
SOME REMARKS CONCERNING (/, dn) AND [F, dn] 
SUMMABILITY METHODS 

C. F. KOCH 

1. Introduction. In this paper we note a simple connection between the 
(/, dn) method of summability (defined by Smith (8)) and a composition of 
[F, dn] (defined by Jakimovski (4)) and Sonnenschein methods (9; 10). This 
connection is then used to supply some sufficient conditions for the regularity 
of (/, dn) methods by using known regularity conditions for various [F, dn] 
and Sonnenschein methods. Finally, the connection is further exploited to 
obtain information about the Lebesgue constants for a certain class of [F, dn] 
methods by investigating related (/, dn) methods. 

2. Definitions and the regularity theorem. The (/, dn) method of 
summability is defined by Smith (8) essentially as follows. Let/(s;) be a non-
constant entire function satisfying / ( l ) = 1 and let {dn} be a sequence of 
complex numbers satisfying dt ^ — 1, dt ^ — /(0) (i ^ 1). Then the equations 

aoo = 1, aok = 0 (k 9e 0), 

(2.D n M ± i . i ^ «.ED 
i=\ i i - t i t k=o 

define the elements of the sequence to sequence matrix (ank). Note that a 
slight notational change has been made in Smith's definition by requiring 
t h a t / ( l ) = 1. 

The [F, dn] method of summability is defined by Jakimovski (4) as the 
special case of the (/, dn) method in which f(z) = z. Thus the [F, dn] sum
mability matrix (Pnj) is defined by 

Poo = 1, Pok = 0 (k* 0), 

n f if = £ PnA 
Since f(z) is entire, so is (f(z))j, and as such has an absolutely convergent 

power series expansion (f(z))j = J2k = ofjkZk valid for all complex z. We 
formally replace zj in the Jakimovski definition by the power series expansion 
of (f(z))j to obtain Y/j=oPnj Hk = ofjk^k as a double series representation of 
the left side of (2.1). This double series converges absolutely since Y,k = ofjkZk 
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is absolutely convergent for all j and the summat ion on j is finite. T h u s i t 
may be rearranged to form the power series 

(2.2) Êîa.^nf^. 
Then , comparing (2.1) and (2.2), the uniqueness of power series representa t ions 

guarantees t h a t ank = 2^=o Pnjfjk for all n and k. 
T h e Sonnenschein method of summabi l i ty was defined by Sonnenschein 

(9; 10) as follows. L e t / ( s ) be analyt ic for \z\ < R, where R > 1 and such t h a t 
/ ( l ) = 1. T h e n the element f jk in the Sonnenschein summabi l i ty matr ix is 
defined to be the coefficient of zk in the power series expansion of (f(z))j, for 
j ^ 0, k ^ 0. 

W e thus note t h a t the element ank in an (/, dn) matr ix can be obtained by 
formal matr ix mult iplication of the appropr ia te [F, dn] and Sonnenschein 
matr ices. 

In general, if A and B are regular summabi l i ty matrices, then the A t rans
form of the B t ransform of a sequence (herein denoted by the AB me thod) 
need no t be the same as the method obtained by mult iplying the A and B 
matrices together and then applying the resulting matr ix to the given sequence 
(denoted by the A • B me thod) . Indeed, for a given sequence and given A 
and B either one could exist or fail to exist; see (1). However, if A is, in 
addit ion, row-finite, we have the following theorem of Agnew (1 , Theorem 10.2). 

T H E O R E M 1 (Agnew). If A and B are regular with A row-finite, then the 
convergence field of A • B includes the convergence field of AB. 

W e may now s ta te the following theorem concerning regulari ty of (/, dn) 
methods. 

T H E O R E M 2. If (Pnf) is a regular [F, dn] matrix and (fjk) is a regular Sonnen
schein matrix, then the (f,dn) method (ank), defined by ank = 2^=o Pnjfjk, is 
regular. 

Proof. If the sequence {sk} converges to s} regulari ty of (Jjk) and (Pnj) 
guarantees convergence of the [F, dn] t ransform of the Sonnenschein transform 
to 5. T h e n Agnew's theorem supplies convergence of the [F, dn] t ransform to s. 

W e note t h a t if f(z) is an ent ire function and the (/, dn) method is applied 
to the geometric series, we have the following special result. 

T H E O R E M 3. If f{z) is an entire function, then those values of z for which the 
(/, dn) transform of the partial sums of the geometric series converge to 1/(1 — z) 
are precisely those values for which the related [F, dn] transform of the related 
Sonnenschein transform converges to 1/(1 — z). 

Proof. Since the part ial sums of the geometric series can be wri t ten in the 
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form 1/(1 — z) — sw+1/(l — z), it is sufficient to consider the various sum-
mability transforms of the sequence {zn}. From the fact tha t / ( s ) is entire, 

converges absolutely for all z. Thus we can interchange the order of summation 
and those values of z for which limn An(z) = 0 are the same as those values 
of z for which limw Bn(z) = 0, where 

co n 

Bn{z) = I E Pnéd-

For the convenience of the reader we now list various well-known sufficient 
conditions for regularity of [F, dn] and Sonnenschein methods. Choosing an 
[Fy dn] method satisfying (i), (ii), or (iii) below and a Sonnenschein method 
satisfying (iv), (v), or (vi), the associated (f,dn) method will be regular. 

