for any u in £, ® £2, we have: \\u\\p < 1 iff there are v, w in £, ® £2 such that
u = v + wand \\v\\El^E2 + ||fw||£2e>JbEl < 1.

In the terminology of [28], the preceding statement means that £, ® £2 is
completely isometric to the "sum" (in the style of interpolation theory, see [28])
E} ®h £2 + E2 ®fc £, (in analogy with R + Q.

Remark 2. We first recall a simple consequence of the Cauchy-Schwarz inequality: for
any a,, . . . , an, bt,..., bn in a C'-algebra A, we have || E^AII < II Ea,flTlll/2ll E^ , l l 1 / 2 -
Hence if albl = blal we also have ||EflAII < II Y,a*iai\\U1\\ EfcA*H1/2- From these it is
easy to deduce that the above map Q is completely contractive.

The main idea of the proof of Theorem 1 is to use the universal unital operator
algebras of operator spaces as initiated in [30], to relate their free product with their
"maximal" tensor product, and to use the appearance of the Haagerup tensor product
inside the free product.

Let £ be an operator space. Let T(£) = C © £ © (£ <g> £) © • - - be its tensor algebra,
so that any x in T(£) is a sum x = E *„ with xn e £ ® • • • <8> £ (n times) with xn = 0 for
all n sufficiently large. For each linear a: E -*• B(H) we denote by T{p): T(E) -*• B(H)
the unique unital homomorphism extending a.

Let C be the collection of all <r:E^B(Ha) with \\a\\cb < 1. We define an
embedding

J: T ( £ ) ^ B

by setting

rcC
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Then J is a unital homomorphism. We denote by OA(E) the unital operator algebra
obtained by completing J(T(E)). We will always view T(E) as a subset of OA(E), so we
identify x and J(x) when x e T(E). Observe that the natural inclusion

E -+ OA(E)

is obviously a complete isometry. More generally, the natural inclusion of E ® • • - ® E
(n times) into OA(E) defines a completely isometric embedding of E ®h • • • ®A E into
OA(E). (This follows from a trick due to Varopoulos, and used by Blecher in [1], see
[30] for details.)

The algebra 0A(E) is characterized by the following universal property: for any
a: E -*• B(H) with \\a\\cb < 1, there is a unique morphism a: 0A(E) -*• B{H) extending a
(here we view E as embedded into OA(E) in the natural way). See [26] for the self-
adjoint analogue.

We now turn to the maximal tensor product in the category of unital operator
algebras. This is defined in [24], so we only briefly recall the definition: Let AX,A2 be
two unital operator algebras. For any pair n = (ni,n2) of morphisms n,: At —> B{Hn)
with commuting ranges, we denote by 7t, • n2 the morphism from Ax ® A2 to B(Hn)
which takes a, <8> a2 to iix(a^)ii2{a2}. Then we consider the embedding

J: Ax ® A2 -

defined by J(x) = (Bnnx • n2(x). We define

Hx|ln»,=SUp||lII-B2(x)||

and we denote by Ax ®mai A2 the completion of A{ ® A2 for this norm. We will consider
^i ®max ^2 a s a unital operator algebra, using the isometric embedding J just defined.

Lemma 3. The natural inclusion of Ex <£>,, E2 into OA(EX) <8>raM 0A(E2) is a completely
isometric embedding.

We now turn to the free product in the category of unital operator algebras. Let
Ax, A2 be two such algebras and let T be their algebraic free product as unital algebras
(i.e., we identify the units and "amalgamate over C"). For any pair u = (uuu2) of
morphisms, as follows ut: <4, -> B(HU) (i = 1,2), we denote by u, * u2: T -> B(HU) the
unital homomorphism extending w,, u2 to the free product. Then we consider the
embedding
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272 TIMUR OIKHBERG AND GILLES PISIER

defined by J(x) = ©u[u, * u2(x)], for all x in T. Note that / is a unital homo-
morphism.

