INEQUALITIES FOR POLYNOMIALS WITH A PRESGRIBED ZERO

ABDUL AZIZ

1. Introduction and statement of results. If $P(z)$ is a polynomial of degree n, then the inequality

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{2} d \theta \leqq \operatorname{Max}_{|z|=1}|P(z)|^{2} \tag{1}
\end{equation*}
$$

is trivial. It was asked by Callahan [1], what improvement results from supposing that $P(z)$ has a zero on $|z|=1$ and he answered the question by showing that if $P(1)=0$, then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{2} d \theta \leqq \frac{n}{n+1} \operatorname{Max}_{|z|=1}|P(z)|^{2} \tag{2}
\end{equation*}
$$

Donaldson and Rahman [3] have shown that if $P(z)$ is a polynomial of degree n such that $P(\beta)=0$ where β is an arbitrary non-negative number, then

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{e^{i \theta}-\beta}\right|^{2} d \theta \tag{3}\\
& \leqq\left(\frac{1}{1+\beta^{2}-2 \beta \cos \left(\frac{\pi}{n+1}\right)}\right) \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{2} d \theta
\end{align*}
$$

whereas if the polynomial $P(z)$ is such that $P(1)=0$, then [4]

$$
\begin{equation*}
\left|P^{\prime}(1)\right| \leqq \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| \tag{4}
\end{equation*}
$$

In this paper we shall estimate

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{e^{i \theta}-\beta}\right|^{2} d \theta
$$

in terms of the maximum of $\left|P\left(z_{k}\right)\right|$ where $z_{k}, k=1,2, \ldots, n$ are the zeros of $z^{n}+1$ and obtain a sharp result. We shall also prove a generalization of (4). In lieu of requiring that the maximum of $|P(z)|$ on the right hand side of (4) be taken on $|z|=1$, we only assume that it be taken over nth roots of -1 .
We prove
Theorem 1. If $P(z)$ is a polynomial of degree n such that $P(\beta)=0$
where β is an arbitrary non-negative real number then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{e^{i \theta}-\beta}\right|^{2} d \theta \leqq \frac{1+\beta^{2}+\ldots+\beta^{2(n-1)}}{\left(1+\beta^{n}\right)^{2}} \operatorname{Max}_{1 \leqq k \leqq n}\left|P\left(z_{k}\right)\right|^{2} \tag{5}
\end{equation*}
$$

where $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $z^{n}+1$. The result is best possible and equality in (5) holds for $P(z)=z^{n}-\beta^{n}$.

Next we present an inequality in the opposite direction.
Theorem 2. If $P(z)$ is a polynomial of degree n such that $P(\beta)=0$ where β is an arbitrary non-negative real number, then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{e^{i \theta}-\beta}\right|^{2} d \theta \geqq \frac{1+\beta^{2}+\ldots+\beta^{2(n-1)}}{\left(1+\beta^{n}\right)^{2}} \operatorname{Min}_{1 \leqq k \leqq n}\left|P\left(z_{k}\right)\right|^{2} \tag{6}
\end{equation*}
$$

where $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $z^{n}+1$. The result is sharp.
Finally we prove the following generalisation of (4).
Theorem 3. If $P(z)$ is a polynomial of degree n such that $P(\beta)=0$ where β is an arbitrary non-negative real number, then

$$
\begin{equation*}
\left|P^{\prime}(\beta)\right| \leqq \frac{1+\beta^{2}+\ldots+\beta^{2(n-1)}}{1+\beta^{n}} \underset{1 \leqq k \leqq n}{\operatorname{Max}}\left|P\left(z_{k}\right)\right|, \tag{7}
\end{equation*}
$$

where $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $z^{n}+1$. The result is sharp for $\beta=0$ and $\beta=1$.
2. For the proofs of these theorems we need the following lemma.

