Canad. Math. Bull. Vol. 45 (3), 2002 pp. 349-354

Very Ample Linear Systems on Blowings-Up at General Points of Projective Spaces

Marc Coppens

Abstract. Let \mathbf{P}^n be the *n*-dimensional projective space over some algebraically closed field *k* of characteristic 0. For an integer $t \ge 3$ consider the invertible sheaf O(t) on \mathbf{P}^n (Serre twist of the structure sheaf). Let $N = \binom{t+n}{n}$, the dimension of the space of global sections of O(t), and let *k* be an integer satisfying $0 \le k \le N - (2n+2)$. Let P_1, \ldots, P_k be general points on \mathbf{P}^n and let $\pi: X \to \mathbf{P}^n$ be the blowing-up of \mathbf{P}^n at those points. Let $E_i = \pi^{-1}(P_i)$ with $1 \le i \le k$ be the exceptional divisor. Then $M = \pi^* (O(t)) \otimes O_X(-E_1 - \cdots - E_k)$ is a very ample invertible sheaf on *X*.

In their paper [5], J. d'Almeida and A. Hirschowitz prove the following theorem:

Theorem of d'Almeida and Hirschowitz Let t, k be integers satisfying $t \ge 2, 0 \le k \le {\binom{t+2}{2}} - 6$ and let P_1, \ldots, P_k be general points on \mathbf{P}^2 . Let $\pi: X \to \mathbf{P}^2$ be the blowing-up of \mathbf{P}^2 at P_1, \ldots, P_k and let $E_i = \pi^{-1}(P_i)$ be the exceptional divisors. Then $M = \pi^*(O_{\mathbf{P}^2}(t)) \otimes O_X(-E_1 - \cdots - E_k)$ is very ample on X.

The bound on k is natural. Indeed dim $\left(\Gamma\left(\mathbf{P}^{2}, O_{\mathbf{P}^{2}}(t)\right)\right) = \binom{t+2}{2}$ hence for the invertible sheaf M as in the previous theorem (but only assuming $k \leq \binom{t+2}{2}$) one finds dim $\left(\Gamma(X, M)\right) = \binom{t+2}{2} - k$. Since X is a surface one expects M is not very ample if dim $\left(\Gamma(X, M)\right) \leq 5$ (most surfaces cannot be embedded in \mathbf{P}^{4}).

Let Y be a smooth *n*-dimensional projective variety, and let L be a very ample invertible sheaf on Y with dim $(\Gamma(Y;L)) = N + 1$. Inspired by the theorem of d'Almeida and Hirschowitz we define:

Very Ampleness Property for Blowings-Up of (Y, L) *at k General Points* Let P_1, \ldots, P_k be general points on Y, let $\pi: X \to Y$ be the blowing-up of Y at P_1, \ldots, P_k and let $E_i = \pi^{-1}(P_i)$. Then $M = \pi^*(L) \otimes O_X(-E_1 - \cdots - E_k)$ is very ample on X.

Optimal Very Ampleness Property for Blowings-Up of (Y, L) **at General Points** The very ampleness property for blowings-up of (Y, L) at k general points holds that for all integers $k \le N - (2n + 1)$.

The natural general problem becomes: find sufficient conditions on (Y, L) such that the optimal very ampleness property for blowings-up of (Y, L) at general points holds.

From now on we assume the ground field has characteristic zero.

Received by the editors January 24, 2001.

AMS subject classification: 14E25, 14N05, 14N15.

Keywords: blowing-up, projective space, very ample linear system, embeddings, Veronese map.

[©]Canadian Mathematical Society 2002.

Let *Y* be an arbitrary smooth projective variety *Y* and let *L'* be a very ample invertible sheaf on *Y*. Let $L \cong L'^{\otimes a}$ for some $a \ge 3 \dim(Y) + 1$. In [4] it is proved that the optimal very ampleness property holds for blowings-up of (Y, L) at general points. In that paper we also consider the case of *K*3 surfaces *Y*. In the case of *K*3-surfaces we obtain non-trivial examples not satisfying the optimal very ampleness property for blowings-up at general points. Recently the very ampleness property for blowings-up at general points is also studied for other special surfaces: for rational surfaces in [2] and [6], for ruled surfaces in [1] and [9] and for abelian surfaces in [8].

