A THEOREM ON THE CLUSTER SETS OF PSEUDO-ANALYTIC FUNCTIONS

KIYOSHI NOSHIRO

1. Let D be an arbitrary connected domain and w = f(z) = u(x, y) + iv(x, y), z = x + iy, be an interior transformation in the sense of Stoïlow in D. Denote by γ a set, in D, such that D and the derived set γ' of γ have no point in common. We suppose that

(i) u_x, u_y, v_x, v_y exist and are continuous in $D^* = D - \gamma$;

(ii)
$$J(z) = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} > 0 \text{ at every point in } D^*;$$

(iii) the function q(z) defined as the ratio of the major and minor axes of an infinitesimal ellipse with centre f(z), into which an infinitesimal circle with centre at each point z of D^* is transformed by w = f(z), is bounded in D^* : $q(z) \leq A$.

f(z) is then called pseudo-meromorphic (A) in $D^{(1)}$

Next, suppose that w = f(z) is pseudo-meromorphic (A) in D. Let C be the boundary of D, E be a closed set of capacity²⁾ zero, included in C, and z_0 be a point in E. We can associate with z_0 three cluster sets $S_{z_0}^{(D)}$, $S_{z_0}^{(C)}$ and $S_{z_0}^{*(C)}$ as follows: $S_{z_0}^{(D)}$ is the set of all values α such that $\lim_{v \to \infty} f(z_v) = \alpha$ with a sequence $\{z_v\}$ of points tending to z_0 inside D. $S_{z_0}^{*(C)}$ is the intersection $\bigcap_r M_r$, where M_r denotes the closure of the union $\bigcup_{\zeta'} S_{\zeta'}^{(D)}$ for all ζ' belonging to the common part of C - E and $U(z_0, r)$: $|z - z_0| < r$. In the particular case when E consists of a single point z_0 , we denote $S_{z_0}^{*(C)}$ by $S_{z_0}^{(C)}$ for simplicity. Obviously $S_{z_0}^{(D)}$ and $S_{z_0}^{*(C)}$ are closed sets such that $S_{z_0}^{*(C)} \subset S_{z_0}^{(D)}$ and $S_{z_0}^{(D)}$ is always non-empty while $S_{z_0}^{*(C)}$ becomes empty if and only if there exists a positive number r such that C - Eand $U(z_0, r)$ have no point in common.

In the particular case where w = f(z) is single-valued meromorphic in D, the following theorems concerning the cluster sets $S_{z_0}^{(D)}$, $S_{z_0}^{(c)}$ and $S_{z_0}^{*(C)}$ are known:

Received February 20, 1950.

¹⁾ For the definition of pseudo-meromorphic functions, Cf. S. Kakutani: Applications to the theory of pseudo-regular functions to the type-problem of Riemann surfaces, Jap. Journ. of Math. Vol. 13 (1937), pp. 375-392. R. Nevanlinna: Eindeutige analytische Funktionen, Berlin, 1936, p. 343.

^{2) &}quot;Capacity" means logarithmic capacity in this note.

Theorem I. (Iversen-Beurling-Kunugui) ³) $B(S_{z_0}^{(D)}) \subset S_{z_0}^{(C)}$, where $B(S_{z_0}^{(D)})$ denotes the boundary of $S_{z_0}^{(D)}$, or what is the same, $\mathcal{Q} = S_{z_0}^{(D)} - S_{z_0}^{(C)}$ is an open set.

Theorem II. (Beurling-Kunugui)⁴⁾ Suppose that $\mathcal{Q} = S_{z_0}^{(D)} - S_{z_0}^{(C)}$ is not empty and denote by \mathcal{Q}_n any component of \mathcal{Q} . Then w = f(z) takes every value, with two possible exceptions, belonging to \mathcal{Q}_n infinitely often in any neighbourhood of z_0 .

Theorem I*. (Tsuji) 5) $B(S_{z_0}^{(D)}) \subset S_{z_0}^{*(C)}$, that is, $\mathcal{Q} = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is an open set.

Theorem II*. (Kametani-Tsuji)⁶⁾ Suppose that $\mathcal{Q} = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is not empty. Then w = f(z) takes every value, except a possible set of *w*-values of capacity zero, belonging to \mathcal{Q} infinitely often in any neighbourhood of z_0 .

The object of the present note is to propose the following

THEOREM 1. Suppose that E is included in a single boundary-component C_0 of C and w = f(z) is pseudo-meromorphic (A) in D. Then $\Omega = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is an open set. Suppose further that Ω is not empty. Then w = f(z) takes every value, with two possible exceptions, belonging to any component Ω_n of Ω infinitely often in any neighbourhood of z_0 .

