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Thin airfoil dynamic stall at moderate Reynolds numbers is typically linked to the sudden
bursting of a small laminar separation bubble close to the leading edge. Given the
strong sensitivity of laminar separation bubbles to external disturbances, the onset of
dynamic stall on a NACA0009 airfoil section subject to different levels of low-amplitude
free stream disturbances is investigated using direct numerical simulations. The flow is
practically indistinguishable from clean inflow simulations in the literature for turbulence
intensities at the leading edge of Tu = 0.02 %. At slightly higher turbulence intensities
of Tu = 0.05 %, the bursting process is found to be considerably less smooth and strong
coherent vortex shedding from the laminar separation bubble is observed prior to the
formation of the dynamic stall vortex (DSV). This phenomenon is considered in more
detail by analysing its appearance in an ensemble of simulations comprising statistically
independent realisations of the flow, thus proving its statistical relevance. In order to
extract the transient dynamics of the vortex shedding, the classical proper orthogonal
decomposition method is generalised to include time in the energy measure and applied
to the time-resolved simulation data of incipient dynamic stall. Using this technique, the
dominant transient spatiotemporally correlated features are distilled and the wave train of
the vortex shedding prior to the emergence of the main DSV is reconstructed from the flow
data exhibiting dynamics of large-scale coherent growth and decay within the turbulent
boundary layer.
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1. Introduction

Lifting surfaces subject to rapid variations of the effective angle of attack beyond their
static stall angles are prone to undergo dynamic stall. The phenomenon of dynamic stall
is characterised by considerable excursions of the aerodynamic loads on the airfoil due
to the formation of large vortical structures emanating from the roll-up of the separated
boundary layer. The transient movement of the airfoil, compared with the static case, leads
to a delay of boundary layer separation with an associated lift increase followed by the
abrupt onset of stall with the formation of the ubiquitous dynamic stall vortex (DSV). The
build-up and subsequent downstream movement of the DSV is responsible for a transient
lift overshoot followed by the moment stall with a severe nose-down pitching moment
typical of dynamic stall.

A better understanding of dynamic stall is relevant for several engineering applications
such as helicopter rotor aerodynamics (Ham & Garelick 1968), turbomachinery, in
particular compressors (Tan et al. 2010), wind turbines (Tangler 2004) as well as
fixed-wing aircraft of different sizes. The unsteady flow dynamics during stall are usually
detrimental to efficiency and performance and can even lead to structural resonance
and damage, thus reducing the operating range of aeronautical applications (Leishman
2000). Interestingly, in low-Reynolds-number flapping-wing and insect flight, the unsteady
aerodynamics of dynamic stall, in particular the DSV, have instead been identified as
enablers and have subsequently been used to develop agile small-scale air vehicles
(Eldredge & Jones 2019). The diverse applications have led to a considerable amount of
research devoted to understanding dynamic stall and several reviews have summarised
different aspects of the progress in understanding and predicting the phenomenon over the
years (McCroskey 1981; Carr 1988; Ericsson & Reding 1988a,b; Carr & Chandrasekhara
1996; Ekaterinaris & Platzer 1997; Corke & Thomas 2015; Eldredge & Jones 2019).
Despite the progress, the sensitivity of the stall process to many aerodynamic factors
such as airfoil shape, pitching rate, Mach number as well as the instantaneous state
of the boundary layer, known for over 40 years (McCroskey 1981), combined with the
strong nonlinearity of the large-scale vortical structures make the prediction and control
of dynamic stall a daunting endeavour to this day. A wealth of empirical and semiempirical
stall models notwithstanding (see, e.g. Leishman & Beddoes (1989) or Goman & Khrabrov
(1994) and their developments), a first principles explanation of the onset of dynamic stall
is still elusive.

While thicker or more cambered airfoils tend to exhibit trailing-edge stall where the
boundary layer separation beginning at the trailing edge gradually moves upstream, thin
airfoils experience leading-edge stall characterised by an abrupt separation of the boundary
layer close to the suction peak and the formation of a more energetic DSV (McCroskey
1981). A ubiquitous feature of thin airfoils at high angles of attack is the presence of a
laminar separation bubble (LSB) close to the leading edge, prior to stall, that has been
observed for a large range of Reynolds numbers (Tani 1964). Caused by intense adverse
pressure gradients downstream of the suction peak, leading-edge LSBs are formed by the
laminar separation of the boundary layer that quickly transitions and reattaches to form a
pocket of reverse flow. A link between LSB bursting and dynamic stall proposed by Ham
(1972) has been drawn in several subsequent experimental efforts (e.g. Carr, McAlister &
McCroskey (1981) and Chandrasekhara, Carr & Wilder (1994), to cite a few) but the small
size of the LSB, especially at higher Reynolds numbers, make their experimental analysis
difficult (Raffel et al. 2006). Recently, high-fidelity numerical simulations of dynamic stall
have been able to confirm that the bursting of the LSB at the leading edge plays a crucial
role in the onset of the dynamic stall at low-to-moderate Reynolds numbers (2.0 × 105)
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for a number of airfoils from the symmetric NACA (National Advisory Committee for
Aeronautics) family (Sharma & Visbal 2017). Subsequent simulations of the NACA0012
profile showed that LSB bursting is present at Reynolds numbers up to 1.0 × 106, initiated
after a rapid upstream movement of a turbulent separation region from the trailing edge
(Benton & Visbal 2019).

The importance of the LSB bursting for the onset of dynamic stall is increasingly well
established but the exact mechanism ultimately destabilising the bubble is still unknown.
Since the pioneering work carried out at the University of London in the 1960s (McGregor
1954; Gaster 1963; Horton 1968), numerous research investigations have demonstrated
that LSBs act as natural convective noise amplifiers due to shear-layer instabilities of
Kelvin–Helmholtz (KH) type. Additionally, these structures can also harbour self-excited
instabilities that lead to unsteadiness independent of external forcing, the so-called
absolute instabilities (Huerre & Monkewitz 1990), even though global mode analysis
of LSBs often leads to three-dimensional (3-D) stationary modes that are not related to
absolute instabilities (Rodríguez, Gennaro & Juniper 2013). Which of these characteristics,
if any, is ultimately responsible for the onset of dynamic stall is still an open question, but
given the well-documented sensitivity of LSBs to external noise, is likely that background
disturbances in the free stream will also affect the LSB bursting process. Because external
disturbances can never be fully suppressed, be it in experiments or simulations, it is
important to consider the robustness of the results with regard to low amplitude free stream
perturbations.

The flow around an airfoil during incipient dynamic stall involving LSBs is extremely
complicated due to the coexistence of laminar and turbulent flow regions, the wide
range of relevant spatial and temporal scales, and the fundamentally transient nature
of the phenomenon. The recent developments in computer hardware, algorithms and
storage capabilities together with improvements in experimental techniques have made
highly accurate, temporally and spatially resolved flow data available from both
experiments and simulations, thus opening new paths for the analysis of these challenging
flows.

Instead of focusing on first-principles analyses which are notoriously difficult to apply
to complicated flows, a promising approach is to leverage the fact that despite the local
chaos of turbulence, there are structures of considerable coherence in space and time that
are abundant in both experimental and numerical data, an idea that can be traced back
at least to the work of Townsend (1956). Most studies of turbulent flows have focused on
statistically stationary flows, i.e. situations where the statistical properties of the system are
invariant concerning shifts in time. A wide range of tools for feature extraction have been
devised for these situations, most notably proper orthogonal decomposition (POD) and
dynamic mode decomposition as well as the many variants that have emerged. The success
and popularity of this type of data analysis is reflected in the increased number of review
articles in recent years dealing with the underlying theory and applications (Rowley &
Dawson 2017; Taira et al. 2017; Schmid 2021). Unfortunately, the fundamentally transient
character of dynamic stall linked to the non-autonomous nature of the flow case makes the
direct application of these data-driven methods fundamentally inadequate for its analysis.
Although some techniques such as the empirical mode decomposition (Huang et al. 1998)
exist for modal decomposition of non-autonomous data and have been tested for pitching
wing flow data (Ansell & Mulleners 2020), there are still a number of issues in their
practical application, in particular the need for user-defined parameters and considerable
case-specific tuning. A complementary approach to devising new analysis techniques is
to adapt existing and well-tested methods to the class of non-autonomous problems, an
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endeavour that has led to the recent extension of resolvent analysis to non-stationary flow
configurations via wavelet transforms by Ballouz et al. (2023).

In the same vein we focus on POD, the classic tool for modal decomposition that
has been used extensively for feature extraction and reduced-order modelling of complex
flows. The description of the biorthogonality of space-only POD modes modulated by
temporal coefficients (Aubry et al. 1988) and their efficient computation via the so-called
snapshot method (Sirovich 1987) have led to widespread adoption of this space-only
POD technique for the extraction of spatially correlated flow features from data. Recently,
the increasing availability of time-resolved measurements and numerical simulation data
have also revived interest in the spectral counterpart of space-only POD, labelled spectral
POD (Picard & Delville 2000; Towne, Schmidt & Colonius 2018), that relies on Fourier
transforms of the correlation function prior to applying the POD method (Glauser, Leib
& George 1987; Arndt, Long & Glauser 1997; Tinney & Jordan 2008; Schmidt et al.
2017) and thus yields coherent structures in both space and time. To be able to apply
the POD formalism to non-autonomous flow data, time needs to be included in the
analysis explicitly, which naturally leads to the space–time POD concept. We stress that
the explicit inclusion of time into the POD formalism does not alter the characteristics
of the method but rather generalises the concept of realisation to a full spatiotemporal
time series instead of restricting the analysis to spatial distributions (with or without
preceding spectral estimation). Due to the overwhelming popularity of space-only and
spectral POD concepts, the underlying generality of the POD framework, which stems
directly from the original work of Lumley (1967), is sometimes overlooked. We want to
point out that the approach proposed here is similar to the conditional space–time POD
approach described in Schmidt & Schmid (2019), which applies a comparable extension of
the standard POD to characterise intermittent rare events that are linked to large pressure
fluctuations in a round jet. Note, however, that in the present work, we do not rely on an
external criterion for the identification of events to constitute realisations of interest but
instead apply the POD machinery to the full spatiotemporal data directly. Another less
general instance of the POD method including a time variable is temporal POD, proposed
by Gordeyev & Thomas (2013), which considers cross-correlations between trajectories
of an autonomous dynamical system by applying specific time delays. In a recent study
by Frame & Towne (2023) in the context of the approximation of the Hankel matrix,
fundamental in system identification and control theory, the same extension of the POD
methodology is considered. In contrast to the reference which focuses on autonomous
problems, our focus is on the application of the framework to a large-scale time-dependent
flow case.

The first aim of this study is the assessment of the influence of different levels
of low-amplitude background disturbances on the onset of leading-edge dynamic stall
via the direct numerical simulation (DNS) of the LSB on a NACA0009 airfoil
undergoing a constant-rate pitch-up motion. The two disturbance levels considered in
this work are chosen to correspond to low-amplitude turbulence environments typical of
low-turbulence-level academic wind tunnels and aircraft cruise conditions or industrial
wind tunnels, respectively. The simulation with the lowest disturbance level is validated
against results from Sharma & Visbal (2017) that consider the same geometry but
without free stream disturbances. The simulation at higher turbulence intensity exhibits
considerably more complicated dynamics and, in particular, the appearance of strong
transient vortex shedding from the LSB as it bursts and initiates stall.