In this paper we study the very ampleness property for blowings-up at general points for the case $Y = \mathbf{P}^n$ $(n \ge 3)$ extending the theorem of d'Almeida and Hirschowitz to all projective spaces. The very ample invertible sheafs are $O_{\mathbf{P}^n}(t)$ with $t \ge 1$. Of course for t = 1 there is nothing to consider while the case t = 2 is very bad because of the following argument. Assume $n \ge 3$ and let P_1, P_2 be two different points on \mathbf{P}^n . Let *L* be the line in \mathbf{P}^n joining P_1 and P_2 ; let $P \in L$ with $P \notin \{P_1, P_2\}$. Let *Q* be a quadric in \mathbf{P}^n containing P_1 and P_2 . In case $P \in Q$ then $L \subset Q$, hence using quadrics in \mathbf{P}^n containing P_1 and P_2 one cannot separate 2 general points on *L*. Let $\pi: X \to \mathbf{P}^n$ be the blowing-up of \mathbf{P}^n at P_1 and P_2 ; let $E_i = \pi^{-1}(P_i)$ for i = 1, 2. Then this implies $M = \pi^* (O_{\mathbf{P}^n}(2)) \otimes O_X(-E_1 - E_2)$ is not very ample on *X*.

So now assume $n \ge 2$, $t \ge 3$ and $L = O_{\mathbf{P}^n}(t)$ on $Y = \mathbf{P}^n$. In [3] we proved the very ampleness property for blowings-up at k general points in case $k \le \binom{n+t}{t} - (n-1)(n+1) - 4$. Now we prove the property using the optimal bound on k.

Theorem (Optimal Very Ampleness Property for Blowings-Up of Projective Spaces at General Points) Let n, t, k be integers with $n \ge 2$, $t \ge 3$ and $0 \le k \le {\binom{n+t}{t}} - (2n+2)$. Let P_1, \ldots, P_k be general points on \mathbf{P}^n ; let $\pi: X \to \mathbf{P}^n$ be the blowing-up of \mathbf{P}^n at P_1, \ldots, P_k and let $E_i = \pi^{-1}(P_i)$ be the exceptional divisors. Then the invertible sheaf $M = \pi^* (O_{\mathbf{P}^n}(t)) \otimes O_X(-E_1 - \cdots - E_k)$ is very ample on \mathbf{P}^n .

The proof of the theorem follows the steps of the proof of Theorem 1 in [4]. We refer to that proof for some of the details; hence this paper is dependent on [4].

1 Proof of the Theorem

Consider $v: \mathbf{P}^n \to \mathbf{P}^N$ with $N = \binom{n+t}{t} - 1$ the *t*-th Veronese embedding of \mathbf{P}^n and let *Y* be the image, so $Y \subset \mathbf{P}^N$. We also consider P_1, \ldots, P_k as general points on *Y*. We write **P** to denote the set $\{P_1, \ldots, P_k\}$ (both on \mathbf{P}^n and on *Y*); we consider **P** as a reduced closed subscheme. We write *P* to denote the linear span of $\mathbf{P} \subset \mathbf{P}^n$. (By definition, if *Z* is a closed subscheme of some projective space \mathbf{P}^a , then the linear span $\langle Z \rangle$ is the intersection of all hyperplanes in \mathbf{P}^a containing *Z* as a subscheme.) From (1.3.4) in [4] we know we have to prove the following statement: For all curvilinear subschemes $Z \subset Y$ of length k + 2 containing **P** one has dim $(\langle Z \rangle) = \dim(P) +$ 2 = k + 1. This is equivalent to the following statement on \mathbf{P}^n : For all curvilinear subschemes $Z \subset \mathbf{P}^n$ of length k + 2 containing **P**, one has dim $(\Gamma(\mathbf{P}^n; I_Z(t))) =$ $\binom{t+n}{t} - k - 2$. (Here $I_Z(t) = I_Z \otimes O_{\mathbf{P}^n}(t)$ and I_Z is the sheaf of ideals of *Z*.) Let \mathbf{P}_t be the complete linear system of hypersurfaces of degree *t* on \mathbf{P}^n (*i.e.*, the complete linear subschemes *Z* we need to prove that Z imposes k + 2 independent conditions on \mathbf{P}_t . We write $\mathbf{P}_t(Z)$ to denote the linear subsystem of hypersurfaces containing Z and we need to prove $\dim(\mathbf{P}_t(Z)) = \binom{t+n}{t} - k - 3$.