Lemma. If $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $z^{n}+1$, then for an arbitrary nonnegative real number β

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left|z_{k}-\beta\right|^{2}}=\frac{1+\beta^{2}+\ldots+\beta^{2(n-1)}}{\left(1+\beta^{n}\right)^{2}} \tag{8}
\end{equation*}
$$

Proof of the lemma. If $\beta=0$, then the assertion is trivial. So we suppose that $\beta \neq 0$. If $P(z)$ is a polynomial of degree n such that $P(\beta)=0$, then $P(z) /(z-\beta)$ is a polynomial of degree $n-1$, and therefore, by using Lagrange's interpolation formula with $z_{1}, z_{2}, \ldots, z_{n}$ as the basic points of interpolation we can write

$$
\frac{P(z)}{z-\beta}=\sum_{k=1}^{n}\left(\frac{P\left(z_{k}\right)}{z_{k}-\beta}\right)\left(\frac{z^{n}+1}{n z_{k}^{n-1}\left(z-z_{k}\right)}\right)=\frac{1}{n} \sum_{k=1}^{n} \frac{P\left(z_{k}\right) z_{k}\left(z^{n}+1\right)}{\left(z_{k}-\beta\right)\left(z_{k}-z\right)}
$$

since $z_{k}{ }^{n-1}=-1 / z_{k}$.
Taking in particular $P(z)=z^{n}-\beta^{n}$, we obtain

$$
\begin{equation*}
z^{n-1}+\beta z^{n-2}+\ldots+\beta^{n-1}=\frac{1+\beta^{n}}{n} \sum_{k=1}^{n} \frac{z_{k}\left(z^{n}+1\right)}{\left(z_{k}-\beta\right)\left(z-z_{k}\right)} \tag{9}
\end{equation*}
$$

Putting $z=1 / \beta$ in (9) and noting that $\left|z_{k}\right|=1$ for $k=1,2, \ldots, n$, we get

$$
\begin{aligned}
\frac{1+\beta^{2}+\ldots+\beta^{2(n-1)}}{\beta^{n-1}} & =\frac{\left(1+\beta^{n}\right)^{2}}{n \beta^{n}} \sum_{k=1}^{n} \frac{z_{k} \beta}{\left(z_{k}-\beta\right)\left(1-\beta z_{k}\right)} \\
& =\frac{\left(1+\beta^{n}\right)^{2}}{n \beta^{n-1}} \sum_{k=1}^{n} \frac{1}{\left(z_{k}-\beta\right)\left(\bar{z}_{k}-\beta\right)}
\end{aligned}
$$

Hence

$$
1+\beta^{2}+\ldots+\beta^{2(n-1)}=\frac{\left(1+\beta^{n}\right)^{2}}{n} \sum_{k=1}^{n} \frac{1}{\left|z_{k}-\beta\right|^{2}}
$$

which is equivalent to (8) and the lemma is proved.

3. Proofs.

Proof of Theorem 1. Let $S(\theta)=\sum c_{k} e^{i k \theta}$ be a trigonometric polynomial. If s and m are two integers of which the first is positive, then it can be easily verified directly (for example see [2] and [5]) that
(10) $\sum_{p=0}^{s-1} e^{-2 \pi i p m / s} S(t+2 \pi p / s)=s \sum_{k=m(\bmod s)} c_{k} e^{i k t}$.

Since $P(\beta)=0,\left|P\left(e^{i \theta}\right) /\left(e^{i \theta}-\beta\right)\right|^{2}$ is a trigonometric polynomial of degree $n-1$. We take

$$
S(\theta)=\left|P\left(e^{i \theta}\right) /\left(e^{i \theta}-\beta\right)\right|^{2}, \quad s=n, m=0 \quad \text { and } \quad t=\pi / n
$$

Then (10) reduces to

$$
\sum_{p=0}^{n-1}\left|\frac{P\left(e^{i(1+2 p) \pi / n}\right)}{e^{i(1+2 p) \pi / n}-\beta}\right|^{2}=n c_{0}=\frac{n}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{e^{i \theta}-\beta}\right|^{2} d \theta
$$

Equivalently
(11) $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{e^{i \theta}-\beta}\right|^{2} d \theta=\frac{1}{n} \sum_{k=1}^{n}\left|\frac{P\left(z_{k}\right)}{\left(z_{k}-\beta\right)}\right|^{2}$,
where $z_{k}, k=1,2, \ldots, n$ are the zeros of $z^{n}+1$. This gives with the help of above lemma

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{e^{i \theta}-\beta}\right|^{2} d \theta & \leqq\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left|z_{k}-\beta\right|^{2}}\right\} \operatorname{Max}_{1 \leqq k \leqq n}\left|P\left(z_{k}\right)\right|^{2} \\
& =\frac{1+\beta^{2}+\ldots+\beta^{2(n-1)}}{\left(1+\beta^{n}\right)^{2}} \operatorname{Max}_{1 \leqq k \leqq n}\left|P\left(z_{k}\right)\right|^{2}
\end{aligned}
$$

which proves the desired result.