A second focus of this study is the demonstration of the statistical relevance of the
transient vortex shedding phenomenon during incipient dynamic stall under the influence
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of background disturbances using a dataset of 25 realisations of the same flow case
generated at lower resolution. The spatiotemporal structure of the transient wave trains
is extracted using the space–time POD method. After validating the capability of the
approach to identify spatiotemporally correlated structures in a simple non-autonomous
system based on the classical complex Ginzburg–Landau equation (CGLE) with
time-dependent coefficients, we apply it to the dataset of incipient dynamic stall. The
space–time POD method allows us to distil coherent but transient wave trains occurring
during the bursting of the LSB that have a particularly strong signature in the wall stress
data. Then, using extended POD (Borée 2003), we reconstruct the flow field correlated
with the wall data from the computed space–time POD modes.

The remainder of this paper is structured as follows. In § 2 we introduce the
mathematical formulation of the governing equations as well as the kinematics of
the imposed pitching motion of the airfoil. Section 3 is devoted to the numerical
implementation of the DNSs including meshing and initial/boundary conditions as well as
the definition of the considered cases. In § 4 we present the theory underlying space–time
POD with emphasis on the link to the well-known space-only and spectral POD variants.
With the theory and methodology in place, §§ 5 and 6 present the study results. The
first part focuses on the effect of varying the background disturbance level in the DNS
including a validation of the numerical set-up compared with the literature and an analysis
of the statistical ensemble of the case at higher turbulence intensity. The second part
considers the application of the space–time POD methodology to the ensemble to extract
the spatiotemporal dynamics of the transient vortex shedding during the onset of dynamic
stall. Finally, concluding remarks are gathered in § 7.

2. Problem specification and governing equations

The incipient leading-edge dynamic stall on a NACA0009 airfoil at a chord-based
Reynolds number of Re = 200 000 is simulated for a prescribed constant-rate pitch-up
motion around the quarter-chord axis (0.25c) under the influence of low-amplitude
disturbances in the free stream. To avoid discontinuities, the rotation speed is smoothly
increased from the steady state at fixed α = 8◦ to the final asymptotic pitching rate of
Ω0 = 0.05 rad/convective time unit tU/c, following the approach in Benton & Visbal
(2019) who defined an angular acceleration of

α̈(t) = 4.6
Ω0

t0
e−4.6t/t0, (2.1)

where t > 0 is the (physical) simulation time and t0 = 0.5 is a user-defined initial time
window after which the rotation rate has reached 99.9 % of the target Ω0. Integrating (2.1)
yields the expressions for the angular velocity and angle of attack over time,

α̇(t) = Ω0

(
1 − e−4.6t/t0

)
(2.2)

and

α(t) = Ω0

[
t + t0

4.6

(
e−4.6t/t0 − 1

)]
. (2.3)

The smooth initial acceleration of the pitching rate towards the asymptotic ramp speed is
visualised in figure 1 showing the angle of attack α(t) as a function of convective time
units tU/c (full line) compared with the asymptote (dashed line).

The results will be compared with the simulations of Sharma & Visbal (2017), which
have the same set-up as the present case with the exception of the initial ramp function.
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Figure 1. Angle of attack over time (blue) compared with the asymptotic ramp speed (dashed).

Since the computations in the reference are initialised at α = 4◦ and have the same
asymptotic rotation rate, the two simulation set-ups become identical after the initial
transient (t = t0). Similar conclusions were drawn by the same group when comparing
simulations initialised at α = 4◦ and α = 8◦, albeit at higher Reynolds numbers (Visbal
2014).

The governing flow equations are the 3-D incompressible Navier–Stokes equations

∂U
∂t

+ (U · ∇)U = −∇p + 1
Re

∇2U, ∇ · U = 0, (2.4)

where U = (Ux, Uy, Uz) is the velocity field and p is the pressure. The equations are
non-dimensionalised with the free stream velocity U and the chord length c yielding the
chord-based Reynolds number of Re = 200 000.

3. Direct numerical simulations of dynamic stall onset

The numerical simulations of the governing equations are performed using the extensively
validated high-order spectral element code Nek5000 (Fischer, Lottes & Kerkemeier
2008). The spectral element method (SEM) inherits the low numerical dissipation
and dispersion from the spectral framework, which makes it particularly suitable for
simulations involving transitional flows, while allowing for more geometric flexibility
than traditional spectral methods. Following the PN–PN−2 SEM (Maday & Patera 1989),
the flow domain is subdivided into hexahedral elements inside which the solution
fields for velocity and pressure are expanded, in each spatial direction, in terms of
high-order Lagrange polynomials on the Gauss–Lobatto–Legendre and Gauss–Legendre
quadrature points, respectively, thus avoiding spurious pressure modes. The equations
are advanced in time using a third-order accurate implicit/explicit scheme. A third-order
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implicit backwards-differencing scheme is used to discretise the time derivative while
treating the diffusion term implicitly. The nonlinear terms are treated explicitly using a
third-order extrapolation scheme with over-integration. In order to ensure the stability of
the simulations past stall onset when the extent of turbulent flow increases dramatically
and reaches zones with insufficient spatial resolution, an implicit relaxation-term filtering
is applied to the highest velocity modes (Negi, Schlatter & Henningson 2017). The mesh
movement is accomplished using the arbitrary Lagrangian–Eulerian framework whereby
the mesh is smoothly deformed in a predetermined manner during the course of the
simulation (Ho & Patera 1990, 1991). A polynomial order of N = 7 for the velocity
components (N = 5 for the pressure) was chosen for the two DNSs. A second set of
simulations to generate a statistical ensemble of dynamic stall realisations is performed
using the identical set-up but with a polynomial order of N = 5 (N = 3) for velocity
(pressure). See § 5.3 for details on the simulations at reduced resolution.

3.1. Meshing and boundary conditions
The computational mesh is designed for the accurate computation of the flow close to
the leading edge and the LSB during the onset of dynamic stall. In order to minimise
the impact of the boundary conditions in spite of the dramatic changes in the large-scale
flow field over the course of the simulation, the far-field boundary was placed at
a constant radial distance of 3.5 chords upstream of the leading edge whereas the
outflow is located four chords downstream of the airfoil. The spanwise extent of the
simulation is 0.1c, based on the results in Benton & Visbal (2019). At the far-field
boundary, uniform streamwise flow is imposed as a Dirichlet condition. The effect of
this simplification was assessed using auxiliary two-dimensional (2-D) Reynolds-averaged
Navier–Stokes (RANS) simulations performed in ANSYS Fluent v18.2 with the Menter
k–ω shear stress transport turbulence model (Langtry & Menter 2009) on an extensive
domain. The RANS simulations were repeated at several angles of attack in the range of
interest showing a variation of the velocity distribution on the boundaries of the present
mesh of approximately 1 %. Natural, stress-free boundary conditions were applied to the
outflow.

The resolution of the boundary layer mesh of the turbulent region is based on estimates
of the wall shear stress τw from the RANS simulations. In the laminar and transitional
regions including the LSB where turbulent scaling is inapplicable, we choose a similar
resolution. The grid spacing for the different regions is based on the following criteria (the
superscript + indicates viscous scaling), following the practice in Negi et al. (2018):

(i) 0 < x/c < 0.2, suction side (LSB), x+ < 15, y+ < 0.5 – the resolution of the
leading edge is locally higher to accurately capture the curvature;

(ii) 0.2 < x/c < 1, suction side, x+ < 20, y+ < 1 – the streamwise resolution
requirements are relaxed over the suction side but increased close to the sharp
trailing edge;

(iii) 0 < x/c < 1, pressure side – as the flow is expected to be laminar over the pressure
side, the streamwise resolution downstream of the stagnation point is set to x+ < 25
on average;

(iv) 1 < x/c < 4, wake – in the wake, the streamwise resolution �x is based
on estimations of the Kolmogorov length scale η = (ν3/ε)1/4 using the local
dissipation rate ε from the RANS simulation. The spacing is smoothly increased
from �x ≈ 8η close to the airfoil to �x ≈ 20η at the outflow.
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(a) (b)

(i)

(ii)

Figure 2. Computational mesh. Only spectral elements are shown. (a) Overview of the full domain including
the boundaries (2-D slice). (b i) Close-up of the mesh close to the LSB and (b ii) spanwise slice of the boundary
layer mesh on the suction side.

In order to meet the resolution requirements close to the airfoil surface as well as to
keep the overall cell count manageable, the meshing process has three stages. An initial,
structured, 2-D C-type mesh is constructed in ANSYS ICEM v18.2 for an angle of attack
of 18◦, which corresponds to the mean angle during the simulation and thus minimises the
element distortion during mesh deformation. This mesh is then conformally coarsened in
the radial direction in the free stream region to generate the 2-D template for the mesh. The
final, 3-D mesh is obtained by extruding the template in the spanwise direction yielding
a nominal resolution of z+ < 9. In order to further reduce the cell count, another layer of
conformal coarsening is added in the spanwise direction. The location of the coarsened
layer was chosen such that it lies outside of the attached boundary layer. An overview of
the 2-D template mesh as well as details of the region close to the leading edge and the
spanwise resolution of the final mesh are shown in figure 2.

3.2. Initial conditions
The dynamic simulations are initialised from statistically stationary precursor simulations
at a fixed angle of attack of α = 8◦ presented in detail in Kern, Hanifi & Henningson
(2022). This angle is sufficiently high such that the LSB at the leading edge is already
formed while being low enough to ensure that the full ramp speed is reached before its
bursting initiates the dynamic stall process (Sharma & Visbal 2017). These precursor
simulations were also used to confirm the adequacy of the de facto resolution via the
statistics of wall shear stress and to perform a mesh convergence study via h-refinement
(Kern et al. 2022).

3.3. Mesh deformation
The mesh deformation is distributed in the computational domain such that the far-field
boundaries are stationary whereas the mesh close to the airfoil surface is rotated as a solid
body together with the airfoil in order to maintain the high-quality mesh characteristics
in the entire boundary layer region. In order to find an appropriate smooth blending
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1.0
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0.4

0.2

0 1 2 3 3.5

r

d/c

(a) (b)

Figure 3. Distribution of the mesh deformation parameter r in the computational domain. The far-field
boundaries are stationary (blue, r = 0), whereas the region close to the airfoil in the centre rotates in solid
body rotation (red, r = 1). (a) Distribution in the radial direction. (b) Distribution of r along the dashed line in
(a). Here d/c is the distance from the leading edge.

function to maximise element quality in the distorted regions, a variable coefficient
Poisson equation is solved forcing the gradients of mesh deformation to lie far away from
the airfoil surface (see figure 3). Since the ramp motion of the airfoil is prescribed, the
mesh velocities are known a priori and the deformation field needs to be computed only
once and is then used throughout the dynamic simulations.