Remark. It is obvious that Theorem 1 contains Theorems I and II⁷ and holds good provided that D is simply connected.⁸ There is an anticipation that Theorems I* and II* may be probably true when w = f(z) be pseudo-meromor-

- ⁴⁾ Beurling: 1. c. 3); Kunugui: 1. c. 3).
- ⁵⁾ M. Tsuji: On the cluster set of a meromorphic function, Proc. Acad. Tokyo, **19** (1943); On the Riemann surface of an inverse function of a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc. Acad. Tokyo, **19** (1943).
- ⁶⁾ Tsuji: 1. c. 5). S. Kametani: The exceptional values of functions with the set of capacity zero of essential singularities, Proc. Acad. Tokyo, 17 (1941), pp. 429-433.
- ⁷⁾ Recently E. Sakai has obtained some interesting results concerning pseudo-meromorphic functions. Theorem 1 answers affirmatively a problem represented by him. Cf. E. Sakai: Note on pseudo-analytic functions, forthcoming Proc. Acad. Tokyo.
- ⁸⁾ The special case where D is simply connected and w = f(z) is single-valued meromorphic in D has been treated by the writer in another note. Cf. K. Noshiro: Note on the cluster sets of analytic functions, forthcoming Journ. Math. Soc. Japan.

84

³⁾ F. Iversen: Sur quelques propriétés des fonctions monogènes au voisinage d'un point singulier, Öfv. af Einska Vet-Soc. Förh. 58 (1916).

K. Kunugui: Sur un théorème de M. M. Seidel-Beurling, Proc. Acad. Tokyo, 15 (1939); Sur un problème de M. A. Beurling, Proc, Acad. Tokyo, 16 (1940); Sur l'allure d'une fonction analytique uniform au voisinage d'un point frontière de son domaine de définition, Jap. Journ. of Math. 18 (1942), pp. 1-39.

A. Beurling: Études sur un problème de majoration, Thèse de Upsal, 1933; Cf. pp. 100-103.

2. To prove Theorem 1 we use two lemmas.

LEMMA 1. Let w = f(z) be pseudo-regular (A) in a bounded domain D and E be a closed set of capacity zero, included in the boundary C of D. If

$$\lim_{z \to \zeta} |f(z)| \le M$$

for every point ζ of C - E and f(z) is bounded in a neighbourhood of every point ζ of E, then $|f(z)| \leq M$ for all points z in D.

Proof. We suppose, contrary to the assertion, that there exists a point z_0 in D such that $|f(z_0)| > M$. Let \emptyset be the Riemannian image of D by w = f(z) and denote by P_0 the point on \emptyset which corresponds to z_0 . Consider the star-region H in Gross' sense formed by the sum of segments from P_0 with projection $w_0 = f(z_0)$ to singular points along all rays: $\arg(w - w_0) = \varphi$ on \emptyset , whose projections lie in the half-plane $\Re[e^{-i\arg w_0} \cdot (w - w_0)] > 0$. We shall show that the linear measure of the set Γ of arguments φ of singular rays (by which we understand rays meeting singular points in finite distances) is equal to zero. Denote by H_R the common part of H and a circular disc $|w - w_0| < R$ and by Δ_R the image of H_R by the inverse transformation of w = f(z). Then, Δ_R is a simply connected domain included in D. Since E is a closed set of capacity zero, Evans' theorem ⁹ shows that there exists a distribution of positive mass $d\mu(a)$ entirely on E such that

(1)
$$u(z) = \int_E \log \left| \frac{1}{z-a} \right| d\mu(a), \quad \mu(E) = 1$$

is harmonic outside E, excluding $z = \infty$, and has boundary value $+\infty$ at any point of E. Let v(z) be its conjugate harmonic function and put

(2)
$$t = \chi(z) = e^{u(z) + iv(z)} = \rho(z)e^{iv(z)}.$$

For the sake of convenience, we call the function $t = \chi(z)$ "Evans' function." Let C_{λ} be the niveau curve: $\rho(z) = \text{const.} = \lambda$ ($0 < \lambda < + \infty$). Then C_{λ} consists of a finite number of simple closed curves surrounding *E*. Further, Evans' function has the property

(3)
$$\int_{c_{\lambda}} dv(z) = \int_{c_{\lambda}} \frac{\partial u}{\partial n} \, ds = 2 \pi \, ,$$

where s denotes the arc length of C_{λ} and n is the inner normal of C_{λ} . Now

⁹⁾ G. C. Evans: Potentials and positively infinite singularities of harmonic functions, Monatsheft für Math. und Phys. 43 (1936), pp. 419-424.