We define the free product Ax * A2 (in the category of unital operator algebras) as
the closure of J{!F). Actually, we will identify T with J(T) and consider that /4, * A2 is
the completion of T relative to the norm induced by J. Moreover, we will consider
Ax * A2 as a unital operator algebra equipped with the operator space structure induced
b y / .

It is easy to see that Ax * A2 is characterized by the (universal) property that for
any pair of morphisms u,: ,4, -*• B(H) (i = 1,2) there is a unique morphism from
Ax * A2 to B{H) which extends both w, and u2.

We will use several elementary facts which essentially all follow from the universal
properties of the objects we have introduced.

Lemma 4. OA{EX) * OA(E2) ~ OA{EX ®t E2) completely isometrically.

Remark. The "functor" E -*• OA(E) is both injective and projective: i.e., if
E2 c Ex is a closed subspace then the associated morphisms j : OA(E2) -*• OA(EX) and q:
OA(Et) -*• OA(EX/E2) are respectively a complete isometry and a complete metric
surjection. The injectivity is easy. To check the projectivity, let B — OAiE^/kerfa) and
let q: B -*• OA(El/E2) be the completely contractive morphism canonically associated
to q. Note that we have a complete contraction £, ->• OA(E{) -> B which vanishes on
E2, whence a complete contraction EJE2 -*• B, which extends to a completely
contractive morphism OA{EX/E2) -*• B. The latter morphism is inverse to q, hence q is
a complete isometry.

We will use the following fact which was observed by Blecher and Paulsen ([5,
4.4]).

Lemma 5. Let Ax, A2 be two unital operator algebras. Then the natural morphism
Q: A\ * A2 —*• Ax ®max A2 is a complete metric surjection. More precisely, the restriction
of Q to the algebraic free product J- defines a complete isometry between J-/ ker(Q(_p) and
Ax ® A2 C Ai ®mM A2.

The next lemma (already used in [1]) is elementary.

Lemma 6. Consider an element x = x0 + x, H \-xn-\ in T(E), with
xn € E <g> • • • ® E (n times). Then the mapping x -*• xn defines a completely contractive
projection on OA{E).

Proof. Let m denote the normalized Haar measure on the unidimensional torus T.
For z in T, let x(z) = E»>oz"xn- By definition of OA(E), we clearly have ||x(z)|| = ||x||,
hence
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llx-ll = I [z-nx(z)m(dz)\\ < \\x\\.

This shows that x -*• xn is a contractive linear projection. The argument for complete
contractivity is analogous and left to the reader. •

The next result, which plays an important role in the sequel, might be of independent
interest.

Lemma 7. Let £,, £2, F,, F2 be four operator spaces. Let X = (£, ©, £2) ®h (F, ©, F2).
With the obvious identifications, we may view £, ® F2 + £2 <g> F, as a linear subspace of
X. Let S be its closure in X. Then we have

S ~ (£ t «>„ F2) ©, ( £ 2 <S>* F . )

completely isometrically. Moreover, the natural (coordinatewise) projection P: X -*• S
is completely contractive.

Proof. Obviously we have completely contractive natural inclusions £, ®fc F2 -*• X
and E2 <8h F, -» X, whence a natural inclusion (£, <g>A F2) ©, (£2 ®h F,) -*• X. To show
that this is completely isometric it clearly suffices to show that S has the "universal"
property characteristic of the ©,-direct sum. Equivalently, it suffices to show that
every completely contractive mapping a: (£, ®h F2) ©, (£2 ®h F,) -> B(H) defines a
completely contractive mapping from S to B(H) (then we may apply this when a is a
completely isometric embedding). So let a be such a map. Clearly, we can assume that
ff(x © y) = u(x) + v(y) with u: £, ®h F2 -+ B(H), v: E2 ®h F, -+ B{H) such that
IMId> ̂  >̂ Ĥ llcfc ^ 1- By the factorization of c.fc.-bilinear maps ([9, 25]) we can further
write u(x, ® x2) = ux[xx)v2{x2) and v(y2 ® yt) = u2(y2)vl(y,) where «,: £,->• B(H) and
o,: F, -»• B(H) are all completely contractive. Let us then define a: £, ©, E2 -*• B(H)
and /?: F, ©, F2 ->• B(H) by a(x, © x2) = u,(x,) + u2(x2) and ^(x, © x2) = u,(x,) + v2{x2).
By definition of ©,, these maps are still complete contractions. Moreover, we have for
any z in S, say z = x + y with x e £, ® F2, y e E2 ® F,

a • j8(z) = u(x) + o(y) = CT(Z).

