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Abstract

In this review, we describe how the interplay among science, technology and community
interests contributed to the evolution of four structural biology data resources. We present
the method by which data deposited by scientists are prepared for worldwide distribution,
and argue that data archiving in a trusted repository must be an integral part of any scientific
investigation.

Introduction

The structural biology community has been uniquely proactive in establishing data resources
that archive the results of research and provide services to access and analyze those data. The
Protein Data Bank (PDB) was established as a repository for biomacromolecular structural
data more than 45 years ago (Protein Data Bank, 1971). It now contains more than 140 000
structures determined by X-ray crystallography, Nuclear magnetic resonance (NMR) spectro-
scopy, and three-dimensional electron microscopy (3DEM). A diverse community of research-
ers, students, educators and the general public downloads more than 1.9 million data sets every
day. In this review, we demonstrate how the synergies among science, technology and commu-
nity enabled the PDB to preserve the past while constantly evolving to reflect contemporary
needs. We describe how and why two other structural biology data resources were created
to supplement and collaborate with the PDB. We conclude by demonstrating how the experi-
ences of the past inform how we are meeting the current challenges presented by the more
recent determination of structural models of large macromolecular machines.

The synergies of science, technology and community in the development of the PDB

In 1957, the structure of myoglobin was determined (Kendrew et al., 1958), followed shortly
thereafter by hemoglobin (Perutz et al., 1960). Thus, began the era of structural biology in
which, one by one, structures of small proteins including enzymes such as lysozyme (Blake
et al., 1965), ribonuclease (Kartha et al., 1967; Wyckoff et al., 1967), and carboxypeptidase
(Quiocho and Lipscomb, 1971) were determined using X-ray crystallography. By the late six-
ties, more than a dozen structures had been determined. In those days, X-ray crystallographic
methods involved the use of calculators, newly emerging computers and manual model build-
ing relying on the Richards Box, an optical comparator that had to be housed in a large room
(Richards, 1968). A single determination took years of painstaking work. The three-
dimensional (3D) atomic coordinates obtained from these structure determinations contained
a treasure trove of information that would eventually reveal new insights into biology, medi-
cine, biophysics and biochemistry. Indeed, the award of the Nobel Prize to Kendrew and
Perutz in 1962 (Nobelprize.org, 2017) recognized not just their achievements, but also the
potential of X-ray crystallography. However, for others to help build on that knowledge, it
would be necessary to have access to the 3D coordinates produced by all of these new structure
determinations.

The coordinate data were stored on punched cards, paper tape and magnetic tape. Because
the Internet was only beginning to be established, transfer of data between laboratories
involved recording the data onto appropriate media and mailing it. Starting in 1966, a
small community of scientists met periodically to discuss how best to archive and distribute
these structures. In 1971, a seminal meeting was held in Cold Spring Harbor (Phillips,
1972) in which the practitioners and now pioneers of structural biology described their struc-
tures to a rapt and inspired audience. Among the attendees was Walter Hamilton, an energetic
and highly respected chemical crystallographer from Brookhaven National Laboratory (BNL).
Walter had been collaborating with Edgar Meyer who was creating a Protein Library (Meyer,
1997). When presented with the problem of needing an archive for biomacromolecular struc-
tures, Hamilton immediately offered to house one at BNL. He contacted Olga Kennard who
was then head of the Cambridge Crystallographic Data Center (CCDC) in Cambridge, UK
(Allen et al., 1973) and they agreed to set up the PDB (Protein Data Bank, 1971) as collabo-
ration between BNL and CCDC. After Hamilton’s death in 1973, Tom Koetzle took over the
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direction of the PDB. In 1979 there were 53 structures in the PDB
(Fig. 1), some of which are shown in Fig. 2.

The 1980s saw a steady growth of structures in the PDB in
large part because of the emergence of powerful new technologies.
Genetic engineering made it possible to clone and express large
quantities of protein without resorting to extraction from natural
biological sources. Chemical synthesis could be used to obtain
purified fragments of DNA. The advent of synchrotron sources
allowed the collection of data with intense X-ray beams
(Harmsen et al, 1976). At the same time, development of the
multiple anomalous diffraction phasing method (MAD)
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(Hendrickson et al., 1985) leveraged the ability to tune the
X-ray wavelength using synchrotron radiation. Flash freezing
(Hope, 1988) to prevent crystal decay began to be more widely
used. Multi-wire detectors made it possible to rapidly collect
many diffraction reflections at once (Hamlin, 1985). Computing
technology continued to improve. In particular, molecular graph-
ics made it possible to fit structural models to electron density
(Jones, 1978), replacing the need for the Richards Box. During
this period, NMR spectroscopy began to be used for determining
the structures of small proteins (Horst et al., 2001), thus eliminat-
ing the requirement of crystallinity. During the 1980s, the first
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Fig. 1. Growth chart of structures in the PDB with indicators of each decade. (a) The number of structures released per year (blue) and the cumulative number of
structures (orange). (b) The same information, using a log scale. The number of structures released at the end of each decade is indicated by black brackets.
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Fig. 2. Examples of structures determined in the 1970’s. Ribbon representations were generated using UCSF Chimera (Pettersen et al., 2004). (a) Myoglobin (Watson,
1969), PDB ID: 1MBN. First protein structure determined using X-ray crystallography. (b) Lysozyme (Blake et al., 1965; Kelly et al., 1979), PDB ID: 9LYZ. First enzyme
structure determined using X-ray crystallography. (c) Yeast phenylalanine transfer RNA (Rich & Kim, 1978; Robertus et al., 1974), PDB ID: 4TNA. First RNA structure