2

We are going to use induction on k. Since \mathbf{P}_t is very ample on \mathbf{P}^n there is nothing to prove in case k = 0. So assume k > 0. Assume there exists for \mathbf{P} general as above, a curvilinear subscheme Z of \mathbf{P}^n containing \mathbf{P} such that Z does not impose independent conditions on \mathbf{P}_t . (Of course we also consider Z as a curvilinear subscheme of Y.) Let $T' \subset \text{Hilb}^{k+2}(\mathbf{P}^n) \times (\mathbf{P}^n)^k$ be the closure of the set of points $(Z; P_1, \ldots, P_k)$ with $P_i \neq P_j$ for $i \neq j$ and such that Z is a curvilinear subscheme of length k+2 containing P_1, \ldots, P_k such that dim $(\mathbf{P}_t(Z)) > {t+n \choose t} - (k+3)$. Let T be an irreducible component T' dominating $(\mathbf{P}^n)^k$ (such a component exists by assumption), so dim $(T) \geq nk$. Let G(N-n+1;N) be the Grassmannian of (N-n+1)-planes in \mathbf{P}^N (remember $Y \subset \mathbf{P}^N$) and consider $I \subset T \times G(N - n + 1; N)$ with $((Z; P_1, \ldots, P_k); \Lambda) \in I$ if and only if $\Lambda \supset \langle Z \rangle$ in \mathbf{P}^N (so here we consider $Z \subset \mathbf{P}^N$).

Since dim $(\langle Z \rangle) \leq k$, $\langle Z \rangle \supset P$, dim(P) = k - 1 and $P \cap Y = \mathbf{P}$ (the last two facts are true because \mathbf{P} is a general set of k points on Y), we find dim $(\langle Z \rangle) = k$. Therefore the fibers of the projection $I \to T$ have dimension (N - n + 1 - k)(n - 1), and hence dim $(I) \geq nk + (N - n + 1 - k)(n - 1)$. We consider the projection $\tau: I \to G(N - n + 1; N)$. For $\Lambda \in \tau(I)$ we consider the scheme theoretic intersection $\Lambda \cap Y$; we denote by $Z(\Lambda) \subset \mathbf{P}^n$ the associated closed subscheme on \mathbf{P}^n (of course $Z(\Lambda) \cong \Lambda \cap Y$).

3

Claim For $\Lambda \in \tau(I)$ general $\Lambda \cap Y$ is not a smooth curve.

Assume for some $\Lambda \in \tau(I)$ the scheme $\Lambda \cap Y$ is a smooth curve (since dim (Λ) = N - n + 1 we know dim $(\Lambda \cap Y) \ge 1$; hence this assumption is equivalent to $\Lambda \cap Y$ being a smooth curve for a general $\Lambda \in \tau(I)$). Let g be the linear system on $\Lambda \cap Y$ induced by $\Gamma(Y, O_Y(1))$. It is the same as the linear system on $Z(\Lambda)$ induced by \mathbf{P}_t . Since $Z(\Lambda)$ is a complete intersection curve (scheme theoretical intersection of n-1hypersurfaces of degree t) it is a complete linear system on $Z(\Lambda)$. Let $V_{k+2}^{k+1}(g)$ be the space of effective divisors of degree k + 2 on $Z(\Lambda)$ imposing only k + 1 conditions on g, then elements of $\tau^{-1}(\Lambda)$ give rise to elements Z belonging to a subvariety V of $V_{k+2}^{k+1}(g)$ with dim $(V) \ge k - n + 1$ (see [4, the proof of (1.2.1)]). Assume, for the next arguments, that $k \ge n + 1$; at the end the conclusion will be true for k < n + 1too (and we do not use the induction hypothesis yet). Using a result from the theory of linear systems on smooth curves, it is explained in [4] that Z contains a closed subscheme *S* (hence an effective divisor on *Z*(Λ)) of length *m* + 2 \leq 3*n* + 2 such that $S \in V_{m+2}^{m+1}(g)$. Since Z is obtained from a general element of $\tau^{-1}(\Lambda)$ and Λ is a general element of $\tau(I)$, we find Z comes from a general element of T. Hence Z contains a set of k general points of \mathbf{P}^n , and it follows that S contains a set of m general points of \mathbf{P}^n . So, we obtain the following situation. There is an integer $m \leq 3n$ such that for *m* general points P_1, \ldots, P_m of \mathbf{P}^n there exists a curvilinear subscheme $S \subset \mathbf{P}^n$ of length m + 2 with $S \supset \{P_1, \ldots, P_m\}$ and dim $(\mathbf{P}_t(S)) \leq \binom{n+t}{t} - m - 4$ (*i.e.*, *S* does not impose m + 2 independent conditions on \mathbf{P}_t). This situation also holds if k < n + 1! The claim will be proved by deducing a contradiction to this statement. This contradiction will be obtained in Section 5 using a lemma proved in Section 4.