hence we conclude that a admits an extension a (namely a = a. • /?) defined on the whole
of X with

a fortiori \\o\\cb(sMWj) < 1. This established the first part. To check that P is completely
contractive, just observe that if we denote by Q, (resp. /?,) the i-th canonical projection
on £, ffi, £2 (resp. F^jF^, then P is equal to the average of (e,2i+e2g2) ®

+ e, R2) over all the choices of signs (e,). •
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Lemma 8. Let Ax,..., Anbe unital operator algebras. Then the natural mapping from
Ax <g> A2 • • • ® An to Ax * A2 * • • • * An defines a completely isometric embedding of
Ax <8>h A 2 • • • ®h A n into A x * A 2 * • •• * A n .

Proof. In essence, this is proved in [8], but only for the non-unital free product.
The unital case is done in detail in [29] so we skip it. •

Proof of Theorem 1. Consider u in £, <g> E2 with ||u|L, < 1. Let T be, as before, the
algebraic free product of OA{EX) and OA(E2). By Lemma 5, we have HMHO^E,)®,^,^) < 1.
hence by Lemma 4, there is an element u in T with ||u|| < 1 such that Q(«) = u. By Lemma
3 we may write as well \\u\\0AiEl@lEl) < I. Let us write u = M0 + «, + u2 + •• • where
iid e (£, ©, E2) 0h • • • <8>h (E, ©, E2) (d times). By Lemma 6 we have ||u^|| < 1. Let z,, z2 be
complex numbers with |z,| < 1. There is a unique morphism nz.: OA(Ej) -*• OA(Ej)
extending z,7dB|. We will use the morphisms

7tri ® nn acting on OA(E^) ®max OA(E2)

and

7tr, * 7ir2 acting on OA(E}) * OA{E2).

Note that we trivially have the following relation:

K ® nn] oQ = Qo [nzi *n!2\.

It follows that Z,Z2M = Q[n2i *nZ2(u)]. Hence identifying the coefficient of zxz2 on
the right hand side we obtain u = Q[u] where u is in the subspace
S = span[£, <g> E2 + E2 <8> £,] c (£, ©, E2) ®fc (£, ©, E2) considered in Lemma 7, and
where we view (E, ©, E2) ®fc (£, ffi, E2) as the subspace of OA{EX ffi, £2) formed of
all terms of degree 2, according to Lemma 8. Hence by Lemma 7, we conclude
that u can be written as v + w with v e Ex <g> £2 and w e £2 ® £, such that
Ĥ llÊ fcEz + IIWIIE2®*£, < 1- This shows that Vu e £, <8> £2 with ||u||^ < 1 there are v, w as
above with u = v + 'w.

Thus the natural mapping is a metric surjection from Ex ®fc E2 ©, £2 ®fc £, onto
£, ®^ £2. To show that this is a complete surjection, one simply repeats the
argument with Mn{Ex ®^ £2) instead of £, gi^ £2. We leave the easy details to the
reader. •

Using the same techniques, one can prove the following isomorphic generalization
of Theorem 1 for more than two spaces:

Theorem 1 (general case). Let £ , , . . . , £ „ be an n-tuple of operator spaces. Let L be
the Indirect sum of the family {E^^ ® h . . . <8h E^),, indexed by all permutations a of
{1,2, ...,n}. Let Q be the natural completely contractive mapping from L to

https://doi.org/10.1017/S0013091500020241 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020241


THE "MAXIMAL" TENSOR PRODUCT OF OPERATOR SPACES 275

(£, ® • • • ® £n)/1, and let O: L/ ker(<2) -*• (£, ® • • • ® EJ^ be the canonically associated
map. Then O is a complete isomorphism satisfying UOIU < 1 and ([O"1 ||cfc < (n — 1)!.