3.4. External disturbances
In order to study the effect of free stream disturbances on the incipient dynamic stall,
low-amplitude background disturbances are added to the flow. Similar simulations of
pitching wings have imposed the free stream disturbances directly on the inlet boundaries
thus allowing a high level of control over the spectral properties of the perturbations (Negi
et al. 2018). This method requires both adequate resolution of the turbulent fluctuations
up to the airfoil and long precursor simulations to reach a statistically steady state. Due
to the large distance of the airfoil to the far-field boundaries in this work, this approach
is unfeasible. An alternative method to impose free stream disturbances at a specified
location in the flow field is to use a localised body force to drive the flow to the desired
state (see e.g. Durovic et al. 2022). This method has similar characteristics to the direct
method but requires explicit knowledge of the laminar (unperturbed) baseflow state in
order to define the target velocity distribution. In dynamic simulations, the baseflow is
time-dependent and thus not available to design the appropriate forcing function. In view
of these technical difficulties and considering that the disturbance levels in this work are
very low, a lower fidelity approach was chosen derived from the body force approach.
Instead of forcing the flow to a specific perturbed state with a realistic energy spectrum,
the flow is forced directly with a bandwidth-limited white noise body force. The forcing
is introduced around 0.1c upstream of the leading edge to give the flow time to adapt to
the incoming disturbances. Contrary to the approach in Durovic (2022) where the forcing
vanishes when the target velocity distribution is achieved, the amplitude of the forcing in
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the present work needs to be tuned in order to obtain the right disturbance amplitude.
While this method of introducing disturbances is very efficient, it cannot guarantee a
specific spectral distribution (e.g. the von Kármán energy spectrum) and is therefore not
recommended for simulations with higher free stream turbulence intensities since the
details of the turbulence can affect the receptivity mechanisms (Fransson & Shahinfar
2020).

In order to avoid numerical artefacts introduced by sharp gradients in spectral methods,
the onset of the forcing is smoothed out in space using a Gaussian fringe function. The
3-D body force is thus given by

f (x, y, z, t) = famp · fnoise(x, y, z, t) · λ(x, y, z), (3.1)

where famp is the scalar forcing amplitude tuned to yield the chosen fluctuation amplitude
at the leading edge, fnoise(x, y, z, t) is the spatiotemporal forcing field constructed using
the superposition of Fourier modes with random phase shifts (see Brandt, Schlatter &
Henningson (2004), substituting the spectral distribution with a bandwidth-limited white
noise signal) and λ(x, y, z) is the 3-D spatial fringe function. The spatial bandwidth of the
isotropic white noise signal in terms of the wavenumber κ is determined by the geometry
of the simulation domain and the mesh to avoid aliasing. The largest spatial scales (κmin)
are limited by the smallest spatial extent of the simulation domain (i.e. the span) whereas
the smallest scales (κmax) are chosen such that the wavelength roughly corresponds to the
largest dimension of the spectral elements in the boundary layer in order to be well resolved
(i.e. on average eight points per wavelength at polynomial order N = 7). In practice, the
signal bandwidth is chosen as

κmin = 8.4 × 101 ≤ κc ≤ 1.4 × 104 = κmax, (3.2)

normalised by the airfoil chord c.
The spatial fringe function λ(x, y, z) is constructed pointwise from orthogonal

one-dimensional (1-D) fringes λi(xi) in each coordinate direction i as

λ(x, y, z) = min
i
λi(xi). (3.3)

The 1-D fringes λi(xi) are chosen such that

λi(xi) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp

[
−

(
xi − si

σ

)2
]

, xi < si,

1, si ≤ xi ≤ ei,

exp

[
−

(
xi − ei

σ

)2
]

, xi > ei,

, (3.4)

where xi = x, x2 = y and, for each coordinate direction, si and ei define start and end (si ≤
ei) of the full forcing region, respectively, and σ is the standard deviation of the Gaussian
distributions defining the rate of attenuation adjacent to the full forcing region. In this
work, σ = 0.02 was chosen for numerical stability and the forcing was set to fully active
(λi(xi) = 1) in the ranges −0.125 ≤ x ≤ −0.09, −0.2 ≤ y ≤ 0.45 and for all z (constant
along the span). The resulting spatial distribution of a snapshot of the forcing function is
shown in figure 4.

In the present work, two background disturbance levels are chosen. The forcing
amplitude is tuned using the steady state precursor simulations via time and span-averaged
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DNS of an airfoil undergoing dynamic stall

Figure 4. Distribution and structure of the disturbance body force f (x, y, z, t) in an x–y plane in comparison
with the airfoil. The forcing is active over the entire span of the simulation. Blue and red correspond to positive
and negative disturbances, respectively.

statistics of the velocity fluctuations at the point (x0, y0) = (0, 0.05) upstream of the
leading edge and computing the turbulence intensity as

Tu =

√
1
3

(〈u2〉 + 〈v2〉 + 〈w2〉)
U

, (3.5)

where the uppercase and lowercase letters refer to mean and fluctuating quantities,
respectively, and 〈·〉 denotes averaging in time and along the span. The disturbance levels,
measured by the turbulence intensity at the point (x0, y0), differ only in the forcing
amplitude.

Case I This case (Tu = 0.02 %) corresponds to a low disturbance environment typically
encountered in aircraft in cruise conditions or in low free stream turbulence academic
wind tunnels.

Case II This case (Tu = 0.05 %) with a slightly higher disturbance level corresponds to the
environments in conventional wind tunnels.

Note that neither of the scenarios considered in this work are comparable to turbulent
inflow conditions found in, for example, steam and gas turbines that are studied in detail
elsewhere (Merrill & Peet 2017; De Vincentiis et al. 2023). The considered range of
disturbance amplitudes is relatively small compared with the turbulence intensities up to
1 %–3 % routinely encountered in many aeronautical applications. Therefore, we stress
that the aim is not to consider these relatively high turbulence intensities, but on the
contrary to consider very low disturbance environments in the range of the unavoidable
background disturbance levels of wind tunnels. Experiments without a specified inlet
turbulence intensity are in practise often considered ‘clean’ and thus compared with
undisturbed simulations, which are cheaper and more available. Although this direct
comparison is typically appropriate for stable flows e.g. attached boundary layer flows,
more unstable flow configurations such as laminar separation bubbles involved in dynamic
stall require a more careful consideration, since the boundary layer dynamics can be
noticeably affected even by relatively low amplitude disturbances that are commonly
considered inconsequential.
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The two cases considered in this work are comparable to each other but cannot give
conclusive results regarding the influence of realistic free stream turbulence and its
coherence characteristics such as the integral length scale (Fransson & Shahinfar 2020).
Nevertheless, the high degree of similarity between Case I in the present study and the
work of Sharma & Visbal (2017) indicates that a simulation without forcing would only
be marginally different from either of them and the cost of an unforced DNS is therefore
unreasonable. The assessment of the difference in the dynamics of Case II between the
present disturbance generation and more realistic free stream turbulence is out of the scope
of this paper but is an interesting topic for future investigations.

In order to reduce the data footprint of the simulations while obtaining time-resolved
data, especially on the airfoil surface, the flow data is span-averaged using the statistics
toolbox for Nek5000 (Vinuesa et al. 2018), adapted to deal with the spanwise conformally
coarsened mesh in the homogeneous direction as described in Kern et al. (2022).
In addition to the spanwise averaging, the data is aggregated and time-averaged over
�t2DU/c = 2.4 × 10−3 and �t1DU/c = 4 × 10−5 for the full field and the surface data,
respectively. The time-averaging process implicitly assumes the airfoil to be stationary,
which is an approximation. The error is considered negligible given that the largest
difference in angle of attack over the averaging interval is less than 1 % of a degree.

4. Proper orthogonal decomposition

For the data-driven analysis of the statistical ensemble of realisations of Case II (described
in detail in § 5.3), we apply the procedure labelled space–time POD, a formulation of the
well-known POD applicable to non-autonomous flow data. In this section, we first present
the statistical method of POD in terms of stochastic processes of an arbitrary parameter x,
before restricting the analysis to flow data defined as a function of space coordinates, x,
and time, t, where the different versions of the method are conditioned by the particular
choice of random process under consideration. This presentation will use the continuous
formulation of the inner product in order to highlight the conceptual differences between
these versions. We emphasise that we always consider a finite set of realisations forming
the statistical ensemble.

Proper orthogonal decomposition, often called principal component analysis or even
Kármán–Loève expansion in other scientific fields, is a classical tool rooted in statistical
theory, employed to study coherent structures within complex flows. Introduced initially
by Lumley (1967) in the context of atmospheric turbulent flows, the method considers a
square-integrable (L2, finite variance/energy) stochastic signal u(x), defined on a set Ω of
values of x, which is equipped with an expected value operator E{·} and an inner product

〈u, v〉Ω =
∫

Ω

u∗(x)v(x) dx, (4.1)

where {·}∗ denotes complex conjugation. In order to lighten the notation in the definitions
of the inner products for the rest of the paper, the second signal is assumed to be defined
on the same set as the first. The signal u(x) is decomposed into k deterministic functions,
φk(x), called POD modes, and random coefficients, ak, such that

u(x) =
n∑

k=1

akφk(x), ak = 〈u(x), φk(x)〉Ω, (4.2)
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where the POD modes are the functions that maximise the Rayleigh quotient,

R(u, φ) = E
{|〈u(x), φ(x)〉Ω |2}
〈φ(x), φ(x)〉Ω . (4.3)

These modes are shown to be eigenfunctions of the integral (Fredholm) equation,∫
Ω

C(x, x′)φ(x′) dx′ = λφ(x), (4.4)

containing a kernel defined as the two-point correlation function,

C(x, x′) = E{u(x)u∗(x′)}. (4.5)

By definition, the POD modes diagonalise the correlation function,

C(x, x′) =
n∑

k=1

λkφk(x)φ∗
k (x′), (4.6)

and are orthonormal with respect to the chosen inner product,

〈φj, φk〉Ω = δjk, (4.7)

where δjk is the Kronecker delta. Furthermore, POD modes show coherence in the domain
in which the correlation function is defined and are optimal in capturing the variance
in a dataset. In other words, among all linear decompositions, a given subset of the POD
modes, φk, associated with the highest eigenvalues, λk, contains the most variance possible
in the average sense (Berkooz, Holmes & Lumley 1993).

4.1. Standard POD formulations in fluid dynamics
Considering a vector field, u(x, t), a function of space and time, one needs to define two
main parameters in order to perform a POD analysis: the inner-product integration domain
Ω and the statistical ensemble, with its corresponding expected value operator E{·}.

The predominant form of POD in the field of fluid dynamics, popularised in the late
1980s by the works of Sirovich (1987) and Aubry et al. (1988), constructs the statistical
ensemble as a set of snapshots of u(x, t) at different time instances tk and the integration
domain as the spatial coordinates, such that Ω ≡ X. Therefore, (4.1) can be expressed as

〈u, v〉X =
∫

X
v∗(x, t)u(x, t) dx, (4.8)

while the expected value operator is defined as the ensemble average over snapshots (time
average), such that (4.5) is written as

C(x, x′) = 1
Ns

Ns∑
n=1

u(x, tn)u∗(x′, tn), (4.9)

where Ns is the total number of snapshots. In this case, the POD expansion in (4.2) is

u(x, t) =
n∑

k=1

ak(t)φk(x), ak(t) = 〈u(x, t),φk(x)〉X, (4.10)

meaning that POD modes only represent spatial correlations within the data, hence
the label space-only POD. All temporal information is encapsulated in the expansion
coefficients ak(t) (Aubry 1991).

