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ON KNOPP’S INEQUALITY FOR CONVEX FUNCTIONS

BY
J. E. PECARIC AND P. R. BEESACK*

ABSTRACT. Knopp’s inequality for convex functions ¢ on an interval
I = [m, M] states that

fn'd>(g(t))dt - ¢<«[, g(!)dt> = H(m,M; ¢)

for an explicit functional H, and all integrable g:[0, 1] — /. In this paper
we give results of this kind in which the integral operator, [, is replaced by
a general isotonic linear functional.

1. Introduction. In 1935, K. Knopp [5, Satz 1] proved a result which can be stated
in the following equivalent form (see also, for example, T. Popoviciu [9, p. 34]):

Let & be a convex functiononl = [m,M], (—% < m <M < «), and let g be a real
Sfunction on [0, 1]such that m = g(t) = M for all t € [0, 1]. Then

<b< folg(t)dt>

<= M - x xX—m _
= max [T + 20 — b0,

1
(1 fo (g (0)dt

In case ¢ is strictly monotonic on /, the bound on the right hand side of (1) is attained
for a single value of x, say x = x,, where

dM) — ¢(m)>}_

2) xo=Am+ (1 — MM, )x=(M—m)_'{M—(d)')7'( [y
- m

If ¢ is concave, the direction of the inequality sign in (1) is reversed. In [5], only the
strictly monotonic case of (1), (2) was stated explicitly. (In [7], (1) is (incorrectly)
stated by requiring that g be nondecreasing.) The special case ¢ (x) = x* of (1) gives
the well-known inequality of G. Gruss [4]. See also D. S. Mitrinovi¢ [7, p. 70].

In this paper we shall give a generalization of this result in Section 2, and some
applications or examples of the basic inequality in Section 3.

2. Main result. In the sequel E will denote a nonempty set, L a class of real functions
on E containing the chararacteristic function 1 and A a positive linear functional over
L satisfying A(1z) = 1. The following result was given in [3, Lemma 1].
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LEMMA 1. Let &(t) be convex on I = [ImM] (—o» < m < M < x». Jfge L,
g(E) C I and &(g) € L, then

A) A($(8)) = {(M — A(g))db(m) + (A(g) — mSM)}/ (M — m).

REMARK 1. The right-hand side of (3) is a nondecreasing function of M and non-
increasing function of m. This follows by writing this expression in either of the two
forms

M) — M) —
SO = S _ 1y SO = bm)

lm) + (A(g) = m)—— — .

and noting that m = A(g) = M, while (b(M) — &(m))/(M — m) is a nondecreasing
function of both M and m by the convexity of ¢.
We now give our basic generalization of Knopp’s inequality (1).

THEOREM 1. Let J be an interval such that J O &(1). If F(u,v) is a real function
defined on J X J, non-decreasing in u, then

X —m

- M- x
4) FlA(d(g)), d(A(g)] = ‘glllf;lfm F[M — m¢(m) + M= md)(M), d>(x)]

(= e?SXHF[%(m) + (1= 0)d(M), b(Om + (1 — O)M)]).

The right-hand side of (4) is a nondecreasing function of M and a nonincreasing
Sfunction of m.

PrROOF. By (3) and the nondecreasing character of F(.,y) we have

M- A A -
FIA@(@). d(A@N = F| 2 g m) + S 1), gae)]
M—-m M—-m
= max d(x;m,M,d),
XE[m,M]

where
d(x;m,M,d) = FI{(M — x)b(m) + (x = m)S(M)}/ (M — m), d(x)],
proving the first part of (4). As in Remark 1 we have form = x,and m <M' =M,

{M = x)b(m) + (x — m)SM)}/ (M — m) = {(M' — x)db(m)
+ (x = m)SM"H}/(M' — m).

Hence, by the nondecreasing character of F(.,y),
5) dix;m,M,d) = d(x; m,M', d), m=x, m<M =M.
By (5) and the inclusion [m,M'} C [m,M], it follows that

max d(x;m,M,d) = max d(x;m,M',d) = max d(x;m,M',d).

xXE|m,M] XE[m,M] xE€|m,M')
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Similarly we can prove that

max d(x;m,M,d) = max d(x;m',M,d) if m =m<M.
I

xE[mM] xE|m' .M

Finally, the second form of the right side of (4) follows at once from the change of
variable 0 = (M — x)/(M —m),sox=0m + (1 — )M with0 =0 = 1.

In the same way (or more simply just by replacing F by —F in the above theorem)
we can prove

THEOREM 1'. Under the same hypotheses as Theorem 1, except that F is non-
increasing in its first variable, we have

(4 FlA($(9), d(A(gN] = EnllinM] d(x; m,M,d) (= erenl(i)n” F[0d(m)

+ (1 = 0)dM), d(Om + (1 — O)M))).
The right-hand side of (4) is a nonincreasing function of M and a nondecreasing
Sfunction of m.

3. Some applications. First, we shall show that Lemmas 2 and 3 from [3] are simple
consequences of Theorems 1 and 1'.

COROLLARY 1. Let &(x) be convex on I = [m,M] (= < m < M < ), such that
&"(x) = 0 with equality for at most isolated points of I (so that & is strictly convex
on I). Suppose that either (i) &(x) > 0 for all x € I, or (ii) d(x) < 0 for all x € 1.
Ifg €L, g(E) Cland d(g) €L, then

(6) A(d(g)) = Ab(A(g)
holds for some N > 1 in case (i) or N € (0, 1) in case (ii).