K. Noshiro: Contributions to the theory of the singularities of analytic functions, Jap. Journ. of Math. 19 (1948), pp. 299-327.

KIYOSHI NOSHIRO

we consider the Riemannian image $\widetilde{\Delta}_R$ of Δ_R by $t = \chi(z)$ and the function w = W(t) = f[z(t)] defined on $\widetilde{\Delta}_R$. Let $\widetilde{\Theta}_{\lambda}$ be the set of cross-cuts of $\widetilde{\Delta}_R$ above the circle $|t| = \lambda$. We denote by $\lambda \theta(\lambda)$ the total length of $\widetilde{\Theta}_{\lambda}$ and $L(\lambda)$ that of the image of $\widetilde{\Theta}_{\lambda}$ by w = W(t). Then, applying a well-known method in proving Gross' theorem, we get

(4)
$$\int_{\lambda_0}^{\lambda} \frac{[L(\lambda)]^2}{\lambda \theta(\lambda)} d\lambda \leq (A + \sqrt{A^2 - 1}) \int_{\lambda_0}^{\lambda} \int_{\widetilde{\Theta}_{\lambda}} J(t) \lambda d\lambda d\theta \leq \pi A R^2, \quad (0 < \lambda_0 \leq \lambda).$$

Since $\theta(\lambda) \leq 2\pi$, we have

$$\lim_{\lambda\to\infty}L(\lambda)=0.$$

Accordingly, we see that the set Γ of arguments φ of singular rays is of linear measure zero. Consequently there exists at least one asymptotic path Λ inside D reaching a point ζ in E, along which w = f(z) converges to ∞ as z tends to ζ . But this is a contradiction, since f(z) is bounded in a neighbourhood of ζ .

Remark. Lemma 1 is an immediate consequence from R. Nevanlinna's theorem ¹⁰ in the case when w = f(z) is single-valued regular in D.

By a similar argument as in Lemma 1, we obtain, without difficulty,

LEMMA 2. (An extension of Iversen's theorem)¹¹ Let D be an arbitrary domain, C being its boundary, and let E be a closed set of capacity zero included in C. Suppose that f(z) is pseudo-meromorphic (A) in D and $S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is not empty. If w = f(z) does not take a value α , contained in $S_{z_0}^{(D)} - S_{z_0}^{*(C)}$, infinitely often, then α is either an asymptotic value of w = f(z) at z_0 or there is a sequence of accessible boundary points ζ_n in E tending to z_0 such that α is an asymptotic value at each ζ_n .

3. Proof to Theorem 1. Let w_0 be an arbitrary value belonging to $S_{z_0}^{(D)} - S_{z_0}^{*(C)}$. By hypothesis, there exists a circle $K : |z - z_0| = r$, arbitrarily small, such that $K \cdot E = 0$ and $f(z) \neq w_0$ on $K \cdot D$. We may suppose that w_0 does not belong to the closure M_r of the union $\bigcup_{\zeta'} S_{\zeta'}^{(D)}$ for all ζ' belonging to the common part of C - E and $|z - z_0| \leq r$. We denote by ρ_1 the distance of M_r from w_0 . Let ρ_2 be a positive number such that $|f(z) - w_0| \geq \dot{\rho}_2 > 0$ on $K \cdot D$. We denote by ρ a positive number less than min (ρ_1, ρ_2) . Since w_0 is a cluster value of w = f(z) at z_0 , there exists a sequence of points z_{μ} ($\mu = 1, 2, ...$) inside $(K) \cdot D$, (K) denoting the interior of K, tending to z_0 such that $w_{\mu} = f(z_{\mu})$ tends to w_0 .

¹⁰⁾ R. Nevanlinna: 1. c. 1), pages 132 and 134.

¹¹⁾ K. Noshiro: On the theory of the cluster sets of analytic functions, Journ. Fac. of Sci., Hokkaido Imp. Univ. 6 (1938), pp. 217-231; Cf. theorem 4.

We keep hereafter the sequence z_{μ} ($\mu = 1, 2, ...$) fixed. Consider the open set D_0 of points z inside (K) $\cdot D$ whose images w = f(z) lie in (c): $|w - w_0| < \rho$. Then D_0 consists of a finite or an enumerable number of connected domains d. Denote by d_{μ} the component containing z_{μ} ; some d_{μ} may coincide with one other.