986 A3-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.314


J.S. Kern, D.C.P. Blanco, A.V.G. Cavalieri, P.S. Negi, A. Hanifi and D.S. Henningson

An alternative form of POD employs a statistical ensemble set constructed using a
collection of realisations of the same statistically stationary (homogeneous in time) flow,
each treated as an independent time series and defined over an infinite temporal span. Now,
the integration domain contains both space and time, Ω ≡ X × T , such that (4.1) may be
written as

〈u, v〉X×T =
∫ ∞

−∞

∫
X
v∗(x, t)u(x, t) dx dt (4.11)

and the expected value is an ensemble average over realisations, with (4.5) becoming

C(x, x′, t, t′) = E{u(x, t)u∗(x′, t′)} = 1
Nr

Nr∑
n=1

un(x, t)u∗
n(x

′, t′), (4.12)

where Nr is the total number of realisations.
Since the integration of a time-homogeneous signal over an infinite time span is

unbounded, (4.4) must be solved in Fourier space (Lumley 1967, 1970). From the temporal
homogeneity assumption we can write

C(x, x′, t, t′) ≡ C(x, x′, τ ), τ = t − t′, (4.13)

and the correlation function can be Fourier transformed,

Ĉ(x, x′, f ) =
∫ ∞

−∞
C(x, x′, τ )e−2πif τ dτ, (4.14)

leading to a distinct eigenvalue problem for each frequency. This leads to the expansion

û(x, f ) =
n∑

k=1

ak( f )ψk(x, f ), ak( f ) = 〈û(x, f ),ψk(x, f )〉X, (4.15)

equivalent to (4.2), where ψk(x, f ) is the kth eigenvector of the spectral correlation
function in (4.14), for each distinct frequency.

This approach was labelled spectral POD by Picard & Delville (2000) and Towne et al.
(2018) and has been applied to different settings (Glauser et al. 1987; Arndt et al. 1997;
Tinney & Jordan 2008; Schmidt et al. 2017) throughout the years. In this case, the modes
depend on both space and time and are able to capture correlations in space while evolving
at a single frequency f .

4.2. Space–time POD
It is important to notice that both space-only and spectral POD formulations described
in the previous section assume a statistically stationary (time-homogeneous) signal. The
former through the time-averaging expected value operator, defined in (4.9), and the latter
through the time dependence of the correlation function and Fourier transform, described
in (4.13) and (4.14). While these formulations are predominant in the literature, we stress
that homogeneity in time is not a requirement of the POD method itself but rather stems
from the specifics of each application (Aubry 1991).

As described in § 1, the leading-edge dynamic stall over an airfoil is a nonlinear,
non-autonomous flow configuration with changing statistics over time. Hence, the
application of POD in this work calls for the relaxation of the time homogeneity
assumption. We choose a statistical ensemble composed of a collection of realisations of
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the same flow, each defined over a restricted (finite) time interval, t ∈ [t0, t1], and borrow
the definition of the expected value operator and cross-correlation function from (4.12).
The integration domain contains both space and time, Ω ≡ X × T .

The following derivation is analogous to the one described in Towne et al. (2018)
for spectral POD. However, since the integration in time covers a bounded domain,
this formulation obeys the L2 integrability requirements without the need of a Fourier
transform. The associated inner product is

〈u, v〉X×T =
∫ t1

t0

∫
X
v∗(x, t)u(x, t) dx dt, (4.16)

leading to the Fredholm equation∫ t1

t0

∫
X

C(x, x′, t, t′)φ(x′, t′) dx′ dt′ = λφ(x, t), (4.17)

with subsequent diagonalisation

C(x, x′, t, t′) =
n∑

k=1

λkφk(x, t)φ∗
k(x

′, t′), (4.18)

and POD expansion

u(x, t) =
n∑

k=1

akφk(x, t), ak = 〈u(x, t),φk(x, t)〉X×T . (4.19)

It is clear that the eigenmodes in this formulation have full dependence on both space
and time, without any homogeneity assumptions, and will show coherence in the full
space–time domain since this is the span of the correlation function. We note that the
foundations of the POD framework in this more general form are already given in the
pioneering work of Lumley (1967, 1970) but were largely of theoretical relevance at the
time due to the massive data requirements for its deployment.

Concerning the choice of integration domain, the space–time POD formulation can be
thought of as a generalisation of both mainstream forms of POD presented above. For the
case of space-only POD, the time integration bounds in (4.16) tend to the same value (t1 −
t0 → 0), such that correlations can be thought to be defined over an infinitesimal time span,
dt. Assuming homogeneous statistical evolution of u(x, t) in time, the time dependence
of (4.18) can be dropped and snapshots can be considered independent realisations. In
spectral POD, on the other hand, the time integration bounds tend to infinity (t1 − t0 →
∞) and, assuming time homogeneity, the energy can be computed in Fourier space. Since
correlations are still defined over a time span, spectral modes show coherence in space
and time. This intimate relationship between the different versions of POD analysis is
considered in detail in Frame & Towne (2023).

4.3. Extended POD
Considering that the phenomenon of dynamic stall is often described in terms of the
aerodynamic loads on a wing (Ekaterinaris & Platzer 1997), it is useful to consider
correlations in two different domains; on the one hand the wall stresses defined over the
2-D surface of the airfoil, and on the other hand the full velocity field. The concept of
extended POD, introduced by Borée (2003), gives us the tools for this analysis.
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An important property of POD theory is that we can write

φk(x) = E
{
u(x)a∗

k
}

λk
, (4.20)

which states that the POD modes can be computed from coefficients in the same way that
coefficients are computed from the modes in (4.2). The core idea behind extended POD is
to use (4.20) to correlate a given signal with any other physical quantity of interest, in any
domain, solely from the coefficients of the POD expansion. Given two stochastic signals
u(x) and u′(x′) with x ∈ Ω and x′ ∈ Ω ′ (where the two domains can intersect or not), we
associate each realisation of u(x) with a realisation of u′(x′) via its POD expansion on Ω .
If the POD expansion for u(x) is written in the form of (4.2), the kth extended POD mode
for u′(x′) is defined by

ξ k(x
′) = E

{
u′(x′)a∗

k
}

λk
. (4.21)

In his work, Borée (2003) demonstrates useful properties of these extended modes, in
particular, that the expansion

u′
c(x

′) =
n∑

k=1

akξ k(x
′) (4.22)

contains only the component of the signal u′(x′) correlated with u(x) and that only the kth
element of the expansion, akξ k(x

′), is correlated to the projection of the original signal
onto the original kth POD mode, akφk(x).

5. Dynamics of incipient dynamic stall

In the following section, we validate the DNS results against data from the literature before
analysing the onset of the dynamic stall in the present simulations using the aerodynamic
coefficients, the space–time data of the friction and pressure coefficients as 2-D and
3-D flow visualisations, with a focus on the effect of the free stream disturbances on
the dynamics. In the final part, we consider the generation of the statistical ensemble of
simulations for the application of space–time POD.

5.1. Validation of the numerical method
In this section, we compare the results of the DNS of Case I (low background noise
level) with data from Sharma & Visbal (2017) who consider the same configuration in
the absence of free stream disturbances and using a compressible code. Due to the low
nominal Mach number (Ma = 0.1) in the reference, compressibility is not expected to
play a considerable role.

The first comparison concerns the span-averaged aerodynamic coefficients extracted
from the simulation in this work (Case I, red line) that are plotted in figure 5 against
convective time units (lower axis) and the angle of attack (upper axis) together with data
from the reference (black dotted line). The data from the second DNS (Case II, blue line) is
also included but will be considered later. Case I and the reference show very similar force
histories with a gradual increase in lift and drag up until the lift stall at around α = 22◦
followed by a sharp decrease of the aerodynamic loads. The maximum lift in the reference
is reached at approximately α = 22◦ whereas Case I peaks at α = 21.0◦. The present
simulation also shows a steeper lift increase during the pitch up leading to a maximum
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Figure 5. Comparison of the span-averaged aerodynamic coefficients during the pitching motion for the two
calculations compared with results in Sharma & Visbal (2017). The area marked by the grey box corresponds to
the range of the statistical ensemble. (a) Span-averaged drag coefficient cD. (b) Span-averaged lift coefficient
cL. (c) Span-averaged moment coefficient around the quarter-chord cM .

lift of cL,max ≈ 2.5 or approximately 4 % more than in the reference. The variation of the
quarter-chord moment is also similar, the present simulation predicts moment stall to occur
at α ≈ 14.5◦ or 0.5◦ earlier than in the reference. The lift stall is due to the movement of
the DSV past the trailing edge and is therefore highly dependent on the flow details in this
region. In the present study, a sharp trailing edge was chosen, which was seen to lead to
locally very high velocities, in particular at higher angles of attack, that reduce the fidelity
of the results for the final part of the simulation during the fully developed stall. For the
same reason, the strong fluctuations visible in particular in the lift and drag coefficient
curves just prior to lift stall cannot be easily interpreted as they may be amplified by the
interaction of the forming DSV with the trailing edge and their phase is likely probabilistic,
i.e. may vary between realisations of the flow.

The spanwise periodic simulations of the present dimensions in the literature were
shown to be capable of accurately capturing the onset of dynamic stall on a NACA0012
airfoil when compared with wind tunnel experiments while the details of the subsequent
stall development and reattachment (in periodically oscillating cases) were subject to the
more long-wavelength spanwise variation that cannot be captured in the present truncated
domain (Visbal & Garmann 2017). The spanwise waves with wavelengths comparable
to the airfoil chord generated by the interaction between the DSV and the trailing edge
and exacerbated by end effects lead to a fully 3-D flow during deep stall at all scales.
Therefore, while two simulations of similar spanwise extent can be expected to compare
more favourably, the details of the dynamics in the later stages of dynamic stall are
nevertheless more uncertain. One should also recall here that we are considering single
realisations of the flow which exhibit strong unsteadiness just before stall, evidenced by the
considerable oscillations in the drag and lift curves. Only the analysis of a representative
ensemble of realisations would allow for a rigorous comparison of the flow features
in this regime, which is computationally unfeasible. Beyond the integral quantities, we
also compare the spatiotemporal evolution of the onset of dynamic stall between Case I
and the reference. The variation of the span-averaged friction coefficient cf shown in
figure 6(a) compares favourably with the corresponding case in Sharma & Visbal (2017)
(figure 8a in the reference), not only with respect to the macroscopic development of
the dynamic stall process but also in more minute details of the flow dynamics around
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Figure 6. Space–time diagram of the span-averaged friction coefficient 〈cf 〉z on the suction side of the airfoil
during the pitch-up motion. Red (blue) colours represent positive (negative) shear stresses. The black lines
indicate the average first separation and last reattachment point of the boundary layer (〈cf 〉z,�t = 0 with
�tU/c ≈ 0.02). Here (a) Case I; (b) Case II. The dashed line is a copy of the average reattachment line in
(a). The flow is from left to right in both cases.

the DSV (when comparing, note that the simulations in the reference start at α = 4◦). In
particular, the bursting of the LSB starts at around α = 10◦ (slightly earlier than stated in
the reference) with a comparatively smooth elongation that then transitions to the DSV
at around α = 14◦. At the very beginning of the elongation of the separation bubble
(α ≈ 11◦), the skin friction plots show evidence of vortex shedding from the LSB which
are not as clearly seen in the reference. This shedding quickly subsides as the bubble bursts
(α ≈ 12◦ and onward). Once the DSV is formed it moves downstream at a constant rate
and feeds a secondary separation behind it that exhibits strikingly similar traces in the skin
friction compared with the reference.