4

Lemma Let a, t be integers at least 1, and let $W \subset \mathbf{P}^a$ be a curvilinear closed subscheme of length $x \leq a+3$ with $\langle W \rangle = \mathbf{P}^a$. Let \mathbf{P}_t be the linear system of hypersurfaces of degree t in \mathbf{P}^a . If $t \geq 3$, then W imposes independent conditions on \mathbf{P}_t .

Proof It is possible to make a chain of subschemes

$$\emptyset = W_0 \subset W_1 \subset W_2 \subset \cdots \subset W_X = W$$

such that W_i has length i and either $\langle W_i \rangle \cap W = W_i$ or $W_{i-1} \subset \langle W_i \rangle \cap W$. It is enough to prove that for each $0 \le i < x$ there exists $F \in \mathbf{P}_t$ with $F \cap W = W_i$.

Assume $\langle W_{i+1} \rangle = \langle W_i \rangle$. Take $H \in \mathbf{P}_1$ general with the condition $H \supset \langle W_i \rangle$. Then, since $\langle W_i \rangle \cap W = W_i$, one has $H \cap W = W_i$. For $Q \in \mathbf{P}_{t-1}$ general one has $Q \cap W = \emptyset$. Take $F = H + Q \in \mathbf{P}_t$; then $F \cap W = W_i$.

Next assume $\langle W_{i+1} \rangle = \langle W_i \rangle$ (hence $i \ge 1$) but $\langle W_i \rangle \ne \langle W_{i-1} \rangle$. Let $P \in W_i$ be defined by $O_{W_i, \mathbf{P}} \ne O_{W_{i-1}, \mathbf{P}}$ and take $H_1 \in \mathbf{P}_1$ general with the condition $H_1 \supset \langle W_{i-1} \rangle$. Since $\langle W_{i-1} \rangle \cap W = W_{i-1}$ we find $H_1 \cap W = W_{i-1}$. Take $H_2 \in \mathbf{P}_1$ general with the condition $P \in H_2$. Then $H_2 \cap \mathbf{P} = \{P\}$ and, since W is curvilinear, it follows $(H_1 + H_2) \cap W = W_i$. Take $Q \in \mathbf{P}_{t-2}$ general; hence $Q \cap W = \emptyset$. For $F = H_1 + H_2 + Q \in \mathbf{P}_t$ we obtain $F \cap W = W_i$. Finally assume $\langle W_{i+1} \rangle = \langle W_i \rangle =$ $\langle W_{i-1} \rangle$ (hence $i - 1 \ge 1$). Since $\langle W \rangle = \mathbf{P}^a$ and W has length at most a + 3, it follows that $\langle W_{i-2} \rangle \ne \langle W_{i-1} \rangle$. Let $P \in W_i$ be as before and let $P' \in W_{i-1}$ with $O_{W_{i-1},P'} \ne O_{W_{i-2},P'}$. Take $H_1(H_2; H_3) \in \mathbf{P}_1$ general with the condition $H_1 \supset \langle W_{i-2} \rangle$ (resp. $P' \in H_2$, $P \in H_3$). Since $H_1 \cap W = W_{i-2}$ and W is curvilinear we find $(H_1 + H_2 + H_3) \cap W = W_i$. Take $Q \in \mathbf{P}_{t-3}$ general; hence $Q \cap W = \emptyset$. Let $F = H_1 + H_2 + H_3 + Q \in \mathbf{P}_t$; then $F \cap W = W_i$.

ľ		•	
۲	-		
		L	

Now we prove that the situation at the end of Section 3 can not occur.