First we consider the case in which there are infinitely many distinct components \mathcal{A}_{μ} . For the sake of simplicity, we suppose that $\mathcal{A}_{\mu} \neq \mathcal{A}_{\nu}$ if $\mu \neq \nu$. Then, we easily show that \mathcal{A}_{μ} ($\mu = 1, 2, ...$) converges to z_0 . For, if otherwise there exists a circle K': $|z - z_0| = r'$ (< r) such that $K' \cdot E = 0$ and $K' \cdot A_{\mu_n} \neq 0$ (n = 1, 2, . . .), where \mathcal{A}_{μ_n} denotes a sub-sequence of \mathcal{A}_{μ} . Let ζ_n be any boundary point of \mathcal{A}_{μ_n} , lying on the circle K' and ζ_0 be a point of accumulation of the sequence ζ_n (n = 1, 2, ...). Since $f(\zeta_n)$ lies on the circle c: $|w - w_0| = \rho$, ζ_0 must belong to either C - E or D. However, either of two cases leads to a contradiction, because either the set M_r intersects the circle $|w - w_0| = \rho$ or infinitely many niveau curves: $|f(z) - w_0| = \rho$ intersect any neighbourhood of ζ_0 , while w = f(z)is pseudo-regular (A) in D. If \mathcal{A}_{μ} is compact in D, then it is evident that w f(z) takes every value in (c): $|w - w_0| < \rho$. If Δ_{μ} is not compact in D, its boundary consists of a closed subset E_{μ} of E and a finite or an enumerable number of analytic curves inside D; by Lemma 1, the value-set \mathfrak{D}_{μ} of w = f(z)in \varDelta_{μ} is everywhere dense in (c): $|w - w_0| < \rho$, what is the same, the closure \mathfrak{D}_{μ} coincides with $|w - w_0| \leq \rho$. Considering that \mathcal{A}_{μ} $(\mu = 1, 2, ...)$ converges to z_0 , we see that the cluster set $S_{z_0}^{(D)}$ includes the closed circular disc $|w - w_0|$ $\leq \rho$.

Next, let r_n and ρ_n be two decreasing sequences of positive numbers tending to zero, such that, for each n, r_n and ρ_n are selected as stated above, and consider two sequences of circles K_n : $|z - z_0| = r_n$ and c_n : $|w - w_0| = \rho_n$ (n = 1, 2, ...). Denote by $\mathcal{A}_{\mu}^{(n)}$ the component with an interior point z_{μ} , which is an inverse image of (c_n) : $|w - w_0| < \rho_n$. If the sequence $\mathcal{A}_{\mu}^{(n)}$ $(\mu \ge N_{\mu})$ consists of infinitely many distinct domains for at least one n, then the reasoning used above shows that $S_{20}^{(D)}$ includes the closed disc $|w - w_0| \le \rho_n$. Thus, we have only to consider the case in which the sequence $\mathcal{A}_{\mu}^{(n)}$ consists of only a finite number of distinct domains for every n. Denote by \mathcal{A}_1 any $\mathcal{A}_{\mu}^{(1)}$ containing a sub-sequence $\{z_{\mu}^{(1)}\}$ of $\{z_{\mu}\}$, and by \mathcal{A}_2 any $\mathcal{A}_{\mu}^{(2)}$ containing a sub-sequence $\{z_{\mu}^{(2)}\}$ of $\{z_{\mu}^{(1)}\}$ and so on. Thus, we obtain a new sequence of domains $\{\mathcal{A}_n\}$ such that $\mathcal{A}_1 \supset \mathcal{A}_2 \supset \ldots \supset \mathcal{A}_n \supset \ldots$ and each \mathcal{A}_n has a boundary point z_0 in common. Accordingly, since the value-set of w = f(z) in \mathcal{A}_n is included in (c_n) : $|w - w_0| < \rho_n$ and the diameter of \mathcal{A}_n tends to zero as $n \to \infty$, there exists an asymptotic path \mathcal{A} of w = f(z) reaching z_0 along which w = f(z) converges to w_0 . Denote