This good agreement between the case at Tu = 0.02 % and the reference based on
a completely different numerical framework is a validation of the numerical method
and set-up used in the present work. At the same time, the comparison shows that for
applications in very low free stream disturbance environments their detailed inclusion in
high-fidelity simulations has only a small influence.

5.2. Effect of low-amplitude background disturbances
Returning to the drag, lift and moment curves in figure 5 and comparing the results for the
different disturbance levels (red and blue curves), we observe that while the aerodynamic
coefficients evolve nearly identically up to α = 20◦, the lift stall in the case with more
perturbed inflow (Case II, blue) exhibits essentially identical timing for the onset (a delay
of only 0.3◦) and subsequently slightly higher peak drag and lift.

Figures 6 and 7 show the evolution of the span averaged friction and pressure coefficient,
respectively, for Cases I and II. The plots show that the dynamic stall process is similar
for both cases indicating that the macroscopic dynamics are independent of the details of
the low amplitude free stream disturbances, which is in line with the trends found in the
aerodynamic force histories. Nevertheless, the details of the stall onset and in particular
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Figure 7. Space–time diagram of the span-averaged pressure coefficient 〈cp〉z on the suction side of the
airfoil during the pitch-up motion. Here (a) Case I; (b) Case II. The black lines are the same as in figure 6.

the breakdown of the LSB and the boundary layer dynamics are visibly affected by the
increased disturbance level.

The overall smoothness of the friction and pressure data in Case I contrasts with the
results for Case II (figure 6b). At the higher disturbance level, the energetic vortex shedding
that was foreshadowed in Case I at the onset of the LSB bursting is now much more
prominent, to the point of being the dominant feature in the skin friction data during
the initial phase of dynamic stall (1 ≤ tU/c ≤ 2). This vortex shedding is seen to hasten
the formation of the DSV that coalesces already at tU/c = 2 (α = 13.4◦). Furthermore,
the downstream motion of the DSV is more jagged and the vortex itself is overall less
coherent, evidenced by the wider negative shear-stress region. It is interesting to note that
the minimum value of the pressure coefficient is lower for Case I despite the intermittent
peaks in skin friction being higher for Case II, which are likely due to a generally increased
level of turbulence in the separated region. In Case II, the DSV also interacts more strongly
with the separated region in its wake and we see intermittent high wall shear-stress events
(e.g. at tU/c = 3.0) that are linked to the impingement of turbulent eddies on the wall.

Comparing the macroscopic development of DSV in both cases we observe that the two
cases seem to converge as the vortex reaches the trailing edge. The increased background
disturbance level apparently mainly influences the details of the boundary layer dynamics
and the LSB bursting whereas the DSV itself and the overall dynamic stall process
seem rather unaffected. This conclusion is in line with the findings in McCroskey (1981)
concluding that, once initiated, the events during dynamic stall tend to be independent of
the details of the airfoil motion, which also affects the local boundary layer development.

Figures 8 and 9 show the contours of the span-averaged Uy-velocity component in the
vicinity of the airfoil and the instantaneous λ2-structures, respectively, at three instants
during the stall process. In each figure, panels (a,b) correspond to tU/c = 0.5, before the
onset of dynamic stall, where the two cases are very similar, in line with the preliminary
study of the stationary precursor simulations (Kern et al. 2022). The plots also show
the typical transition mechanism in LSBs in low disturbance environments starting with
quasi-2-D spanwise rolls, generated by the inviscid KH instability on the separated shear
layer, that subsequently distort and harbour secondary instabilities at higher spanwise
wavenumbers that lead to the rapid disintegration of the coherent rolls into small-scale
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(a) (b)

(c) (d)

(e) ( f )

Figure 8. Contours of the Uy-velocity component in the cropped domain (x/c, y/c) ∈ [−0.1, 0.5] ×
[−0.1, 0.15], averaged over the span and the time interval �t2DU/c for Cases (a,c,e) I and (b,d, f ) II before
(a,b), during (c,d) and after (e, f ) the bursting of the LSB. The colour scale is cropped at Uy ∈ [−0.5, 2.5]
(blue to red) for clarity. The flow is from left to right. Here (a) Case I, tU/c = 0.5, α = 9.12◦; (b) Case II:
tU/c = 0.5, α = 9.12◦; (c) Case I, tU/c = 1.5, α = 11.99◦; (d) Case II, tU/c = 1.5, α = 11.99◦; (e) Case I,
tU/c = 2.5, α = 14.85◦; ( f ) Case II, tU/c = 2.5, α = 14.85◦.

turbulence. The structures evidenced by the λ2-isosurfaces, shown in close-up in figure 10
for the two cases, exhibit a striking similarity to results in Jones, Sandberg & Sandham
(2008) (see figure 11 in their paper) and Yang & Abdalla (2019, figure 10), the latter
identifying the streamwise elongated structures as secondary instabilities of the KH
rolls. A close comparison of the two cases shows a more rapid transition process in
figure 10(b), corresponding to Case II with the higher disturbance amplitude, where the
quasi-two-dimensionality and spanwise coherence of the KH rolls appears to be lost faster,
fuelled by the free stream disturbances. Returning to figure 9, the snapshots in panels
(c,d) are taken during the bubble bursting at tU/c = 1.5. Figure 9(e, f ) corresponds to
snapshots taken after the DSV has formed (tU/c = 2.5) and the separated region covers a
considerable part of the airfoil. The plots show the highly turbulent flow in the separated
region in the wake of the DSV including, in figure 9(b,d, f ), the eddy responsible for the
spike in the wall skin friction.

5.3. Generation of the statistical ensemble and data collection
For the statistical analysis of the flow during the incipient dynamic stall, a population of
25 separate simulations of the pitch-up motion in Case II are performed, with a focus
on the vortex shedding during the bursting of the LSB at higher disturbance levels. Due
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(a) (b)

(c) (d )

(e) ( f )

Figure 9. Isosurfaces of the instantaneous λ2-structures coloured by streamwise velocity Ux on the suction side
of the airfoil for x/c ≤ 0.4 at the same instants as figure 8. Here (a,c,e) Case I; (b,d, f ) Case II. The streamwise
velocity (from blue to red) is cropped at Ux ∈ [−1, 3] with Ux/U = 1 corresponding to green. Here (a) Case
I, tU/c = 0.5, α = 9.12◦; (b) Case II, tU/c = 0.5, α = 9.12◦; (c) Case I, tU/c = 1.5, α = 11.99◦; (d) Case II,
tU/c = 1.5, α = 11.99◦; (e) Case I, tU/c = 2.5, α = 14.85◦; ( f ) Case II, tU/c = 2.5, α = 14.85◦.

(a) (b)

Figure 10. Close-up of the transition process in figure 9(a,b). Here (a) Case I, tU/c = 0.5, α = 9.12◦;
(b) Case II, tU/c = 0.5, α = 9.12◦.

to the prohibitive cost of such a large number of fully resolved DNS computations, the
statistical ensemble is generated by running multiple realisations of the flow at a lower
polynomial order of N = 5, but with an otherwise identical set-up. As the equations are

986 A3-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.314


J.S. Kern, D.C.P. Blanco, A.V.G. Cavalieri, P.S. Negi, A. Hanifi and D.S. Henningson

solved using the SEM, this corresponds to p-coarsening, where the finite-element mesh
is unchanged but the order of the polynomial basis expansion within each element is
reduced. This guarantees uniform coarsening and does not affect the integration order.
The main difference lies in the implicit relaxation term filtering, which is designed to act
on the highest wavenumbers in modal space, i.e. on the coefficients of the highest-order
expansion polynomials. While the filtering is identical in both simulation set-ups, the
reduction of the polynomial order implies that a larger part of the energy is filtered
throughout the computational domain. As the mesh was designed for DNS resolution
in the LSB at polynomial order N = 7 with negligible filtering in the region of interest,
the ensemble simulations are well-resolved large-eddy simulations where only the highest
resolved frequencies are implicitly filtered for numerical stability, which is supported by
the very good overall agreement between the simulations. Reducing the polynomial order
decreases the computational cost to such a degree that a single DNS of the flow case
at polynomial order N = 7 has approximately 70 % of the computational cost of the 25
simulations of the statistical ensemble in terms of core hours.

The initial condition for each realisation of the ensemble is a snapshot of the full flow
field sampled from the precursor simulation used for the DNS (taken from Kern et al.
(2022), Case II; see also § 3.2 for details). In order to obtain a dataset of statistically
independent realisations, the initial conditions are sampled from the precursor simulation
at constant intervals of �tiU/c = 0.04 covering most of the precursor simulation. While
this separation does not avoid large-scale correlations of the far field that are of the order
of the convective time scale, the dynamics of the separation bubble, that have much shorter
time scales, are uncorrelated. In each realisation of the dataset, the flow is simulated for
2.52 convective times (corresponding to a final angle of attack of α ≈ 14.6◦ where the
airfoil is in full stall) and the full flow fields are saved every �tU/c = 0.0011 yielding
2400 snapshots.

As the vortex shedding is confined to a comparatively small region of the flow
close to the leading edge, the flow data is interpolated onto a smaller mesh covering
only the volume of interest using spectral interpolation, thus considerably reducing the
computational cost of the statistical analysis. The interpolating mesh has a resolution
of 648 × 100 × 64 points in the streamwise, wall-normal and spanwise directions,
respectively. Taking advantage of the spatial homogeneity in the spanwise direction, the
data is sampled at equidistant points along the span and Fourier transformed prior to
further analysis, which is then carried out on individual 2-D Fourier modes. A slice
of the interpolating mesh used for the preprocessing and data collection is shown in
figure 11 (red) compared with part of the mesh close to the airfoil leading edge used for
the simulation (grey).

5.4. Statistical ensemble of realisations of Case II
In this section, we analyse the dataset from § 5.3 in relation to the DNS results, before
switching to a fully statistical approach in § 6. To put the data into perspective, figure 12
compares the aerodynamic coefficients for each of the realisations in the ensemble (grey)
as well as the ensemble average (black) with the data from the two DNS computations
(colour) discussed in the previous sections. Note that the aerodynamic coefficients are
computed on the original domain before interpolation. As expected for integral quantities,
we observe very good agreement in spite of the slightly lower resolution, with slightly
lower variations over time than in the DNS computations. In the following, we focus
mainly on the coefficient cf on the airfoil surface, given by the skin friction normalised by
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Figure 11. A 2-D slice of the simulation mesh close to the airfoil in grey (only spectral elements are shown,
grey) overlaid with a slice of the interpolating mesh in red (only every 12th (third) point is shown in streamwise
(wall-normal) direction).

the far field dynamic pressure 1
2ρU2, which can be compared with the corresponding DNS

data in figure 6. In direct comparison, note that the DNS simulations have considerably
smaller spatiotemporal domain than the statistical ensemble which focuses exclusively
on the onset of dynamic stall close to the leading edge. The wall stresses (including
contributions from both friction and pressure) encapsulate much of the flow dynamics
relevant to aerodynamics and are thus a reference metric that is widely used (Benton &
Visbal 2019). Since the friction and pressure maps are very similar, we show only the data
for the skin friction coefficient cf .