PrOOF. For case (i) we apply Theorem 1 and for case (ii) we apply Theorem 1’, both
with F(x,y) = x/y, and J = (0,%). We proceed only with case (i) since the proof in
case (ii) is essentially the same. The inequality (4) becomes

(7 AD(g)/d(A(g)) = ,Q,f’fmf(x; m,M, ),
where ‘ ‘
f@x) =f;m, M, &) = {M — x)d(m) + (x — m)SM)}/(M — m)d(x).

Now, f'(x) = G(x)/d(x), where G(x) = pd(x) — (b(m) + w(x — m))$'(x). The
equation G(x) = 0, i.e.

(®) po(x) = ¢'(x)(d(m) + p(x — m)) = 0,
has exactly one solution since—in case (i)—

G'(x) = —{M = )b(m) + (x = m)SbM)}d"(x)/(M — m) <0,
so that G is a decreasing function. Furthermore,

G(m)GM) = d(m)bM)(n — ¢'(m)(p — ¢'(M)) <0,
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s0 G(x) = 0 holds for a unique x = x(m, M). Since ¢ is convex and positive, it follows
that f(x) = 1, with equality for x = m and M. Hence, the maximum value on the
right-hand side of (7) is attained for x = x.

REMARK 2. More precisely, a value of A (depending only on m, M, &) for (6) may
be determined as follows: set @ = (G(M) — d(m))/(M — m). If . = 0 let x = X be
the unique solution of equation ¢'(x) = 0 (m < ¥ < M); then A = &(m) /(%) suffices
for (6). If p # 0, let x = X be the unique solution in (m, M) of the equation (8), then

= u/d'(x) suffices for (6).

COROLLARY 2. If & is differentiable and &' is strictly increasing on 1, then

)] A(d(g)) =N + d(A(g)
for some N\ satisfying 0 < A < (M — m)( — &'(m)), where w is defined as in
Corollary 1.

PrROOF. In Theorem 1, take F(x,y) = x — y. Then (4) becomes

A(b(g)) — d(A(g)) = max, Y(x; m,M, &),

where
Y(x) = Y(x; m,M,d) = {(M — x)d(m) + (x = m)GMMIM — m)™' — b(x).

We have Y'(x) = p — &'(x) strictly decreasing on I with Y'(x) = O for a unique x €
(m,M). Hence Y(x) has its maximum value for x = x.

REMARK 3. More precisely, A may be determined for (9) as follows: let x = x be the
unique solution of the equation ¢'(x) = p (m < X < M); then

A= b(m) — &(x) + p(x — m)
suffices in (9).

REMARK 4. Corollaries 1 and 2 (i.e. Lemmas 2 and 3 from [3]) are generalizations
of results from [2] and [8]. In the case of Corollary 1, the additional cases that either
d(m) = 0 or (M) = 0 were also dealt with in [3]. The result (1), (2) of Knopp is the
special case A(g) = [, gdt of Corollary 2.

For our next result suppose that {s, x:/ — R are continuous and strictly monotonic

and that yi(g), x(g) € L for some g € L. As in [3], we define the generalized mean
with respect to the operator A and ¥, by

My(g;A) = ¥ '(AW(g)), gEL.
COROLLARY 3. Under the above assumptions we have
(10) F(My(g;A),M,(g;A))
= ,max FIy~ ' (80(m) + (1 — 8)6(M)), X~ '(Ox(m) + (1 — 8)x(M))]
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provided s is increasing, $Ox ' is convex, and F(u, v) is a real function defined on
I X I, nondecreasing in u.

PROOF. Suppose first that y is increasing on 1. Set F,(x, y) = Fy~ ' (x), ¥~ '(y)),
& (x) = P(x '(x)), g, = xOg, m, = x(m), M, = x(M). Then the conclusion follows
from Theorem 1 applied to F, ¢, g,. If x is decreasing on /, we need only define m,
= x(M) and M, = x(m). Then (4) now implies

FM,(g; A), M,(g; A))
= ,max FQU™'(0(M) + (1 — 0)(m)), x~'(0x(M) + (1 — 0)x(m))]

and this is equivalent to (10).

REMARK 5. The special case F(x,y) = x — y, x(x) =x, and A(g) = 1o gdt of (10)
yields the inequality

1 1
(11 lb_'(j ll!(g)dt) - f gdt = max (b~ '(BY(m) + (1 — O)B(M))
0 0 6€(0.1)
— (Om + (1 — 0)M)).

This inequality is a companion inequality to (1) and was also proved by K. Knopp
[S, Satz 2] under the assumptions ' > 0, ¢" > 0 (or ¢’ <0, " <0)onl = [m,M].
In this case, the maximum value on the right hand side of (11) is attained for the value

0 = 1w — womr™ fuon) ~ o] @ (FEE=E)

as was shown in [5].

REMARK 6. Corollary 3 is a generalization of a result of E. Beck [1], who considered
quasiarithmetic mean values M, (x;a) = ¢~ '(2] a;db(x,)). See also [6, pp. 135—136].
For F(x,y) = x/y or x — y, Corollary 3 also gives generalizations of some results for
means of Specht, Cargo and Shisha, and Mond and Shisha. See, for example Beck [1],
[6, pp. 103—111], or [7, pp. 79—81]. Also, Corollary 3 is a generalization of in-
equalities of Schweitzer, Pélya and Szego, Kantorovi¢, and Greub and Rheinboldt.
See [7, pp. 59—-61].
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