determined using X-ray crystallography.

atomic structures of viruses were determined (Hopper et al., 1984;
Erickson et al., 1985) as were those of DNA (Dickerson et al.,
1982) (Fig. 3).

With the potential of structural biology being realized at an
increasing pace, members of the scientific community began to
be concerned that valuable data would be lost if deposition of
structures into the PDB were not mandatory (Barinaga, 1989).
Starting in about 1982, committees were set up to determine
exactly which data should be archived. Fred Richards created a
petition signed by many of the leading structural biologists, urg-
ing deposition into the PDB (Hufton, 2014). In 1989, the
International Union of Crystallography (IUCr) published guide-
lines for the deposition, archival and release of structural data
(International Union of Crystallography, 1989). The National
Institute of General Medical Sciences (NIGMS) then made a rul-
ing that structure determinations funded by that institute had to
be archived by the PDB. In time, virtually all journals required
deposition of coordinates in the PDB as a mandatory condition
of publication. Another important event in the 1980s was the
inclusion of structural biology as a focus of research by Howard

Hughes investigators (Howard Hughes Medical Institute, 2017).
By 1989, there were 365 structures in the PDB (Fig. 1).

The rate of data deposition rapidly took off in the 1990s as
even better methods for data collection, structure determination
and refinement were developed and adopted. Computer perfor-
mance continued to improve dramatically and structural biolo-
gists were more than eager to embrace the new capabilities.
During this period, the very first atomic structure determined
by electron microscopy methods was deposited into the PDB
(Henderson et al., 1990). The 1990s saw the deposition of
many protein-nucleic acid complexes into the archive, including
the structure of the nucleosome (Luger et al, 1997) (Fig. 4). By
1999, there were 10,963 structures in the PDB10963 (Fig. 1).

When the PDB was first established, the focus was on the
collection of the coordinate data as well as some other descriptive
data. The PDB Format (Westbrook & Fitzgerald, 2009) was widely
adopted because it was simple and ‘human’-readable. However, it
was lacking in many other ways: relationships among data
items were implicit and not explicit, there was no controlled vocab-
ulary, there were limitations on the number of atoms and residues,

Fig. 3. Examples of structures determined in the 1980’s. (a) A, B and Z DNA (Dickerson et al., 1982). This representation of the three canonical forms of DNA is taken
from the Molecule of the Month (Goodsell, 2001). (b) Rhinovirus (Arnold & Rossmann, 1988), PDB ID: 4RHV. This was one of the early virus structures determined
using X-ray crystallography. Three unique chains (grey, pink, orange surfaces) are repeated 60-fold to create a virus capsid with icosahedral symmetry.
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Fig. 4. Examples of structures determined in the 1990’s. (a) The structure of a regulator of transcription called the TATA-binding protein bound to DNA. The binding
of beta sheets into the minor groove of DNA causes a profound bend in the DNA (Patikoglou et al., 1999), PDB ID: 1QN6. (b) Nucleosome (Luger et al., 1997). The
DNA is shown in orange wraps around the histone proteins shown in blue. Taken from the Molecule of the Month (Goodsell, 2000a).

and some of the definitions of data items were vague. In 1990, the
IUCR set up a working group (WG) to create a Macromolecular
Crystallographic Information File (mmCIF). It was originally sup-
posed to be a variant of the Crystallographic Information File
(CIF) that was already established for small molecules (Hall
et al., 1991). The mmCIF WG decided to use the opportunity to
not only create richer data content with precise definitions for
the macromolecular crystallographic experiment and its results
but also to improve the data representation for PDB entries. A
new data model was created that had data type definitions, explicit
parent—child relationships among data items, enumerations for
controlled vocabulary, and many other features. Workshops were
held to obtain community feedback; by 1996, more than three
thousand definitions were instantiated into a computer readable
dictionary (Fitzgerald et al., 2005). When the PDB moved from
management by BNL to the Research Collaboratory for
Structural Bioinformatics (RCSB) in 1998, mmCIF became the
underlying data model that allowed for the creation of a relational
database. However, uptake by the community was slow and it was
not until 2011 that mmCIF became the Master Format for the
PDB, allowing the PDB Format to be retired. As larger structures
of macromolecular assemblies started to be deposited into the
PDB, the limitations of the PDB format became more apparent,
leading to wider acceptance of the mmCIF format.