The average of the cf over the span and all realisations is shown in figure 13(a).
The space–time ensemble average of the population retains many of the features of
the realisations indicating that the overall flow features are captured by the ensemble
average. The three main features of leading-edge dynamic stall can be identified, namely
(i) the initial phase with the small LSB with turbulent reattachment (tU/c < 1) similar
to the statistically stationary case; (ii) the bursting of the LSB (1 < tU/c < 2); (iii) the
formation, growth and subsequent downstream movement of the DSV (tU/c > 2).

A close inspection of the ensemble average shows a strong vortex that is shed from
the leading edge at startup, evidenced by a strongly localised disturbance of the friction
coefficient in the LSB near (x, t) = (0.1, 0), and travels through the entire domain. This
structure is numerical in nature and is due to a combination of a single-file restart (i.e.
low temporal accuracy for the first two time steps while ramping up to the third-order
backward differencing scheme employed for the time stepping) and the fact that the initial
conditions are interpolated from the precursor simulation run at higher polynomial order
(on the same spectral element mesh). The appearance of this artefact of the employed
restart method shows the dynamical sensitivity of the separation bubble to the simulation
details. In fact, the mere change of polynomial order leads to earlier transition and an
overall shortening of the LSB (by approximately 15 %) which can be seen by comparing
the average reattachment point of the boundary layer at tU/c = 0 with tU/c = 0.25. As
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Figure 12. Comparison of the span-averaged aerodynamic coefficients during the pitching motion of the DNS
runs for Cases I and II (red and blue, respectively) with the ensemble realisations (grey) and the ensemble
average (black). (a) Span-averaged drag coefficient cD. (b) Span-averaged lift coefficient cL. (c) Span-averaged
moment coefficient around the quarter-chord cM . Note that the plots only show the time interval covered by
the ensemble simulations, which are much shorter than the DNS runs as indicated by the grey boxes in the
corresponding plots in figure 5.

this vortex appears identically in the entire population it contributes nearly exclusively to
the ensemble average and is to first order inconsequential for the fluctuations.

The ensemble average can then be compared with the full realisations nos. 9 and 16
shown in figure 13(b,c). We see that the laminar flow region is essentially unchanged
whereas turbulent regions show larger deviations (the comparison with other realisations
is similar). In particular, the DSV develops earlier or later compared with the mean,
evidenced by the shift in the mean reattachment line, particularly evident for realisation
no. 16. While the size of the LSB is comparable during the initial phase, the largest
discrepancies appear during the bubble-bursting process. The ensemble average shows a
smooth elongation of the LSB merging into the DSV, which contrasts with the individual
realisations where energetic vortex shedding from the bursting bubble has clear traces in
the wall stress data.

To put the details of the particular realisations into context and to provide an overview
of the full dataset, the fluctuations in span-averaged cf around the ensemble average are
shown in figure 13(d) for each realisation, which showcases the variability within the
ensemble. The plots of the fluctuations hint at the complexity of the dynamics at all
scales from the formation and downstream movement of the DSV itself to the small,
backward propagating waves in the separated region during the bubble bursting. Note that
the same colour scale is used in all figures, i.e. the fluctuations are of the same order as the
mean in most realisations. In particular, during the bursting of the separation bubble, the
fluctuations have a large magnitude and considerable spatiotemporal coherence which we
will exploit to extract and analyse these structures using the space–time POD framework.

Figure 14 shows instantaneous flow visualisations of realisation no. 16 at four different
points during the development of dynamic stall focusing on the bursting of the LSB that
can be compared directly with the span averaged cf data in figure 13(c). The first snapshot
is taken before the LSB bursts, clearly showing the rapid transition of the free shear layer
after separation, typical for low free stream turbulence environments. The shear layer rolls
up into approximately spanwise rolls due to the inviscid KH instability that subsequently
undergo spanwise modulation via a secondary instability and quickly degenerate into
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Figure 13. Space–time diagrams of the span-averaged wall skin friction coefficient (cf ) on the suction side
of the airfoil near the leading edge for kz = 0. The flow is from left to right and the domain extent as well
as the colour scale are the same in all figures. (a) Ensemble average. The black line is the average zero
contour. (b,c) Full realisations no. 9 and no. 16, respectively. The black line is the same as in (a) for reference.
(d) Fluctuations around the ensemble average for all realisations in the dataset.
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(a) (b)

(c) (d )

Figure 14. Snapshots of the instantaneous λ2-isosurfaces computed from realisation no. 16 coloured by the
streamwise velocity component Ux during incipient dynamic stall. The colour scale goes from Ux = −2 (blue)
to Ux = 4 (red), centred on the free stream velocity Ux = 1 (green). The flow is from left to right and the
coordinate system for the visualisation rotates with the airfoil. Here (a) tU/c = 0.5, α = 9.12◦; (b) tU/c = 1.5,
α = 11.99◦; (c) tU/c = 1.75, α = 12.70◦; (d) tU/c = 2.0, α = 13.42◦.

small-scale turbulence leading to the reattachment of the turbulent boundary layer. It is
interesting to note that the KH vortices, which are dominant structures when considering
the entire flow field (in terms of variance of the kinetic energy captured via spectral POD
(Kern et al. 2022)), do not have a significant signature in the wall skin friction coefficient.
This is due to the fact that they develop on the upper side of the LSB from which the wall is
shielded by the turbulent recirculation region. The subsequent snapshots are taken during
the bursting of the LSB that culminates in the formation of the DSV which can clearly
be seen in figure 14(d). In the instants leading up to the DSV formation, we observe clear
signs of the energetic vortex shedding in the spatial variation of the turbulent region in the
boundary layer due to turbulent entrainment at the scale of the entire bursting separation
bubble. At the same time, the vortex shedding, while it has large-scale coherence, is
superimposed with considerable turbulent fluctuations of different scales. A statistical
analysis of the flow data can therefore be used to strip the coherent structures of the random
fluctuations and distil the essential features of the wave trains.

6. Spatiotemporally correlated structures using space–time POD

6.1. Application of the space–time POD formulation on dynamic stall data
We now introduce the computational algorithm employed in the application of the
space–time POD method for the present case, in a procedure analogous to space-only
POD.

The analysis starts with the definition of two domains of integration as described
in § 4.3: Ω ′ ≡ X × T , containing the whole spatiotemporal domain of the simulations
(all data points in space and time); and Ω ≡ Xwall × T defined in the same time
interval but only containing points over the airfoil wall. Next, we compute zero-mean
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velocity fluctuations,

u′(x, t) = u(x, t) − E{u(x, t)}, (6.1)

and zero-mean wall stress data containing the fluctuation signals of pressure and friction
coefficients on the airfoil surface, given, respectively, by

c′
p(xw, t) = cp(xw, t) − E{cp(xw, t)} (6.2)

and
c′

f (xw, t) = cf (xw, t) − E{cf (xw, t)}. (6.3)

Given the ubiquity of applications of the more common space-only POD, where the mean
of the realisations is in practice obtained using uncorrelated snapshots in time of the
stationary process thus implicitly invoking a time average, we stress that in the context
of space–time POD, the mean denotes the average over separate realisations of the full
spatiotemporal evolution of the flow and the fluctuations are therefore the deviations (in
space and time) of each realisation with respect to this average.

With these values, we construct the velocity data matrix

U =
⎡
⎣ | | |

u′
1(x, t) u′

2(x, t) · · · u′
Nr

(x, t)
| | |

⎤
⎦ , (6.4)

of size 3NΩ ′-by-Nr, where NΩ ′ is the total number of points in Ω ′, and the wall stress data
matrix

Q =

⎡
⎢⎢⎢⎢⎢⎣

| | |
c′

f1(xw, t) c′
f2(xw, t) · · · c′

fNr
(xw, t)

| | |
| | |

c′
p1

(xw, t) c′
p2

(xw, t) · · · c′
pNr

(xw, t)
| | |

⎤
⎥⎥⎥⎥⎥⎦ , (6.5)

of size 2NΩ -by-Nr, where NΩ is the number of points in Ω . Since 2NΩ � Nr, the snapshot
method (Sirovich 1987) is employed. We compute the correlation matrix in the space
spanned by the rows of the wall stress data matrix

M = 1
Nr

Q∗WQ (6.6)

with {·}∗ denoting the conjugate transpose and W denoting the diagonal positive-definite
matrix containing spatiotemporal quadrature weights. The eigenvectors, Θ , and the
eigenvalues, Λ, of M are, respectively, the space–time POD expansion coefficients and
the energies associated with each mode. The space–time POD modes, Φ, of the wall stress
data are consequently obtained via the relation

Φ = 1√
Nr

QΘΛ−1/2. (6.7)

Finally, considering the properties exposed in § 4.3, the extended space–time POD
modes, Ξ , of the full velocity field are simply given by

Ξ = 1√
Nr

UΘΛ−1/2. (6.8)
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Figure 15. Convergence study of the POD of the full wall stress data. The colours refer to the considered
permutations, i.e. in which order the realisations are removed from the ensemble before computing the POD.
The first six realisations of each permutation are 21, 2, 23, 11, 15, 10 (red), 24, 17, 16, 21, 2, 3 (blue) and
19, 16, 3, 11, 10, 24 (yellow).

6.2. Convergence study
Before analysing the results of the space–time POD, the question of convergence of the
individual modes needs to be addressed, especially considering the small sample size
of the present dataset. The convergence study in this work follows the method proposed
by Hekmati, Ricot & Druault (2011) and only considers convergence with respect to the
number of independent realisations, which is the only restrictive parameter in this study.
The convergence study consists of performing space–time POD analyses of all columns of
Q (as defined in § 6.1) serving as a reference labelled r and reduced datasets where some
realisations have been removed. This is done in order to compute the correlation coefficient
between the resulting nth POD modes from the full dataset and reduced datasets, ordered in
the standard fashion according to the magnitude of the associated eigenvalue. The reduced
datasets are labelled according to the number k of removed realisations. Using the notation
of this paper, the cross-correlation coefficient is defined as (Hekmati et al. 2011)

C(n)
k = 〈φr

n,φ
k
n〉X×T√

〈φr
n,φ

r
n〉X×T

√
〈φk

n,φ
k
n〉X×T

. (6.9)

Due to the small number of realisations in the dataset that therefore is more sensitive to
outliers, we perform the same convergence study on a number of random permutations of
the dataset in order to be able to assess the impact of specific realisations on the dominant
POD modes. The cross-correlation coefficients for the first three POD modes as the dataset
is reduced are shown in figure 15. The three examples show different random permutations
of the realisations that are representative of the variability of the data. We see that, in spite
of the small size of the dataset, the first mode seems well converged. The strong variations
of the cross-correlation coefficient for modes 2 and 3 on the other hand indicate that they
are not well converged and that their spatiotemporal structure crucially depends on the
inclusion/omission of particular realisations.

6.3. Wall stress space–time POD results
A naïve application of the space–time POD framework to the full velocity field is not useful
in the quest to identify the vortex-shedding events during the bursting of the LSB. Indeed,
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the dominant structures in terms of the fluctuation of turbulence kinetic energy (the natural
measure arising from the inner product) are the KH vortices that are visible in the flow
visualisations in figure 9 and the DSV at later stages of the simulations (not shown), which
were also identified in the spectral POD analyses performed on the precursor simulations
at constant angle of attack (Kern et al. 2022). Since we are aiming to extract the coherent
vortex shedding during the LSB bursting, we instead choose to perform the analysis on
the full wall stress data (including both skin friction and pressure contributions) where
the vortex shedding is a dominant feature making its extraction feasible even with a small
dataset. This restriction all but removes the KH rolls from the analysis since, as we noted
earlier, their signature at the wall is negligible.