Proof. We will use the following fact. Let Etj be a family of operator spaces. Let

X = (£„ ©, . . . 0 , £,„) ® 4 . . . » » ( £ „ © , . . . © , £ta);

Y = (£,, ®» . . . ®4 £ H ) © , . . . © , (£,„ « » . . . « » £t a);

S = (£„ ®». . . ®» Ekl) © . . . © (£,„ « » . . . « » £ta) <-+ X,

then y ~ S completely isometrically (here S is equipped with the operator space structure
induced by X). Moreover, the natural (coordinatewise) projection P: X -*• S is completely
contractive. This follows from Lemma 7 by iteration. We skip the details.

Let us now prove the preceding statement. Let £ = £ , © , . . . © , £„. Let Gn be the
set of all permutations of {1, 2 n}. Let X = £ ®h... ®fc £ (n times) and let A c X
be the subspace defined by A = 53ff6Cii E^) <g>... <8> £„<„). For any subset 4 c Gn, we set
h(A) = £,aeA £„(!> ® • • • <8> £„(„)• We equip A and A(y4) with the operator space structure
induced by X. Let us say that A is admissible if for each i the set [a(f) | a e A) is the
whole of {1,2, . . . , n } .

By the same argument as above for n = 2, the natural product map
Q: A ->• (£i ® ••• &£„),, is a complete metric surjection. We clearly have a natural
completely contractive map ifr: L -> A. To conclude, it suffices to prove that ij/ is a
complete isomorphism with ||^~'||et < (n — 1)!. To prove this we use a partition of Gn

into (n — 1)! admissible subsets, each with n elements (for instance the left cosets
associated with the subgroup formed of all the n cyclic permutations). Indeed, by the
preceding fact, for any admissible A, the restriction of ip~l to A(/l) is a complete
isometry, and the natural projection from A to A(/l) is completely contractive. This
implies HtT'lL <(»-!)!• •

Remark. We do not believe that the isometric analogue of Theorem 1 holds true
for n > 2. While we do not have an explicit example, at least we have checked that the
map \j/ appearing above is not completely isometric in general.

Remark. If X, Y are Banach spaces, and if v e Y ® X, let us denote by y2(v) the norm
of factorization through Hubert space of the linear map v: Y * ->• X associated to v. This is a
classical notion in Banach space theory (c.f. e.g. [27, p. 21]). Note that Theorem 1 obviously
implies that for any i; in £, ® £2 (Ex, £2 being arbitrary operator spaces), we have

H»lln- (3)

Remark. Note that

(£, ®p £2) »„ £3 = £, <8>h E2 ®h £3 + £3 ®h £, ®h £2 + £2 ®k £, ®h £3 + £3 ®h £2
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but the above expression does not necessarily coincide with (£, ® £2 <8> £3),,, and
moreover the /z-tensor product is not associative, in sharp contrast with the Haagerup
one (or with the maximal tensor product for unital operator algebras). In particular, in
general the natural mapping from E, <8>̂  (E2 (8)̂  £3) into (£, gi^ £2) <%>„ E3 is unbounded
(and actually only makes sense on the linear tensor products). All this follows from the
counterexample below, kindly communicated to us by C. Le Merdy. Let X be a Banach
space and let K be the algebra of all compact operators on l2. Take £, = C, E2 = R,
and £3 = min(Af) in the sense of [4]. Assume that we have a bounded map

(£, ® E2 <8> E,\ -* (£, 0,, £2) »„ E3.