The 2000s saw even more growth in the PDB. Ribosome struc-
tures, representing some of the very largest and most complex
structures in the PDB, were deposited (Ban et al., 2000; Carter
et al., 2000; Schluenzen et al, 2000) (Fig. 5). Not surprisingly,
the feat of determining these structures led to the award of a
Nobel Prize in Chemistry in 2009, shared by three structural biol-
ogists. During the same period, the Protein Structure Initiative
(PSI) began in which structures were determined on a genomic
scale, resulting in nearly 7000 new structures in the PDB. In
2009, there were 61,812 structures in the PDB (Fig. 1).
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When the PDB was first established, it was international in
nature. Under BNL management, only one site curated the data,
although there were multiple mirror or distribution sites. After
RCSB was awarded the grant to manage the PDB, other sites
were eager to become deposition sites. In 2003, three data centers,
RCSB PDB in the USA, MSD (later PDBe) at the EMBL-EBI, and
PDBj in Osaka, established the worldwide PDB (wwPDB)
(Berman et al, 2003). A formal agreement was created to ensure
that all structures curated by the data centers follow the same
rules for data processing and that there would be one archive
with identical copies distributed by the wwPDB partners. At the
time of this first agreement, compliance was difficult because
there were two completely different processing pipelines. To
ensure that the curated data files were in fact following the
same rules, there were regular exchanges among the wwPDB part-
ners to revalidate the data. The need for a single data processing
pipeline became apparent. The project to create OneDep began in
2007; this new pipeline system was put into production in 2014
(Young et al., 2017).

By establishing an international consortium whose goal was to
develop and maintain a single, high-quality archive, it became
possible to remediate existing data to meet more modern stan-
dards. One of the most important accomplishments was updating
the PDB to use IUPAC nomenclature for standard amino acids
and nucleotides (Henrick et al., 2008). Other efforts resulted in
an incrementally improved corpus of data. Structures that had
been represented in multiple, inconsistent ways, for example, pep-
tides and viruses, were corrected, and curation of data going for-
ward was improved (Lawson et al., 2008; Dutta et al., 2014).

During this same era, the requirement for creating more strin-
gent validation criteria emerged from the community. An impor-
tant milestone was reached in 2008 when all crystallographic
depositions were required to be accompanied by structure factors
(Wlodawer et al., 2008); in 2010, chemical shifts were required for
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Fig. 5. Ribosome subunits. The small subunit is shown on the left and the large on the right (Ban et al., 2000; Carter et al., 2000; Schluenzen et al., 2000). The
protein is shown in blue and the RNA in orange and yellow. Taken from the Molecule of the Month (Goodsell, 2000b).

NMR structures. There was also increasing concern about the
possibility that fraudulent structures had become a part of the
archive. In 2008, the first of many method-specific wwPDB spon-
sored Validation Task Forces (VTFs) was set up. The charge to
the X-ray VTF was to make recommendations to the wwPDB
about validation of structures determined by that method. The
X-ray VTF examined all available methods, tested them on the
entire archive and reported their findings in a paper published
in Structure (Read et al., 2011). Their recommendations became
the basis of the wwPDB OneDep Validation module (Gore
et al., 2017).

In this section, we have demonstrated how the PDB content
and policies have evolved over the last 45 years and how the
PDB has been agile in responding to rapid and unexpected scien-
tific advances, technical improvements and strongly held beliefs of
many stakeholders. Long before the introduction of the ‘FAIR’
guiding principles (Wilkinson et al., 2016), the PDB archive has
been making the results of structural biology investigations
Findable, Accessible, Interoperable and Reusable.

Structural genomics and the Structural Biology
Knowledgebase (SBKB)

The PDB contains many related structures, including homologs
from different organisms, biomolecular complexes with different
ligands, and even systematic small mutations of proteins intro-
duced to investigate the effect on folding and activity; for example,
PDB contains 566 structures of Bacteriophage T4 lysozyme vari-
ants (Matthews, 1996) and more than 250 structures of small mol-
ecule - HIV protease complexes (Wlodawer, 2002). The protein
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structure initiative (PSI) was launched to enable the determina-
tion of unique and diverse structures on a genomic scale
(Norvell & Berg, 2007). The first phase focused on determining
structures of proteins with extremely low sequence similarity to
known structures, with the goal of finding new folds. The second
phase focused on biology and linked the high throughput centers
with projects on specific biological problems that would benefit
from systematic structural approaches. For example, there were
substantial gains made in determining structures of previously
intractable membrane proteins (Pieper et al., 2013). New high-
throughput approaches were developed that allowed for advances
in every part of the structure determination pipeline, including
methods for producing pure protein samples, robotic crystalliza-
tion, robotic crystal mounting and positioning and automated
structure determination. Counter to some earlier concerns, the
quality of the structures improved and the cost per structure
determination decreased significantly (Grabowski et al., 2016).
To meet the data management requirements of the PSI project,
SBKB was created in 2008 (Berman et al., 2009; Gabanyi et al.,
2011). The SBKB consisted of several modules that addressed
the varying needs of the PSI project, described below.
TargetTrack provided information about the status of over
330000 targets studied by the PSI Centers, including selection
rationale, histories of protein production trials, and structure
determination and deposition. It also collected and made public
more than a thousand protocols routinely used by the centers, with
variations noted on a trial-by-trial basis. Sequence-based annota-
tions were also calculated and aggregated into each TargetTrack
record. The data collected by TargetTrack were usually the first
pieces of information available about a given sequence; to share
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it in the public domain, not only within the PSI Network, was
unprecedented at that time.