As a first step, we perform space–time POD for kz = 0 without the mean (i.e. only
the fluctuations, as shown in figure 13(d) for cf ). The same analysis is also performed for
kz > 0 but the data revealed little spatiotemporal coherence. For completeness, an example
of the results of the POD are shown in Appendix B.

The space–time POD spectrum for kz = 0 considering the full wall shear data is
shown in figure 16(b). The dominant mode, depicted in figure 16(a), which we have
shown to be robust to variations of the dataset size, is associated with the fluctuations
of the DSV, in particular, an earlier or later formation of the vortex core which, once
formed, has a similar spatiotemporal development in all realisations. The projection of the
realisations on the dominant mode, shown in the lower plot in figure 16(b), quantifies the
proportion of the variance that can be explained with the considered mode. Realisations
with large projections on the dominant mode, like for realisations nos. 2, 9, 16 and 17,
are representative of the most common spatiotemporal variation in the DSV formation
and movement. In order to understand the dynamic significance of mode 1 it is useful to
consider a low-order reconstruction of the flow using only the mean and the dominant
mode, as shown in figure 17 for realisations no. 9 and 16, which have a strong positive
and negative projection onto the dominant mode, respectively. We see that, the positive
projection onto the first mode leads to an earlier generation of the DSV and the negative
projection delays its formation. This is specially apparent in figure 17(a) showing a
snapshot of the instantaneous friction coefficient at tU/c = 2.0, showing that the backflow
region (negative cf ), that corresponds to the strengthening DSV and has a similar shape in
all cases, is shifted progressively downstream going from realisation no. 6 via the ensemble
average to realisation no. 9.

Conversely, a small projection on the dominant eigendirection is not necessarily an
indication that the corresponding realisation has a similar spatiotemporal evolution as the
mean. For example, realisation no. 20 has essentially no correlation with the dominant
mode because in that realisation the DSV forms at the same time as in the average
but strongly fluctuates in strength as it moves downstream. While the dominant and
subdominant modes are mainly localised on the DSV, which is the most energetic structure
in the dataset, the vortex shedding during the bubble bursting process is captured by the
third mode shown in figure 16(c). Given the low confidence in the convergence of its
spatial structure indicated by the convergence study, a detailed analysis of this directly
computed mode is not attempted. The convergence analysis for this mode clearly shows
that the mode is highly influenced by specific realisations, e.g. the fifth realisation to be
removed in the permutation no. 3 (yellow) (see figure 15). The corresponding realisation
is no. 19, which indeed exhibits a particularly strong vortex shedding. The effect of the
omission of e.g. realisation no. 2 is similar. While the present dataset is too small to make
accurate statements on the statistical predominance of the vortex shedding in an arbitrary
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Figure 16. Space–time POD modes of the full wall stress data (only the friction coefficient is shown).
(a) Space–time plot of the leading mode. The black line indicates the zero contour of the mean. (b i) Normalised
POD spectrum. The horizontal dashed line indicates the mean, which corresponds to the spectrum of
uncorrelated data. (b ii) Normalised projection of the mode on each realisation. (c,d) Space–time plot and
projection for the third mode.

realisation of the flow case, we can extract the corresponding structures as they appear in
the present dataset.

In order to isolate the vortex shedding from the fluctuations of the DSV, we choose
to perform space–time POD on a subset of the data focusing on different regions of
interest separately. In the first step, we attempt to extract the structures of the vortex
shedding during the LSB bursting by considering a slanted window in the space–time plot.
Since the wave trains have a convection speed that is considerably higher than that of the
downstream movement of the DSV, we can use their mean convection speed Uc = 0.55U
to define the slanting angle of the window, starting at the leading edge at tU/c ∈ [1, 1.5],
that covers the region most affected by the vortices. In this fashion, we can essentially
remove the influence of the DSV from the correlations. The resulting POD analysis is
shown in figure 18(a,b). We observe that the spectrum of the localised space–time POD
identifies the vortex shedding in the dominant mode which is associated with a larger
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Figure 17. Low-order reconstruction of flow realisations using the average (figure 13a) and the first space–time
POD mode (figure 16a). Panel (a) compares the skin friction coefficient of the ensemble average and the
reconstructions at tU/c = 2.0. Panels (b,c) show the low-order reconstruction, respectively, of realisations no. 9
and no. 16, which can be directly compared with figure 13(b,c).

relative eigenvalue. In the considered region, the wave trains are the dominant coherent
structure.

As a second step and a cross-check, we also isolate the main fluctuations of the DSV
itself. We localise the POD domain on the vortex by considering a window slanted instead
with Uc = 0.3U, starting at the leading edge at tU/c = 1, which cuts off the wave trains.
The results of the POD are shown in figure 18(c,d). We see that the spatial structure of the
first mode of this reduced dataset is essentially identical to that of the first mode computed
using the full dataset, which confirms that the fluctuations pertaining to the DSV are the
dominant structures overall. At the same time, restricting the domain allows us also in this
case to obtain a better separation of the leading eigenvalues in the spectrum indicating that
the mode is more dominant in the subset compared with the full dataset.

6.4. Extended space–time POD and reconstruction of the velocity field
Now that we have extracted the correlations pertaining to the effect of the vortex shedding
on the wall stress data, we use the extended POD method, as described in § 6.1, to
reconstruct the part of the velocity field that is directly correlated with the corresponding
wall stress events. This approach also has two other practical benefits. Considering the
effects on the wall and extending the local correlations to the full flow field, on the one
hand, is a typical situation in flow experiments where sensors are often placed over the
airfoil surface, and, on the other hand, leads to a considerable reduction of the problem
dimensionality and hence a computationally cheaper POD analysis.

The extended POD modes representing the full field flow structures correlated with the
high wall-stress events are, by construction, 2-D in space (kz = 0) and evolve in time.
Snapshots of the spatial structure of the mode in the flow field are shown in figure 19(b)
for four different time instants indicated by dashed lines in the space–time diagram in
figure 19(a). We can see that the wave trains that are shed from the LSB have a clear
correlation across the entire separated flow region that was already hinted at by the
large-scale deformations of the turbulent boundary layer in figure 9. We note that the
vortices exhibit strong correlation only in the fully turbulent part of the boundary layer
and are thus weakly correlated with the dynamics in the laminar and transitional parts
of the bubble. Furthermore, the vortical structures seem to grow with the boundary
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Figure 18. Dominant mode of the space–time POD on the subset of the stress data defined by the dashed boxes,
corresponding to the vortex shedding (a,b) and the DSV (c,d). (a,c) Space–time plot of the wall shear-stress.
The black line indicates the zero contour of the mean. (b,d) Normalised POD spectrum (b i,d i) and normalised
projection of the mode on each realisation (b ii,d ii). The horizontal dashed line indicates the mean, which
corresponds to the spectrum of uncorrelated data.

layer that becomes noticeably thicker even before the DSV starts forming. Especially
during the earlier stages of the bursting (tU/c = t2) we can also notice a variation of the
shapes of the vortices as they are convecting downstream. Indeed, close to their formation
(x ≈ 0.1), the vortices appear to lean backwards, against the mean shear of the reattaching
turbulent boundary layer. Reminiscent of the well-known Orr mechanism in parallel shear
flows, the vortices grow in strength as they straighten and convect downstream, feeding
off of the mean shear. After x ≈ 0.25 the vortices are more round, spread-out and are
decaying. At tU/c = t3, similar dynamics are at play but the spatial amplification of the
sheared vortices is stronger and the location of the maximum has moved downstream to
x ≈ 0.3. The process continues up until the gradual formation of the DSV interrupts the
vortex shedding. The evolution of the kinetic energy of the reconstructed extended POD
mode over time is shown in figure 20. We can clearly see the lack of coherence prior
to the correlation region (grey area), the rapid energy growth of the vortices that reach
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Figure 19. Extended space–time POD. (a) Space–time diagram of the dominant space–time POD mode of the
wall shear-stress of figure 18(a), extended to the full airfoil surface. The black dashed lines indicate instants
in time ti for which the Uy-velocity component of the same space–time POD mode, extended to the full 3-D
domain, is shown in (b). An animation of the dominant space–time POD mode is available in the supplementary
material (movie 1) available at https://doi.org/10.1017/jfm.2024.314.
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Figure 20. Evolution of the kinetic energy of the extended POD mode over time. The shaded area indicates
the temporal correlation domain for the POD mode of the wall stress data and the dashed lines indicate the
time instants for which the mode structure is shown in figure 19.

their maximum amplification close to tU/c = t3 before the sharp decay that heralds the
formation of the DSV.

7. Conclusion

The influence of low levels of background disturbances on the onset of dynamic stall on
a NACA0009 airfoil in constant-rate pitch-up motion from a statistically steady state at
an angle of attack of α = 8◦ is investigated by means of DNS of the LSB close to the
leading edge that bursts and thus initiates stall. Two background disturbance levels are
chosen based on the turbulence intensity upstream of the leading edge – Tu = 0.02 %
and Tu = 0.05 % – both corresponding to low disturbance environments typical of low
turbulence intensity academic wind tunnels and aircraft cruise conditions, respectively.
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In spite of the small absolute difference in the disturbance amplitudes, the dynamics
of the flow evolution differs between the two considered cases. The results for the case
with the lower amplitude disturbances and a comparable computation in the literature
(Sharma & Visbal 2017) using a different numerical method with no external disturbances
are in very good agreement, in particular during the initial phase of the pitch-up and the
bursting of the LSB. The overall development of dynamic stall as well as details of the
span-averaged skin friction and pressure coefficient histories compare well, validating
the numerical methods in the present work. At the same time, the similarity of the
computations shows that disturbances with such a low amplitude do not influence the onset
of dynamic stall considerably. The comparison between the two DNSs at different levels of
free stream disturbances shows a similar overall stall development but with considerable
differences in the details of the boundary layer dynamics during incipient dynamic stall
and a less smooth formation and downstream movement of the DSV. The dominant feature
of this case is the emergence of strong coherent vortex shedding during the bursting of the
LSB which has not been documented during incipient dynamic stall before. The present
high-fidelity simulations provide strong evidence that the flow at incipient dynamic stall
involving LSBs leads is highly sensitive even to levels of free stream disturbances that
are traditionally considered essentially laminar, which needs to be considered in detailed
comparisons with experimental data as well as in numerical simulations in this flow
regime.

In order to ascertain the statistical relevance of the transient vortex shedding, an
ensemble of 25 well-resolved implicit large-eddy simulations of the flow case is generated.
The ensemble average clearly identifies the three key components of the leading-edge
dynamic stall, namely the existence of a short LSB close to the airfoil leading edge, its
eventual bursting and the subsequent formation of the DSV. The vortex shedding found in
the DNS appears in a large number of realisations showing that it is a statistically relevant
dynamical feature of the bursting of the LSB in the presence of low-amplitude free stream
disturbances.