Then a fortiori we have a bounded map £, 0 ,̂ (£2 <£>,, £3) -»• (£, <g>,, £2) <£>,, £3, and
consequently a bounded map £, ®h £3 <8>h E2 -*• (£, (8),, £2) 0^ £3. But then C®hE3®hR =
K <8>rain £3 completely isometrically (see [4, 14]), hence it is isometric to the (Banach
space theoretic) injective tensor product K®X. Moreover, since R <8>h C is isometric to
K*, by Theorem 1 we have C®llR = K isometrically.

Thus, we would have a bounded map from K®X to (C ®^ R) &,, £3> and this would
imply by (3), that for some constant C, for all v in K(&X, we would have y2(v) < C||u||v.
However, it is well known that this fails at least for some Banach space X (take for
example X — £, and v J^" ea <g> et, so that v represents an isomorphic embedding of £~
into K, then ||t;||v = 1 and y2(v) — *fn, c.f. [27, p. 48] for more on this question).

We now give several consequences and reinterpret Theorem 1, in terms of
factorization.

The following notation will be convenient. Let X be an operator space. We will say
that a linear map «:£,->• £2 between operator spaces factors through X if there are
maps w: E, -> X and v: X -> £2 such that u — vw. We will denote by Tx(El, £2) the
class of all such mappings and moreover we let

yx(u) = inf{|MU|wU

where the infimum runs over all possible such factorizations. Let us denote by K. the
C*-algebra of all compact operators on £2, with its natural "basis" (e,j).

The preceding notation applies in particular when X = K. and gives us the space
TK(EX, £2). In the case X = K, it is easy to check that yK is a norm with which
TK(EX, £2) becomes a Banach space.

We wish to relate the possible factorizations of a map through K. with its possible
factorizations through two specific subspaces of /C, namely the row and column Hilbert
spaces defined by

| ; = 1,2,...)
I i= 1,2,...).

Clearly these subspaces of K, admit a natural completely contractive projection onto
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them (namely x ->• eux is a projection onto R, and x -»• xeu one onto Q. Therefore
we have yK(IdR) = 1 and yK(Idc) = 1. A fortiori any linear map u: £, -> E2 which
factors either through R or through C factors through K. and we have

yjc(") < yR(") and ^(u) < yc(u).

/4 fortiori, if u = v + w for some u: £, -v E2 and w: £, -> £2) we have

Note that if t; and w are of finite rank, then with the obvious identifications, we have

yR(") = IMIE;«»E2 and yc(w) = ||'w||B28,tB..

Thus, from Theorem 1 we deduce:

Corollary 9. Let Ex, E2 be operator spaces. Consider u in E\<& E2 and let
u: Et -> E2 be the associated finite rank operator. Then we have

Corollary 10. Let E be an n-dimensional operator space. Let iE e £* ® E be
associated to the identity of E and let

Then

max{yK{IdE),yK(Ide)}<ttE). (5)

Moreover /i(E) = 1 iff either E = Rn or E = Cn (completely isometrically).

Proof. Note that (5) clearly follows from (4). Assume that fi(E) = 1. Then by
Theorem 1 (and an obvious compactness argument) we have a decomposition
IdE — U1+U2 with

y«(«i) + yc(«2)=i- (6)

In particular, this implies that y2(IdE)—l, (where y2(.) denotes the norm of
factorization through Hilbert space, see e.g. [27, Chapter 2] for more background)
whence that E is isometric to l2 (n = dim£)- Moreover, for any e in the unit sphere of
E we have
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l = Ikll < ll«,(e)ll + ||«2(e)ll < INill + IMI < y«(«i) + yc(«2) < 1-

Therefore we must have

ll«i(e)ll = ll"i II = y*(«i) and ||«2(e)|| = ||«2|| = yc(u2). (7)