A Technology Portal provided reports about the various tech-
nologies being developed to enable high-throughput protein pro-
duction and structure determination (Gifford et al, 2012).
Summaries of over 450 novel technologies or protocols, along
with their use cases, contact information, and references were col-
lected. Categorization by experimental step enabled researchers to
find new ideas for overcoming barriers that they could translate
into their own laboratory.

Biosync (Kuller et al., 2002; Flippen-Andersen et al, 2010)
became a module of the SBKB. This data resource collects syn-
chrotron beamline parameters and experimental capabilities,
and tracks the number of structures released per facility and
beamline.

The Publication Portal tracked PSI publications along with
their citations and journal impact factors. To date, 80% of the
2300+ articles published by the PSI have at least 5 citations.

The PSI Materials Repository, collected 90 000+ clones and
120 novel cloning and expression vectors created by the PSI cen-
ters and distributed them to researchers all over the world (Seiler
et al., 2014).

The Protein Model Portal (PMP) (Bordoli & Schwede, 2012)
was created to help researchers locate homology models based
on experimentally determined structures, thus further leveraging
their impact. Users search the PMP by sequence or UniProt iden-
tifier, retrieving a list from among 22.8 million homology models
pre-computed by Swiss-Model Repository (Kopp & Schwede,
2004), MODBASE (Pieper et al., 2009), and the modeling groups
within the PSI centers, as well as experimental structures from the
PDB. A graphical map indicated how much of the sequence was
covered by an experimental structure or derived from a model,
and quality estimates were provided regarding the reliability of a
model. If no model existed, new models could be requested and
calculated by 6 public modeling servers. In 2013, the PMP
group, with the support of the PSI and modeling community, cre-
ated the Model Archive (Haas & Schwede, 2013). This new
archive stores the computational model coordinates and details
about assumptions, parameters and constraints applied in model-
ing. The Model Archive is open to all modelers and provides sta-
ble identifiers within publications as well as data storage and
access in the public domain. To develop validation criteria for
the modeling community, the PMP also constructed the
Continuous Automated Model Evaluation (CAMEQ) (Haas
et al., 2013) server that continuously evaluates the accuracy of pre-
dicted models, thus fostering the development of better modeling
techniques.

The SBKB website integrated the results of the PSI with over
100 publicly available sequence, structure, function, proteomics
and medicine databases. A search for any given protein sequence
yielded all relevant annotations or products, presenting a view of
what information was known, or still to be discovered. All struc-
tures, models, targets, and clones >40% identical in sequence were
returned to allow for new connections to be found within the
data. If a particular sequence yielded no annotations through
the SBKB, users could nominate it for structure determination
through the community-nomination portal, where users would
be matched to collaborate with a PSI center. As the outreach
arm of the PSI project, the SBKB also partnered with the
Nature Publishing Group (now Macmillan Group) to write 320
research highlights on PSI advances for the SBKB portal. David
Goodsell, the author of the RCSB PDB’s Molecule of the
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Month series (Goodsell et al., 2015), also created 90 illustrated
essays of key PSI structures. PSI workshops were also archived
on the SBKB.

By mid-2017, the PSI program produced 6920 structures, con-
tributing over 5% of the current PDB archive (Table 1). Nearly
80% of these entries were distinct from each other and had less
than 30% sequence identity to any structure pre-existing in the
PDB (Dessailly et al., 2009). A total of 600 structures were moti-
vated by community requests. During PSI:Biology (2010-2015),
the 9 membrane protein centers determined 160 structures and
developed ~40 novel technologies/methods for this difficult-to-
determine class of proteins. Although the PSI program was
terminated in 2015, the high throughput methods that enabled
its productivity have endured. The SBKB is no longer operational
following the end of the PSI program, but some of the modules
continue to be available, including Protein Modeling Portal
(Haas et al.,, 2013) and Biosync (Flippen-Andersen et al., 2010).
The TargetTrack dataset has been archived (doi: 10.5281/
zenodo.821654).