In case $m \le n+1$, since P_1, \ldots, P_m are general points of \mathbf{P}^n , dim $(\langle P_1, \ldots, P_m \rangle) = m-1$ and so dim $(\langle S \rangle) = a \ge m-1$ while *S* has length $m+2 \le a+3$. So we apply the lemma taking W = S and $\mathbf{P}^a = \langle S \rangle$.

So assume m > n+1. We write [S] to denote the cycle associated to the subscheme S (formal Z-linear combination of the points of S with coefficients at P equal to the multiplicity of S at P). Let $S' \subset S$ be a closed subscheme of S of length n such that $S' \supset \{P_1, \ldots, P_{n-2}\}$ and $[S] - [S'] = P_{n-1} + \cdots + P_m$. Since dim $(\langle P_1, \ldots, P_{n-2} \rangle) =$

352

Very Ample Linear Systems

n-3, we find $n-3 \leq \dim(\langle S' \rangle) \leq n-1$ and so $\langle S' \rangle \cap \{P_1, \ldots, P_m\}$ contains at most n points. Let $S_0 = S \cap \langle S' \rangle$. Since P_1, \ldots, P_m are general points of \mathbf{P}^n , the scheme S_0 has length at most n+2. If S_0 has length n+2, then $S_0 \cap \{P_1, \ldots, P_m\}$ contains n points; hence $\dim(\langle S_0 \rangle) = n-1$. If S_0 has length n+1, then $S_0 \cap \{P_1, \ldots, P_m\}$ contains at least n-1 points; hence $\dim(\langle S_0 \rangle) \geq n-2$. So in all cases we can apply the lemma to $W = S_0$ and $\mathbf{P}^a = \langle S_0 \rangle$. Hence S_0 imposes independent conditions on \mathbf{P}'_t (here \mathbf{P}'_t is the linear system in $\langle S_0 \rangle$). Using suited cones in \mathbf{P}^n on elements of \mathbf{P}'_t we find $\emptyset = W_0 \subset W_1 \subset \cdots \subset W = S_0$ as in the proof of the lemma and $F_i \in \mathbf{P}_t$ (here \mathbf{P}_t is the linear system in \mathbf{P}^n) with $F_i \cap S = W_i$.

353

Let $H \in \mathbf{P}_1$ be a general hyperplane in \mathbf{P}^n with the assumption $H \supset \langle S_0 \rangle$. Since $\langle S_0 \rangle \cap S = S_0$, we find $H \cap S = S_0$. Since $[S] - [S_0] \leq P_{n-1} + \cdots + P_m$ it is enough to prove that the reduced closed subscheme associated to $P_{n-1} + \cdots + P_m$ imposes independent conditions on \mathbf{P}_{t-1} (linear system of \mathbf{P}^n). Since P_{n-1}, \ldots, P_m are m - n + 2 general points of \mathbf{P}^n , it is enough to prove dim $(\mathbf{P}_{t-1}) \geq m - n + 1$. But $t - 1 \geq 2$; hence dim $(\mathbf{P}_{t-1}) \geq \dim(\mathbf{P}_2) = \binom{n+2}{2} - 1$. Since $m \leq 3n$ and $n \geq 2$, we find $\binom{n+2}{2} - 1 \geq m - n + 1$. This gives a contradiction to the statement at the end of Section 3, finishing the proof of the claim.

6

Take $(Z; P_1, \ldots, P_k) \in I$ general, and assume $\langle Z \rangle \cap Y$ is a 0-dimensional subscheme of *Y*. In the case $\langle Z \rangle \cap Y$ is a curvilinear subscheme, then, using Bertini's Theorem as in [4, (1.2.3.1)], we find a contradiciton to the claim in Section 3. So $\langle Z \rangle \cap Y$ is not curvilinear but then, as explained in [4, (1.2.3.2)], we find a contradiction to the induction hypothesis on *k*. So we conclude dim $(\langle Z \rangle \cap Y) \ge 1$.