Let a, = || M,|| so that (by (6)) a, + a2 = 1. Assume that both a, > 0 and oc2 > 0. We will
show that this is impossible if n > 1. Indeed, then Ut = (a,)"1!*, (i = 1, 2) is an isometry
on t\, such that, for any e in the unit sphere of E, we have e = a, l/,(c) + <x2U2(e). By
the strict convexity of l\, this implies that Ux(e) = U2(e) — e for all e. Moreover, by (7)
we have yR(Ux) = 1 and yc(U2) — 1. This implies that E — Rn and E — Cn completely
isometrically, which is absurd when n > 1. Hence, if n > 1, we conclude that either
a, = 0 or a2 =0 , which implies either yc(IdE)= 1 or yR(IdE) = 1, equivalently either
E = Cn or E = Rn completely isometrically. The remaining case n = 1 is trivial. •

Remark. Alternative proof: if fi(E) = 1, then, using (5) and the relexivity of E, we
see that both for E and E* the identity factors through /C**, therefore E is an injective
operator space as well as its dual. Now, in [33], Ruan gives the complete list of the
injective operator subspaces of finite dimensional C*-algebras (see also [31] for more
on this theme). Running down this list, and using an unpublished result of R. Smith
saying that a finite dimensional injective operator space is completely contractively
complemented in a finite dimensional C*-algebra (see [2]), we find that Rn and Cn are
the only possibilities.

Remark. We suspected that there did not exist an operator space X such that (with
the notation of Corollary 9) we had for any £,, E2 and any ue E\®E2

yx(u) = INI,, (8)

and indeed C. Le Merdy has kindly provided us with an argument, as follows. Let X
be such a space. Let E be an arbitrary finite dimensional subspace of X and let
vE e E* ® X denote the tensor representing the inclusion map vE: E -*• X. Then, by (3)
and (8), y2(vE) < ||y£||p = yx(vE) = 1. By a well known ultraproduct argument (c.f. e.g.
[27, p. 22]), this implies that X is isometric to a Hilbert space. But then, a variant of
the proof of Corollary 10 shows that we must have either X = R or X = C completely
isometrically, and this is absurd.

However, (8) is true up to equivalence if we take for X the direct sum of R and C,
in any reasonable way. For instance, it is easy to check that for any u e E\ ® E2

{u: £, -*• E2 being the associated finite rank operator) we have

l M I ( ) < l l « l l , (9)
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Remark. It follows from Theorem 1 and the projectivity of Haagerup tensor
product that ®,, is also projective, i.e., if qt: F, -*• £, (i = 1, 2) are quotient maps, so is
a\ ® ?2: ^i ®^ ^2 "*• ^i ®/i Ei- Cm t n e other hand, 0,, is not injective. To show this,
consider the identity operator in: Rn n Cn -*• Rn n Cn and the natural (completely
isometric) embedding .;„: Rn D Cn '-*• Rn ®0O Cn. The preceding remark (applied with
w = (jJnY) implies that

However, by [18, p. 912] we have yK(in) > (1 + ^A^)/2, hence by Corollary 9, we have

This proves that the tensor product &,, is not injective.

Remark. The examples in [27, Chapter 10] imply that there are (infinite
dimensional) operator spaces E such that E* ®min E = E* ®^E with equivalent norms,
but E is not completely isomorphic to R or C, and actually (as a Banach space) E is
not isomorphic to any Hilbert space. Thus (in the isomorphic case) the second part of
Corollary 10 does not seem to extend to the infinite dimensional setting without
assuming some kind of approximation property.

We recall that any Hilbert space H (resp. K) can be equipped with a column (resp.
row) operator space, by identifying H (resp. K) with Hc = B(C, H) (resp. with
Kr = B(K*, C)). Any operator space of this form will be called a "column space" (resp.
a "row space").

We will use the following result from [22].

Theorem 11. ([22]) Let E be an operator space such that IdE can be factorized
completely boundedly through the direct sum X = Hc ©, Kr of a column space and a row
space, (i.e., there are c.b. maps u: E -*• X and v: X -*• E such that IdE — vu), then there
are subspaces Et C Hc and E2 C Kr such that E is completely isomorphic to £, ©, E2.
More precisely, if we have ||u||et||v||et < c for some number c, then we can find a complete
isomorphism T: £ - > £ , © , E2 such that ||T||<.i||T"l||(.t < / (c) where / : R+ ->• R+ is a
certain function f

Theorem 12. The following properties of an operator space E are equivalent:

(i) For any operator space F, we have F ®min E = F ®^ E isomorphically.