Electron Microscopy Data Bank

Bacterial rhodopsin was the first structure determined by electron
microscopy deposited into the PDB (Henderson et al., 1990).
Because electron crystallography was used, it was possible for
the PDB to curate the entry using a variation of the procedure
for structures determined by X-ray crystallography. The determi-
nation of structures by cryo-electron microscopy (3DEM) became
popular in the 2000s as software for reconstruction of 3D density
maps from 2D single-particle images became available, even
though the level of detail produced was typically limited (Chiu
et al., 2005). 3DEM scientists began to determine the overall
shapes of large macromolecular complexes that could not be crys-
tallized, opening up an important new avenue for structural biol-
ogy investigations. The maps derived from 3DEM experiments
could frequently be fitted with structures derived from X-ray crys-
tallography, NMR spectroscopy or homology modeling, yielding
‘pseudo-atomic’ models that were able to provide useful insights
and leads for further research (Rossmann et al., 2005).

Table 1. Summary statistics of structures and other research products
produced by the Protein Structure Initiative (PSI), 2000-2017

Products of the protein structure initiative Total number

PSI structures 6920
Distinct structures 5472
Community-nominated structures 599
Membrane proteins 148

Homology models 22.8M

Targets selected 335714

Technology reports 458

Publications 2313
Publication with >5 citations 1926
Citations of PSI publications 117611

Research highlights from Nature Publishing 320

Illustrated featured molecules/systems 90
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In 2002, a new data archive called EM Data Bank (EMDB)
containing maps and metadata was established at the EMBL-
EBI (Editorial, 2003; Henrick et al., 2003). Structures determined
by 3DEM methods began to be deposited with maps archived in
EMDB and models separately archived in PDB. An initial diction-
ary of data terms to describe 3DEM experiments was drafted
jointly by the groups at EBI and RCSB, based on requirements
provided by the 3DEM community in a series of international
workshops. In 2006, the EBI and RCSB groups joined forces
with Wah Chiu at the National Center for Macromolecular
Imaging (NCMI) to create a ‘one stop shop’ for deposition and
retrieval of maps and models at EMDataBank.org (Lawson
et al., 2011). Both groups launched ‘serial’ map + model deposi-
tion and annotation systems that directed users first to deposit
their maps to EMDB using EmDep (Henrick et al., 2003) and sec-
ond to deposit their models to PDB with the transfer of relevant
experimental metadata, as defined in the 3DEM data dictionary.
The serial systems worked remarkably well, even though the
underlying coordinate deposition and processing systems at the
two sites were substantially different (see the section The syner-
gies of science, technology and community in the development
of the PDB). Over a 9-year period (2008-2015), nearly 4000
3DEM maps and 1000 3DEM models were processed in this man-
ner. Truly joint map + model deposition for 3DEM structures was
instantiated in 2016 with the OneDep system recently imple-
mented by the wwPDB (Young et al., 2017).

There has been substantial growth in 3DEM derived structures
over the past few years (Fig. 6). Major technological advances,
including the introduction of the direct electron detector and bet-
ter data processing methods, have enabled the determination of

(b)
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4000 —

3000 —

2000

INIRINIn

0
201 2012 2013 2014

2015 2016 2017

Fig. 6. Cumulative growth of 3DEM Structures. The number of structures available in
EMDB for each recent year is indicated in purple (resolution better than 50 A, dark
purple); the number of EM-derived models available in PDB is indicated in green (res-
olution better than 5-0 A, dark green).

structures derived from 2D single-particle images to near-atomic
resolution, making it increasingly possible to visualize amino acid
sidechains and nucleotide bases (Vinothkumar & Henderson,
2016). The award of the 2017 Nobel Prize in Chemistry to
3DEM pioneers Henderson, Frank and Dubochet recognized
the potential of this rapidly evolving method to contribute to
structural biology. Figure 7 provides several examples of maps
deposited into EMDB just in the past year, each with a reported
resolution of 4-5 A or better.

The deluge of high-resolution 3DEM structures has made it a
priority to establish robust validation methods for 3DEM derived

Fig. 7. Sampling of 3DEM structures recently released in EMDB: (a) GroEL (Roh et al., 2017), EMD-8750 (b) DNA Protein Kinase (Sharif et al., 2017), EMD-8751 (c)
Heterotrimeric Gs protein complex (Liang et al., 2017), EMD-8623 (d) Glutamate A2 receptor (Twomey et al., 2017), EMD-8823 (e) Spliceosome (Wan et al., 2016),

EMD-9525 (f) Rhinovirus/Fab complex (Dong et al., 2017), EMD-8763.
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Fig. 8. The Data Processing Pipeline, from Data Creation through Distribution. Each component of the PDB pipeline is described in the section The current PDB

pipeline.

maps and models. With OneDep now providing the facilities for
3DEM deposition, the current focus of EMDataBank.org is on
enabling development of validation methods for 3DEM.