7

Since *P* is a hyperplane in $\langle Z \rangle \subset \mathbf{P}^N$ and $P \cap Y = \mathbf{P}$ is finite, we find $\dim(\langle Z \rangle \cap Y) = 1$. Let Γ be a 1-dimensional irreducible component of $\langle Z \rangle \cap Y$. Let $\Gamma \cap P$ (a hyperplane section of Γ) be $\{P_1, \ldots, P_b\}$. Then $\dim(\langle \Gamma \cap P \rangle) = b - 1$, and hence $\dim(\langle \Gamma \rangle) = b$ and $\deg(\Gamma) = b$, so Γ is a rational normal curve on *Y*. On \mathbf{P}^n we find a smooth rational curve of degree b/t which is also denoted by Γ . So we obtain the following situation. There are integers d, t with $d \ge 1, t \ge 3$ such that for P_1, \ldots, P_{dt} general points in \mathbf{P}^n there exists a smooth rational curve $\Gamma \subset \mathbf{P}^n$ of degree d containing P_1, \ldots, P_{dt} . We are going to prove that this is impossible, finishing the proof of the theorem.

8

Let $H_{d,n}$ be the Hilbert scheme of smooth rational curves of degree d in \mathbf{P}^n . We are going to use the well-known fact that $\dim(H_{d,n}) = nd + d + n - 3$. This can be proved in an elementary way using dimension arguments for the space of linear systems on \mathbf{P}^1 . It also follows from the following considerations.

Let Γ be a smooth rational curve of degree d in \mathbf{P}^n , and let N_{Γ} be the normal

mpla Lingar Suctance

bundle. From Corollary (11.3) in [7] it follows that $h^1(N_{\Gamma}) = 0$. Then from Corollaries (8.5) and (8.6) in [7] it follows that the dimension of $H_{d,n}$ at Γ is equal to $h^0(N_{\Gamma})$. It follows from the computations at the beginning of Chapter 11 in [7] that $h^0(N_{\Gamma}) = nd + d + n - 3$, proving the statement.

Consider the incidence variety $I_{d,n}^b \subset (\mathbf{P}^n)^b \times H_{d,n}$ defined by $(P_1, \ldots, P_b; \Gamma) \in I_{d,n}^b$ if and only if $P_i \in \Gamma$ for $1 \leq i \leq b$, and let $\pi_1 \colon I_{d,n}^b \to (\mathbf{P}^n)^b$ and $\pi_2 \colon I_{d,n}^b \to H_{d,n}$ be the projection morphisms. The fibers of π_2 have dimension b, hence dim $(I_{d,n}^b) =$ nd+d+n-3+b. We found that π_1 is dominating, and hence $nd+d+n-3+b \geq nb$, *i.e.*, $(n-1)b \leq (n+1)d+n-3$. Remember b = td; hence $(n-1)td \leq (n+1)d+n-3$. Since $t \geq 3$, we obtain $3(n-1)d \leq (n+1)d+n-3$. In the case n = 2, this inequality becomes $3d \leq 3d - 1$, a contradiction. If $n \geq 3$, then $2(n-1) \geq n+1$, and hence we obtain $(n-1)d \leq n-3$, *i.e.*, $n(d-1) \leq d-3$ and so $3(d-1) \leq d-3$, a contradiction.

References

- A. Biancofiore, On the hyperplane sections of ruled surfaces. Lecture Notes in Math. 1417(1988), 52–66.
- [2] S. Chauvin and C. De Volder, Some very ample and base point free linear systems on generic rational *surfaces*. Preprint, 2000.
- M. Coppens, Embeddings of general blowing-ups at points. J. Reine Angew. Math. 469(1995), 179–198.
- [4] _____, Very ample linear systems on blowings-up at general points of smooth projective varieties. Pacific J. Math., to appear.
- [5] J. d'Almeida and A. Hirschowitz, Quelques plongements non-spéciaux de surfaces rationelles. Math. Z. 211(1992), 479–483.
- [6] C. De Volder, Very ampliness and Gauss maps of linear systems on blowings-up of projective varieties. Ph.D. thesis, Gent, 2000.
- [7] E. Sernesi, *Topics on families of projective schemes*. Queen's Papers in Pure and Appl. Math. 73(1986), Queen's University, Kingston, Ontario.
- [8] T. Szemberg and H. Tutaj-Gasinska, *Embeddings of general blowups of abelian surfaces*. Manuscripta Math., to appear.
- [9] _____, General blowups of ruled surfaces. Preprint, 2000.

Katholieke Hogeschool Kempen Departement Industrieel Ingenieur en Biotechniek Campus H. I. Kempen Kleinhoefstraat 4 B 2440 Geel Belgium

email: marc.coppens@khk.be

354