(ii) E is completely isomorphic to the direct sum of a row space and a column space.

Proof. The implication (i) ^ (ii) is easy and left to the reader. Conversely, assume
(i). Then, a routine argument shows that there is a constant K such that for all F
and all u in F<g>E we have ||w|| < K||u||raill. Let ScE be an arbitrary finite
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dimensional subspace let j s : S -> E be the inclusion map, and let }s e S' ® E be the
associated tensor. Then we have by (9) sups yR(B| c(;s) = sups ||/s||,, < K. By a routine
ultraproduct argument, this implies that the identity of E can be written as in
Theorem 11 with c = K, thus we conclude that E ~ Ex ©, E2 where £, is a row space
and E2 a column space. Note that we obtain an isomorphism T: £ - • £ , © , E2 such
that ||r||c(,||r~'|lci </(*Q. In particular, if E is finite dimensional, we find T such
that

imuir-'ius/diy,). •

We now turn to a result at the root of the present investigation. Let E be an operator
space and let A be a unital operator algebra, for any x in E ® A, we define

5(x) = sup\\o--n(x)\\

where the supremum runs over all pairs (a, 7t) where a: E -*• B{H) is a complete
contraction, n: A -> B(H) a morphism and moreover CT and n have commuting
ranges.

Let E®s A be the completion of E ® A for this norm. We may clearly also view
E ®s A as an operator space using the embedding x -> ©((riIl)(<7 • i)(x) where the
direct sum runs over all pairs as above. Note that the natural inclusion
E<S>t A c OA(E) ®mu A is a complete isometry. In particular, if F is another operator
space, we have a natural completely isometric embedding of E <&,, F into E <g>s OA(F),
which explains the connection of the delta tensor product to the present paper. Then
we may state.

Theorem 13. Consider the linear mapping q: .4 ® £ <g> A -> E® A defined by

q{a ® e ® b) = e ® (ab).

This mapping q defines a complete metric surjection from A<ShE®hAonto E ®t A. More
precisely, for any n and any x in Mn(E®A) with ||x||Mn(£(8i/4) < 1, there is x in
Mn(A ®E®A) with H x I L ^ ^ ^ , < 1 such that IMn ® q(x) = x.

Remark. This statement is due to the second author [30] (who is indebted to C.
Le Merdy for observing this useful reformulation). A proof (somewhat different from
the original one in [36]) can be given following the lines of the above proof of Theorem
1 (here, one considers OA(E) ®raax A as a quotient of the free product OA(E) * A, and
one uses the fact that A.E.A. spans inside 0A(E) * A a subspace completely isometric
to A ®h E ®h A), so we skip it. This result yields simpler proofs and extensions of
several statements concerning nuclear C*-algebras. See the final version of [30] for
more details on this topic.
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2. An alternate approach

Using [9, 10, 25], one can see that the following statement is a dual reformulation
of Theorem 1.

Theorem 18. Let £,, E2 be two operator spaces, and let q>: £, <8> E2 -*• B(H) be a
linear mapping. The following are equivalent:

(ii) For some Hilbert space H, there are complete contractions a,: £, -»• B(H, K),
<x2:E2-+ B(H, H), andj3,: £, -+ B(H, H), P2:E2-+ B(H, 7i), such that

V(x,, x2) € £, x E2 , ® x2) = a1(x1)a2(x2) =

(iii) For some Hilbert space H, there are complete contractions a,: Et -*•
(i — 1,2), with commuting ranges, and contractions V: H -> H and W: H
such that

V(x,, x2) € £, x E2 <p{xx ® x2) = WOX(XX)<J2{X2)V.