The current PDB pipeline

The PDB is responsible for collecting data entries from structural
biologists and distributing curated data entries to users. To
accomplish this goal, it is necessary to implement a data manage-
ment pipeline with components for data deposition, curation, val-
idation, archiving and distribution. Over time, data management
has changed. Next, we describe current practices in the PDB data
management pipeline (Fig. 8).

Requirements

In addition to the atomic coordinates, a considerable body of
metadata is collected to describe how the coordinates were
derived. The metadata are based on the details of each experimen-
tal method currently supported by the PDB: X-ray crystallogra-
phy, NMR spectroscopy, and electron microscopy. Table 2
provides a summary of the various aspects of each method that
need to be considered for data deposition.

Decisions about which data items must be collected are made
in consultation with the community via the respective wwPDB
Task Forces. Because the science, technology development and
community sentiment change over time, the scope and level of
granularity of the data to be collected also change over time. It
is notable that protein production procedures are currently not
collected. The PSI did, in fact, have procedures in place for collect-
ing protein production protocols through TargetTrack (see the
section Structural genomics and the structural biology knowledge-
base (SBKB) above). However, compliance from the community
was poor, which suggests that the time was not right for collecting
and archiving protein production data.

Standards

To make the PDB archive computer searchable, it is essential that
there are clear definitions for each data item collected. The PDBx/
mmCIF format that is entirely computer readable is now the PDB
Master Format. The data dictionary contains the definitions for all
of the methods currently supported by the PDB (mmcif.wwpd-
b.org). The dictionary is extensible and allows for changes in
existing methods and inclusion of new methods. A standing com-
mittee reviews the changing requirements and when necessary

Table 2. Experimental metadata requirements for the methods currently supported by the PDB

Method X-ray crystallography NMR spectroscopy 3D electron microscopy
Sample « Buffer « Buffer « Buffer

« Crystallization procedure « Isotope labeling « Sample support

« Vitrification

Experiment « Sample conditions « Sample conditions « Sample conditions

« X-ray source « Spectrometer « Electron source

« Detector « Acquisition parameters « Detector

+ Collection protocol + Imaging parameters
Measurements/data « Diffraction images « Resonance spectra « Particle images

Structure factors
Processing software
Statistics (resolution, Rsym)

Final 3D map
Processing software
Processing protocol
Resolution (FSC)

Resonance assignments
Chemical shifts
Contraints

Processing protocol

Structure solution method
Refinement software, restraints
Fit-to-data statistics

Structure modeling

Structure calculation method
Refinement software

Modeling method
Model source
Fitting software
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DEPOSITION ANNOTATION WORKFLOW DISSEMINATION

deposit.wwPDB.org = MODULES = PDB ARCHIVE
Globa_l PDB system for multiple Ligand Sequence Manual and Validation WwPDB ETP
experimental methods: Processing | | Processing | _|Automated | _|

Annotation
| X-ray || NMR H 3DEM |

Fig. 9. OneDep System. Deposition is provided for X-ray, 3DEM and NMR. The annotation pipeline is made up of several modules that check the chemistry of the
components, add new annotations and validate the structural model against standard geometries and the experimental data.

adds new definitions. In anticipation of changing needs, the dic-
tionary also contains definitions for data items not currently in
the PDB archive.

Data curation

All PDB entries are extensively curated. Many different aspects of
the structure are carefully checked using a modular series of com-
putational tools. For the polymer sequence, the following tasks are
performed: cross-checks of author-provided sample sequence and
coordinate sequence versus the sequence database, cross-checks of
author-provided source organism versus the taxonomy database,
assignments of database references and taxonomy identifiers to
modeled protein polymer entities, and annotation of sequence
discrepancies between sample sequence and database reference.
For ligands, a search is performed to determine whether the
ligand geometry is novel or equivalent to one of the ligands
found in existing PDB entries. The ligand geometry is checked
using a variety of 2D and 3D views. Derived data including the
biological assembly are determined.

Data validation

Data in the PDB are validated according to recommendations made
by Validation Task Forces that are convened by the wwPDB.
Because X-ray crystallography is the oldest method supported by
the PDB, its community has had the time and experience to develop
the most extensive validation procedures (Read et al, 2011). The
wwPDB has implemented the recommendations of the X-ray
VTF directly into the data processing pipeline. Covalent geometry
is checked against established standards. Intermolecular and intra-
molecular geometries of the polymer chains are checked for clashes
using Molprobity (Chen et al, 2010). The geometry of ligands is
checked against standards derived from small molecule structures
archived in the CCDC (Bruno et al., 2004). The deposition of struc-
ture factors allows the checking of real space R factors for each res-
idue and each ligand. A Validation Report is produced with the
detailed analysis of the geometrical features of the model as well
as the fit of the structure to the underlying experimental data.
The graphical representation in the form of sliders gives a summary
of the quality of the structure.