Proof of Theorem 2. From (11) we have with the help of the lemma above

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{P\left(e^{i \theta}\right)}{e^{i \theta}-\beta}\right|^{2} d \theta & \geqq\left\{\frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left|z_{k}-\beta\right|^{2}}\right\} \operatorname{Min}_{1 \leq k \leq n}\left|P\left(z_{k}\right)\right|^{2} \\
& =\frac{1+\beta^{2}+\ldots+\beta^{2(n-1)}}{\left(1+\beta^{n}\right)^{2}} \operatorname{Min}_{1 \leq k \leq n}\left|P\left(z_{k}\right)\right|^{2},
\end{aligned}
$$

and this completes the proof of Theorem 2.
Proof of Theorem 3. Since $P(\beta)=0, P(z) /(z-\beta)$ is a polynomial of degree $n-1$. Using Lagrange's interpolation formula with z_{1}, z_{2}, \ldots, z_{n} as the basic points of interpolation, we can write

$$
\frac{P(z)}{z-\beta}=\sum_{k=1}^{n}\left(\frac{P\left(z_{k}\right)}{z_{k}-\beta}\right)\left(\frac{z^{n}+1}{n z_{k}^{n-1}\left(z-z_{k}\right)}\right)=\frac{1}{n} \sum_{k=1}^{n} \frac{P\left(z_{k}\right) z_{k}\left(z^{n}+1\right)}{\left(z_{k}-\beta\right)\left(z_{k}-z\right)} .
$$

Letting $z \rightarrow \beta$ we obtain

$$
P^{\prime}(\beta)=\frac{1+\beta^{n}}{n} \sum_{k=1}^{n} P\left(z_{k}\right) \frac{z_{k}}{\left(z_{k}-\beta\right)^{2}} .
$$

Hence

$$
\begin{aligned}
\left.\left|P^{\prime}(\beta)\right| \leqq \frac{1+\beta^{n}}{n} \sum_{k=1}^{n}\left|P\left(z_{k}\right)\right| \right\rvert\, & \left.\frac{z_{k}}{\left(z_{k}-\beta\right)^{2}} \right\rvert\, \\
& \leqq \frac{1+\beta^{n}}{n} \sum_{k=1}^{n} \frac{1}{\left|z_{k}-\beta\right|^{2}} \operatorname{Max}_{1 \leqq k \leqq n}\left|P\left(z_{k}\right)\right|,
\end{aligned}
$$

since $\left|z_{k}\right|=1$.
Using now the lemma above, it follows that

$$
\left|P^{\prime}(\beta)\right| \leqq \frac{1+\beta^{2}+\ldots+\beta^{2(n-1)}}{1+\beta^{n}} \operatorname{Max}_{1 \leqq k \leqq n}\left|P\left(z_{k}\right)\right| .
$$

This proves the desired result.

References

1. F. P. Callahan, Jr., An extremal problem for polynomials, Proc. Amer. Math. Soc. 10 (1959), 754-755.
2. J. G. Van Der Corput and C. Visser, Inequalities concerning polynomials and trigonometric polynomials, Nederl. Akad Wetensch., Proc. 49 (1946), 383-392.
3. J. D. Donaldson and Q. I. Rahman, Inequalities for polynomials with a prescribed zero, Pacific J. Math. 41 (1972), 375-378.
4. Q. I. Rahman and Q. G. Mohammad, Remarks on Schwarz'slemma, Pacific J. Math. 23 (1967), 139-142.
5. O. Szasz, Elementare extremal probleme uber nicht negative trigonometrische polynome, S. B. Bayer. Akad. Wiss. Math. Phys. K1. (1927), 185-196.

University of Kashmir,
Kashmir, India