Proof. Assume (1). By Remark 2, q> defines a complete contraction into B(H) both
from £, (8)fc £2 and from £2 ®/. ^i • Then (ii) follows from the Christensen-Sinclair
factorization theorem for bilinear maps, extended to general operator spaces by
Paulsen and Smith in [25]. Now assume (ii). Let Hx-H, H2 — H and H3 = H. We
define maps c,: E, i-» B(HX ®H2® H3) and o2: E2 -> B(H, © H2 © H3) using matrix
notation, as follows

t7,(x,) = 0

<o
fo

0

<Xi(*i)

0

0

0

0

0

/*.(*.)

0

0

a2(x2)

0

Then, by (ii) we have

r
lo

0 9

0

0

>(* , fi
0

0
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hence ox,a2 have commuting ranges, and are complete contractions. Therefore if
we let W: Hx © H2 © ff 3 -> H be the projection onto the first coordinate and
K: H ->• H, © i / 2 ®/J3 be the isometric inclusion into the third coordinate, then we
obtain (iii). Finally, the implication (iii) implies (i) is obvious by the very definition of
£1 «>„ E2. •

Alternate proof of Theorem 1 (n — 2). By duality, it clearly suffices to show that
for any linear map <p: £, ® E2 -»• B(H) the norms H^H^E,® E^BCH))

 a n d H'PQIL a r e

equal. But this is precisely the meaning of the equivalence between (i) and (ii) in
Theorem 18. Thus we conclude that Theorem 18 implies Theorem 1 for n = 2. •

In the n-linear case with n > 2, the preceding argument yields the following
statement, which seems rather different from the n-linear version of Theorem 1. To
formulate this we need to introduce a variant of the definitions appearing in (1) and
(2) where we restrict ourselves to the n cyclic permutations of { 1 , . . . , n}. We will say
that an n-tuple of operators (Tx,...,Tn) on H cyclically commute if we have
T, . . . Tn — TaW ... 7^n) for any cyclic permutation a. (When n = 2, this is the same as
ordinary commutation.) Let £ , , . . . , £ „ be operator spaces. We will define the cyclic
analogue of the //-tensor product. We first define the norm as follows.

Vx e £, <g> • • • <g> £„ ||x||,. = sup \\ax • . . . • an(x)\\B(H)

where the supremum runs over all possible H and all n-tuples (CT() of complete
contractions aK\ £,,->• B(H) which cyclically commute (i.e., such that (Tx,...,Tn)
cyclically commute for any choice of T{ in the range of a,). We will denote by
(£, ® £2 • • • ® En)c the completion of £, <8> • • • <8> £„ for this norm, and will consider it as
an operator space in the same way as in (2).

Theorem 19. Let £ , , . . . , £ „ be an n-tuple of operator spaces. Let Yx = Ex®h

E2...<8>hEn and, for k>2, Yk = Ek ®hEk+x... ®h £„ <8>h Ex <g>h... ®A Ek_x. Let Lc =
Yt ©, . . . ©i Yn. Let Qc be the natural completely contractive mapping from Lc to
( £ , ® • • • <S> En)c, and let <S>C: LJ ker(Qc) ->•(£, ® ••• ® En)c be the canonically associated
map. Then Oc is a complete isometry.

We leave the proof, which is an easy modification of the argument for Theorem
18, to the reader. Note that we do not see how to prove Theorem 19 using the ideas of
Section 1 (nor do we see how to prove Theorem 1 when n > 2 using the ideas of
Section 2).

Remark 20. Following [11], we say that a collection of Banach algebras which is
stable by arbitrary direct sums, subalgebras and quotients is a variety. Let V be a
variety formed of unital operator algebras. Of course, we are interested in their
operator space (and not only their Banach space) structure and we use unital
completely contractive homomorphisms as morphisms. One of the advantages of the
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first proof over the second one is that its "categorical principle" can be easily adapted
to compute the analogue of the //-tensor product obtained when one restricts all maps
to take their values into an algebra belonging to some fixed given variety V.

Acknowledgement. We are very grateful to C. Le Merdy for letting us include
several useful remarks and his example showing the non-associativity of the /i-tensor
product.
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