Validation of NMR derived structures follows the recommen-
dation of the NMR VTF (Montelione et al., 2013). The model
geometry is checked in the same way as for X-ray derived struc-
tures. Consistency checks across models are carried out for
NMR structures along with an examination of outliers in NMR
restraints. For 3DEM-derived structures, the 3DEM VTF recom-
mended that the validation of model geometry follow the same
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criteria developed for X-ray derived structures and that new meth-
ods be developed for 3DEM map validation and map-to-model fit
(Henderson et al., 2012). One of the ways to achieve this goal
involves engaging the community in EM Challenges (Lawson
et al., 2016), where participants attempt to fit models to bench-
marked maps, followed by an assessment of the results. These
exercises are likely to result in more robust methods for validating
3DEM structural models.

To enable efficient data deposition, curation and processing, a
new tool called OneDep was developed by the wwPDB (Young
et al., 2017) (Fig. 9). OneDep has a Deposition and Annotation
Workflow system containing the modules required for making
data curation as thorough and automatic as possible. Skilled
wwPDB biocurators review all of the results of data processing
and work with the depositors to ensure the best possible represen-
tation of the submitted data.

Archiving

Once the data are processed, the files are put into a temporary
archive until they are ready for release, usually upon publication
of the structure. The released structures reside in the PDB
Archive, which can be accessed using methods such as the File
Transport Protocol (FTP) and rsync. The PDB Archive consists
of flat files that contain several types of data, including atomic
coordinates, a molecular description of macromolecules and
ligands, metadata describing the experimental method, and exper-
imental data including structure factors, chemical shifts and
restraints. 3DEM map data are curated by EMDB partner sites
and archived under a separate, parallel branch of the archive.
The PDB Archive is mirrored by all three wwPDB partners.

Data distribution

The PDB is distributed in several ways. Data can be downloaded
via rsync or ftp protocols following the directions provided on the
wwPDB website (https://www.wwpdb.org/download/downloads).
In addition, each of the wwPDB data centers has websites that
provide a multitude of services including downloading, searching
and browsing (Berman et al., 2000; Ulrich et al., 2008; Velankar
et al., 2016; Kinjo et al, 2017; Rose et al., 2017). Coordinate
sets are currently downloaded from the wwPDB FTP and websites
more than 550 000 000 times per year.

The future: integrative hybrid (I/H) methods

Traditionally, each PDB entry contains an atomic structural
model derived from a single structure determination method,
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Fig. 10. I/H model of the Nup84 sub-complex from the Nuclear Pore Complex (Shi
et al., 2014) available from PDB-Dev (Burley et al., 2017; Vallat et al., 2018), PDB-
Dev ID: PDBDEV_00000001. Multi-scale structural model of the heptameric Nup84
sub-complex is shown (colored ribbons and spheres) along with the localization den-
sities of the sampled structures (colored contoured surfaces). The model is obtained
using the Integrative Modeling Platform (IMP) software (Russel et al., 2012) and visu-
alized using ChimeraX software (Goddard et al., 2018).

including X-ray crystallography, NMR spectroscopy and 3D elec-
tron microscopy. Recently, I/H methods have been developed that
simultaneously use data from multiple experimental techniques to
compute structures of single macromolecules or macromolecular
complexes (Ward et al., 2013). In some cases, data from a primary
method such as NMR are combined with additional information
obtained from a secondary method such as small-angle solution
scattering (SAS). In other cases, information from multiple exper-
imental sources, such as Fluorescence resonance energy transfer
(FRET), SAS, chemical crosslinking (CX) and mass spectrometry
(MS) are pooled together to derive a set of spatial restraints that
enable computation of a structural model. Combining multiple
complementary experimental methods makes it possible to deter-
mine structures of large macromolecular machines that have pre-
viously eluded traditional structure determination methods. I/H
methods have led to the elucidation of structures of macromo-
lecular assemblies such as the nuclear pore complex (Alber
et al., 2007a, 2007b) and its sub-complexes (Fig. 10, (Kim
et al., 2014; Shi et al., 2014)), the type III secretion system needle
(Loquet et al., 2012), the proteasomal lid complex (Politis et al.,
2014), the exosome complex (Shi et al., 2015) and the mediator
complex (Robinson et al., 2015). Although many important
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structures have been determined using I/H methods, there are
no standard mechanisms to archive these structures and make
them available to the public. An important distinction between
structural models obtained through I/H methods and the atom-
istic models currently archived in the PDB is that I/H models are
often coarse-grained. The existing PDB data pipeline expects
fully atomistic models and hence cannot process coarse-grained
I/H models.

In 2014, 38 experimental and computational scientists assem-
bled at the EMBL-EBI to discuss how best to archive the results of
I/H structure determinations. The wwPDB I/H methods Task
Force (I/HTF) made the following series of recommendations
that would enable the wwPDB to address this problem (Sali
et al., 2015): (1) a flexible model representation should be devel-
oped, allowing for multi-scale models (with atomistic and non-
atomistic coarse-grained representations), multi-state models
(existing in various conformations), ensembles of models, and
models related by time or other order; (2) procedures for estimat-
ing the uncertainty of integrative models should be developed,
validated, and adopted; (3) all relevant experimental data and
metadata as well as experimental and computational protocols
should be archived; (4) a Federation of model and data archives
should be created; and (5) publication standards for integrative
models should be established.