by Ω_0 the component containing w_0 of the complementary set of $S_{z_0}^{*(C)}$ with respect to the w-plane. We shall now show that w = f(z) takes every value, except two possible exceptions, belonging to \mathcal{Q}_{0} infinitely often in any neighbourhood of z_0 . Without loss of generality, we may suppose that Ω_0 does not contain w $= \infty$. Suppose, contrary to the assertion, that there are three exceptional values Then, there exists a positive number η_i such that f(z). w_1, w_2, w_3 in Ω_0 . $v = w_1, w_2, w_3$ in the common part of D and $U(z_0, \eta_1)$: $|z - z_0| < \eta_1$. Inside Ω_0 we draw a simple closed regular analytic curve Γ which surrounds w_0 , w_1 , w_2 and passes through w_3 , and whose interior consists only of interior points of Ω_0 . By hypothesis, we can select a positive number η ($< \eta_1$), arbitrarily small, such that, K' denoting the circle $|z - z_0| = \eta$, K' $\cdot (C - E) = 0$ and the closure M_{η} of the union $\bigcup_{i} S_{\zeta}^{(D)}$ for all ζ' belonging to the common part of C - E and $|z - z_0| \leq \eta$ lies outside Γ . We may assume that the image of Λ by w = f(z) is a curve lying completely in the interior of Γ . Consider the set D_{η} of points z inside the intersection of D and $U(z_0,\eta)$ such that w = f(z) lies in the interior of Γ . Then the open set D_{η} consists of at most an enumerable number of connected components. We shall denote by \varDelta the component which contains the asymptotic path Λ . It is easily seen that the boundary of Λ consists of a finite number of arcs of the circle K', a finite or an enumerable number of analytic contours inside D and a closed subset E_0 of E. Further it should be noticed that Δ is simply connected. For, by hypothesis, E is included in a single boundary-component C_0 of the boundary C of D and the frontier of Δ contains no closed analytic contour, since every analytic contour of Δ is transformed by w = f(z)into a curve lying on the simple closed curve Γ passing through an exceptional value w_3 . Denote by \emptyset the Riemannian image of Δ transformed by w = f(z) in a one-one manner and by φ_0 the domain obtained by excluding two points w_1 and w_2 from the interior of Γ . Then, ϑ is a simply connected covering surface of basic surface ϕ_0 whose Euler's characteristic is equal to 1. With an aid of Evans' theorem stated before, we can prove, without difficulty, that ϕ satisfies the condition of regular exhaustion (with a slightly modified form) in Ahlfors' sense. But this will lead to a contradiction by Ahlfors' main theorem on covering surfaces.¹²⁾ Thus, it is proved that $S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is an open set.

Suppose that the open set $\mathcal{Q} = S_{z_0}^{(D)} - S_{z_0}^{*(C)}$ is not empty. Let \mathcal{Q}_n be any connected component of \mathcal{Q} . We shall now prove that w = f(z) takes every value, with two possible exceptions, belonging to \mathcal{Q}_n infinitely often in any neighbourhood of z_0 . We may suppose that \mathcal{Q}_n does not contain $w = \infty$. Contrary to the

 ¹²) L. Ahlfors: Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), pp. 157-194.
R. Nevanlinna: 1. c. 1), Cf. p. 323. K. Noshiro: 1. c. 8).

assertion, we suppose that there are three exceptional values w_0 , w_1 and w_2 in \mathcal{Q}_n . Then, there exists a positive number η_1 such that $f(z) \neq w_0, w_1, w_2$ in the common part of D and $U(z_0, \eta_1)$: $|z - z_0| < \eta_1$. Inside Ω_n we draw a simple closed regular analytic curve Γ which surrounds w_0, w_1 and passes through w_2 , and whose interior consists only of interior points of Ω_n . We can select a positive number η ($<\eta_1$), arbitrarily small, such that, K' denoting the circle $|z - z_0| = \eta$, $K' \cdot (C - E) = 0$ and the closure M_0 of the union $\bigcup_{i'} S_{\zeta'}^{(D)}$ for all ζ' belonging to the common part of C - E and $|z - z_0| \leq \eta$ lies outside Γ . Now, by Lemma 2 either w_0 is an asymptotic value of w = f(z) at z_0 or there exists a sequence of ζ_n in E tending to z_0 such that w_0 is an asymptotic value at each ζ_n . Consequently it is possible to find a point ζ_0 (distinct from z_0 or not) belonging to $E \cdot U(z_0, \eta)$ such that w_0 is an asymptotic value of w = f(z) at ζ_0 . Let Λ be the asymptotic path with the asymptotic value w_0 at ζ_0 . We may assume that the image of Λ by w = f(z) is a curve lying completely inside Γ . Consider the set D_{η} of points z inside the intersection of D and $U(z_0, \eta)$ such that w = f(z) lies inside Γ . Now, we denote by A the component, of D_{η} , which contains the asymptotic path Λ . Since Λ must be simply connected, we would arrive at a contradiction.13)

Mathematical Institute, Nagoya University

¹³⁾ K. Noshiro: 1. c. 8).