The [F, dn] method is regular if: 
(i) dn ^ 0 for all n and Zn = i 1/4 = +<*> (4), or 

(ii) dn = Pne
i6« and E : = i 1/P» = + ^ and E^=i 6J/Pn < + oo (3), or 

(iii) {\m} satisfies \m ^ 0 for all m and Ew=i 1/̂ m = + 0 0 , k ^ 2, is a 
fixed positive integer, and dn = pne

idn, where pk(m-v)+} = Xw.1/A; for 
j = 1, 2, . . . , k and 6k(m-i)+j = exp{j(k — l)iri/k] for 7 = 1, 2, . . . , k 
(6). 

The Sonnenschein method is regular provided: 
(iv) (a) f(z) is analytic in \z\ < R, R > 1, 

(b) |/(2)| < 1 for |s| < 1 except at a finite number of points £, 
(c) the real part of A$ 9^ 0, where A$ is defined by 

A{(z) - S^ ' ( 1 ) = i4{ip(2 - l ) p + 0(Z - 1)* ZSZ-+1 

with ht(z) = /(£*)//(£), and 
(d) / ( l ) = 1 (2). 

In the case of Karamata matrices which are those Sonnenschein matrices 
where f(z) = [a + (1 — a — &)z]/(l — /5s), we have regularity provided: 

(v) a = 13 = 0, or 
(vi) 1 - H 2 > (1 - a ) ( l - 0) > 0 (7). 

3. An application. The Lebesgue constants for the [F, dn] method with 
dn > 0 have been shown to be unbounded by Lorch and Newman (5). How
ever, their method will not apply directly to the [F, dn] methods with dn 

complex. For those complex methods defined by Miracle (6) we have the 
following result. 

THEOREM 4. The Lebesgue constants for the [F, dn] methods defined by Miracle 
(6) are unbounded. 
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Proof. Le t Pn]c denote the coefficients in the [F, dn] mat r ix as defined by 
Miracle. W e note t h a t for n = mp we have 

U 1 + dh 
_ f\ ̂  + ̂  

*=1 1 + ^k 
T h u s the elements with row subscript mp in the [F, dn] matr ix are identical 
to the elements with row subscript m in the (zp, \m) matr ix defined by-
Smith (8). Hence, the Lebesgue cons tants for the (zp, \n) method coincide 
with a subsequence of the Lebesgue cons tants for the [F, dn] method. T h e n 
the unboundedness of the subsequence will imply the unboundedness of the 
Lebesgue cons tants for the [F, dn] method. These cons tan ts are given by 

(3.1) L(f,K) _ 1 f/2 

7T Jo 

1 
sin t 

{ m Jpit J_ \ 
T / itT~T e T"̂  A J 

Im^ H — 
lY dt. 

Since \m > 0 we can apply the method of Lorch, and with only slight modifica
tions. Analogous to their derivation, we make the following definitions. 

m N m -I 

sm = 2£2Z 2\ \* and um = i + 2pYlJ—-fci (i + xt)
2 

W e then obtain the following es t imates : 

(3.2) 

(3.3) 

and 

(3.4) 

n-—— = exp{ (Um — l)it 

e'pit + X* 
1 + X* 

Ss exp'j 2(1 + \ky 

SJ2} + 0(Smtz), 

for 0 ^ t ^ Tr/2p, 

m 2pit _|_ -, 

I I , , \ = 0(exp{ - IS J] ) for 0 g tg */2p. 
*=1 -1- T" A^ 

I t should be noted t h a t es t imates (3.3) and (3.4) are no t valid for 0 ^ t S TT/2 
since p è 2. However, the following addit ional es t imate , though much cruder, 
will fill the gap : 

(3.5) n = 0(1). 

W e note t h a t if p = 1, these es t imates coincide with those of Lorch and 
Newman. Since they are obtained in an analogous manner , their derivat ion 
will no t be supplied here. 

Nex t we introduce the q u a n t i t y £, 0 < £ < ir/2p, to be fixed later. W e 
use formula (3.2) to es t imate the port ion of the integral (3.1) from 0 to £, 
then formula (3.4) for the port ion from £ to ir/2p, and formula (3.5) for the 
port ion from ir/2p to T/2. W e extend the interval of integrat ion in the approxi
mat ing exponential of formula (3.2), thereby introducing an addit ional error 
which can, however, be absorbed in the error arising from formula (3.4). 
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Thus we obtain 

(3.6) L(z*,\m)=- C^M-SA^f&dt + OiSj) 
ir J o sin t 

+ 0(r2exp(-i5^2})+0(l). 
Now if Sm is bounded, we choose £ to be fixed; if Sm is unbounded, we choose 
£ = Sm~*/8, reducing the error terms to 0(1) in either case. Formula (3.6) 
differs from that of Lorch and Newman (5, formula (3.6)) only by 0(1) , 
hence from this point on their method can be followed exactly to show that 
the Lebesgue constants for the (zp, \m) method, and hence also for the [F, dn] 
method, are unbounded. 
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