To address these recommendations, two subgroups of the
I/HTF have been established: the Model Validation Subgroup
and the Federation Subgroup. The concept of a Federation of
model and data repositories would allow individual disciplines
to create appropriate repositories for their experimental data
based on the requirements of their communities. Mechanisms
for data exchange would promote seamless interoperation
among the federated repositories (Fig. 11).

Following the recommendations of the I/HTF, a preliminary
dictionary has been created to address the flexible data represen-
tation required to describe I/H results (Berman et al., 2016; Vallat
et al., 2017, 2018). This dictionary is a modular extension of the
PDBx/mmCIF dictionary (Fitzgerald et al, 2005) used by the
PDB archive and contains data definitions necessary to describe
the details of I/H models, associated spatial restraints and model-
ing protocols. The newly developed I/H methods extension dic-
tionary provides the fundamental data specifications required
for archiving I/H models. Based on this dictionary extension, a
prototype  pipeline called PDB-Development (PDB-Dev;
pdb-dev.wwpdb.org) has been built to enable testing and develop-
ment of deposition and archiving for I/H structural models
(Burley et al, 2017; Vallat et al, 2018). Fifteen I/H models
obtained using different modeling software such as the
Integrative Modeling Platform (IMP) (Russel et al, 2012),
Rosetta (Leaver-Fay et al, 2011), HADDOCK (Dominguez
et al., 2003), TADDit (Serra et al, 2017) and XPLOR-NIH
(Schwieters et al., 2018) have been deposited into PDB-Dev in a
format compliant with the I/H methods dictionary. These include
the Nup84 sub-complex of the nuclear pore complex (Shi et al.,
2014), the exosome complex (Shi et al., 2015), the mediator com-
plex (Robinson et al, 2015), lysine-linked Diubiquitin complex
(Liu et al, 2018), structures of the human serum albumin
domains in their native environment (Belsom et al., 2016), the
chromatin model of the first 45Mb of chromosome 2L from
Drosophila Melanogaster (Trussart et al., 2015) and the ribosomal
RNA small subunit methyltransferase A complexed with 168 ribo-
somal RNA (van Zundert et al., 2015). These structures are now
publicly available from the PDB-Dev website (Vallat et al., 2018;
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Fig. 11. Conceptual diagram of the I/H Methods Federation. At the center are the
three structural biology model repositories: the PDB archives experimentally deter-
mined structures of macromolecules (Berman et al., 2000); the Model Archive (MA),
part of the Protein Model Portal (PMP), archives in silico structural models (Bordoli
and Schwede, 2012; Haas and Schwede, 2013; Haas et al, 2013); and
PDB-development (PDB-Dev) is the prototype system for archiving I/H models
(Vallat et al., 2018; Burley et al., 2017). The outer circle consists of experimental
data repositories that contribute to structural biology. Only a limited set of experi-
mental data archives have been identified at present and many others may be
included as the field evolves and the respective research communities build their
own repositories.

Burley et al., 2017) and can be downloaded and visualized using
the ChimeraX software (Goddard et al., 2018) (Fig. 10).

The lessons learned from creating and maintaining the PDB
archive are informing the process of developing the PDB-Dev sys-
tem for archiving I/H structures. To adapt to the evolving needs of
the scientific community, many important tasks have been
accomplished: consulting with the community to determine
requirements, carefully creating standard dictionary definitions
and making sure that those dictionary standards are extensible.
Once the PDB-Dev system is fully developed, it will be straightfor-
ward to include structures derived from I/H methods in the PDB
archive, thus making the rich content from structures of complex
macromolecular machines available to PDB users.

Conclusion

In this review, we describe the interplay among science, technol-
ogy and community in creating data resources. The way in which
the PDB developed in many ways follows the principles set forth
by Elinor Ostrom for the management of natural resources
(Ostrom, 1990). Those principles emphasize that bottom-up col-
lective action can work better than top-down enforcement.
Although building a community resource in this way can take
much longer, the involvement of the various stakeholders in
meaningful ways can better ensure its sustainability.

Domain repositories such as the PDB are key to the conduct of
science and development of scientific knowledge. Preserving the
data and making it freely available enables reproducibility and
the ability to build on previous work to carry out new research.
Structural biologists were early adopters of the concept of archiv-
ing as being an integral part of the research and publication life
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cycle. Not only has the availability of data helped enable further
discoveries in the field, but it also has allowed computational biol-
ogists to analyze the entire corpus of data to understand the
underlying principles that govern protein folding and interactions;
it is impossible to imagine structural bioinformatics without the
PDB. The PDB thus provides a compelling roadmap that could
be applied to all of science.
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