Using space–time POD, a formulation of POD that removes the requirement of
statistical stationarity, we extract the spatiotemporal structure of the vortex shedding from
the dataset of the non-autonomous flow data. Since these wave trains leave a clear trace in
the wall stresses on the airfoil surface, the space–time POD analysis of the corresponding
data is combined with extended POD in order to reconstruct the components of the full
flow field around the airfoil leading edge that are correlated with the wall stress data. This
approach allows the transient dynamics of the vortex shedding to be distilled from the data
in spite of the small number of available flow realisations. The reconstruction of the wave
trains involved in the vortex shedding, although locally turbulent, exhibit a large-scale
coherent evolution that is reminiscent of transient energy growth in wall bounded shear
layers via the linear Orr mechanism. This example shows the potential of the space–time
POD methodology to act as an objective tool for the extraction of coherent flow features
from non-autonomous flow data which is applicable to both experimental and numerical
datasets. The ability to extract the transient flow features during incipient dynamic stall
is fundamental for their subsequent analysis and characterisation and is the first step
to determine their role in the onset of dynamic stall under the influence of background
disturbances.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.314.
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Appendix A. A model problem: Ginzburg–Landau equation

Before applying the space–time POD framework to the wall stress data for which the
dataset is very small, we first demonstrate it using a simpler system. We choose the 1-D
CGLE which is often used as a simplified model of transport-dominated systems typical of
fluid dynamics problems (Bagheri et al. 2009). We test the methods presented in this text
in a manner that can be readily extended to time-dependent flow problems. The simplicity
of the CGLE equations has two main advantages for our purpose. On the one hand, the
CGLE are amenable to analytical treatment yielding more insight in the results and on the
other hand, the equations can be easily and cheaply integrated in time to yield a sufficiently
large dataset for accurate statistical evaluation via the presented method.

A.1. Ginzburg–Landau formulation
In the following section, we briefly describe the classical autonomous CGLE. The
nonlinear CGLE in state-space form is defined as a nonlinear system given by

dq
dt

= Aq − |q|2q + Bf , (A1)

where the nonlinearity |q|2q saturates the output in order to avoid unbounded responses
(q(x, t) < ∞ as t → ∞ (see Bagheri et al. 2009), the operator B is used to restrict the
forcing to a specific region in space and A represents a linear operator given by

A = μ − ν
∂

∂x
+ γ

∂2

∂x2 . (A2)

Within the linear operator, the complex-valued terms γ (∂2/∂x2) and ν(∂/∂x) model
diffusion and advection, respectively, while the real-valued parameter μ introduces
exponentially evolving perturbations. Following Bagheri et al. (2009), we define the
complex parameters ν, γ and μ as

ν = U + 2icu, (A3)

γ = 1 + icd, (A4)

μ = μ0 + c2
u. (A5)
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In order to elucidate the purpose of cu and cd, we consider the parallel linear
homogeneous CGLE system

dq
dt

= Aq (A6)

to which we apply the normal mode ansatz q = q̂ei(kx−ωt) in order to write

(−iω − μ + ikν + k2γ )q̂ = 0 (A7)

implying the quadratic dispersion relation

D(k, ω) = −iω − μ + ikν + k2γ = 0 (A8)

from which we isolate the frequency as

ω = Uk + cdk2 + i[μ0 − (k − cu)
2]. (A9)

The temporal growth of instabilities implies that ω has a positive imaginary part

Im{ω} > 0 =⇒ μ0 > (k − cu)
2 . (A10)

By isolating k, we obtain the interval of amplified wavenumbers

k ∈ (
cu − √

μ0, cu + √
μ0

)
, (A11)

centred at the value of cu, for which amplification of instabilities is maximised at
Im{ω} = μ0. This property can be used to define the threshold for local stability: if μ0 > 0
the system is unstable, while stability is guaranteed for μ0 < 0. Additionally, from the
dispersion relation in (A8), we deduce the relation

∂ω

∂k
= U + 2cdk − 2i (k − cu) . (A12)

Following the theory presented in Huerre et al. (2000), we seek to describe the nature
of the perturbations in the unstable region in terms of convective or absolute instabilities.
Therefore, we seek the wavenumber leading to a saddle point in the k plane, such as

∂ω

∂k
(k0) = 0 =⇒ k0 = U + 2icu

2(i − cd)
(A13)

which yields, using the dispersion relation in (A9), a unique absolute frequency given by

ω0 = −U2cd − 4Ucu − 4cdc2
u

4|γ |2 + i

[
μ0 − U2 + 4Ucdcu − 4c2

dc2
u − 8c2

u

4|γ |2
]

. (A14)

By setting Im{ω0} = 0 in (A14), we find the threshold

μt = (U + 2cdcu)
2

4|γ |2 − 8c2
u
(
1 + c2

d
)

4|γ |2 = U2
max

4|γ |2 − 2c2
u, (A15)

where Umax = (∂ω/∂k)(cu) = U + 2cdcu. Thereby, a choice of 0 < μ0 < μt produces
convective instabilities, with disturbances growing downstream that are ultimately swept
out of the domain, and μ0 > μt produces absolute instabilities, with disturbances
propagating both downstream and upstream, thus gradually contaminating the whole
spatial domain.

The considerations above clarify the function of the parameters cu and cd. While cu
defines the locally most amplified wavenumber, both modulate the threshold for absolute
instability.
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A.2. Non-autonomous system configuration
We seek to construct a simple non-autonomous system with features analogous to the wall
stress data from the dynamic stall simulations, which include changes in the amplitude of
wave-like perturbations in time. For this, we consider the function

μ(x, t) = μ0(x, t) + c2
u, (A16)

where we define

μ0(x, t) = μ1(t) + μ2
(x − c(t))2

2
with c(t) =

√
μ1(0) − μ1(t)

μ2/2
. (A17)

The quadratic dependence in x for μ has been employed several times in the literature
(Hunt & Crighton 1991; Bagheri et al. 2009; Chen & Rowley 2011; Towne et al. 2018). The
presence of a small factor μ2 implies that the variation in x is slow and the solution can
be considered locally parallel, such that the instability analysis performed in the previous
section still holds. For all subsequent computations, a value of μ2 = −0.01 is chosen, the
negative sign ensuring that the extremum of μ(x, t) is a maximum.

The modulation of μ1 in time is defined as

μ1(t) = μmax − μmin

1 +
(

1 − τ

τ

)β
+ μmin, (A18)

where τ = t/tmax , β = 8, μmin = 0.01 and

μmax = μt + |√−2μ2γ |
2

cos
arg γ

2
, (A19)

with μmax being the threshold for global instability deduced in Bagheri et al. (2009).
This set-up casts μ(x, t) as a parabola in space and a smooth step function in time,

as seen in figure 21, with the value at the inlet μ(0, t) = μmin + c2
u staying constant.

Therefore, instabilities have a fixed growth rate at all times near the position x = 0. At
t = 0, only the region of low x is unstable. After the rapid change in μ, the unstable region
grows in size and a pocket of absolute instability appears around the position of maximum
μ(x, t).

The system is integrated numerically using a Crank–Nicolson scheme with an explicit
treatment of the nonlinear term, |q|2q. Space is discretised with x ∈ [0, 40] in steps of
δx = 0.05, while time is discretised with t ∈ [0, 60] in steps of δt = 0.01. Homogeneous
Dirichlet boundary conditions are applied at both ends of the domain. A second-order
upwind and a second-order centred scheme are used for the first and second spatial
derivatives, respectively. The system is forced with white noise and the logical mask B
restricts the forcing to positions x ∈ [0, 2].

Due to the quadratic dispersion relation of the CGLE, the range of possible dynamics
is limited. In particular, only a single continuous range of unstable wavenumbers can be
chosen. The coexistence of unstable waves in two different wavenumber ranges as in the
wall stress data from the dynamic stall simulations is therefore not possible. However, this
simplified model proves to be a helpful tool to understand the capabilities and limitations
of the data-driven approach proposed in this work.

986 A3-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.314


J.S. Kern, D.C.P. Blanco, A.V.G. Cavalieri, P.S. Negi, A. Hanifi and D.S. Henningson

0

–1

–2

–3

–4

0

10

20

30 0
20

40
60

x

μ

t

Figure 21. Example of function μ(x, t). The region above the black line is unstable. The red line defines the
region of absolute instability.

60

50

40

30

20

10

0 10 20 30 40 10 20 30 40

60

50

40

30

20

10

0

1.0

0.5

–0.5

–1.0

0

x

t

x

3

2

1

0

–1

–2

–3

(a) (b)

Figure 22. Space–time plot of the real part of a realisation of the CGLE system, where L = 30 and U = 4.5.
(a) System’s response; (- -, black) unstable region; (- -, red) absolutely unstable region. (b) White noise forcing
localised at x ≤ 2.

A.3. Application of the space–time POD framework
To apply the space–time POD formulation to the Ginzburg–Landau model we consider the
parameters U = 4.5, cu = 0.6 and cd = −1, for which a realisation is shown in figure 22.
The analysis is performed using a zero-mean fluctuation signal

q′(x, t) = q(x, t) − E{q(x, t)} (A20)

with the expected value operator defined in (4.12). As described in the previous section,
we know from the model the range of most amplified wavenumbers, since they are shown
to be centred at the value of cu. With the present methodology, we aim to extract the
space–time evolution of the dominant coherent structures and identify the region in space
and time where they are most likely to occur.

We perform 100 runs of the system, each considered a single realisation. Since the
Ginzburg–Landau equation is 1-D and complex-valued, the addition of time into the
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Figure 23. Leading space–time POD mode of the CGLE system. (a) Space–time plot of the mode’s real
component; (- -, black) unstable region; (- -, red) absolutely unstable region. (b i) Normalised POD spectrum.
The dashed line indicates the mean, which corresponds to the spectrum of uncorrelated data. (b ii) Projection
of the leading POD mode onto the realisations.

integration domain implies POD modes are bi-dimensional and complex-valued. Results
for the leading, most energetic, space–time POD mode are shown in figure 23, where two
metrics are shown: the normalised POD spectrum and the normalised squared magnitude
of the projection of the mode onto each realisation. The first measures the relative
importance of a given mode in the percentage of the total energy, with a large separation
of a given mode over the rest implying the presence of a dominant coherent structure.
This spectrum is compared with the mean energy (dashed line), which corresponds to
the spectrum of a completely uncorrelated random process. A flat eigenvalue distribution,
close to the mean, implies the lack of energetically dominant structures. The normalised
squared magnitude of the projection can be interpreted as how much of the energy variance
of a single realisation, in percentage points, a given POD mode is able to explain and is
useful to identify individual realisations for which the POD structures are more or less
representative of the dynamics.

Appendix B. Space–time POD analysis of wall stress data for higher Fourier modes

The same analysis as for kz = 0 is performed for higher spanwise Fourier modes up to
kz = 7. This particular upper threshold was chosen based on the Fourier modes for which
the spectral POD analyses of the statistically stationary precursor simulations showed
significant spatial coherence, in particular of the KH rolls. A representative example of
the results for kz /= 0 is shown in figure 24 for kz = 1. From the figure, it is clear that the
wall stress data at higher spanwise wavenumbers is indeed highly random and exhibits
little spatiotemporal coherence leading to a very flat eigenvalue distribution, a situation
that is even more pronounced for higher kz. This is in line with the earlier observation
that the KH rolls do not have a signature on the wall that can be picked up by the
POD. This shows that the dominant coherent effects on the wall are essentially spanwise
invariant, although the random fluctuations in the higher wavenumbers are considerable.
It should be noted that the restriction of the computational domain to 0.1 chords in the

986 A3-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.314


J.S. Kern, D.C.P. Blanco, A.V.G. Cavalieri, P.S. Negi, A. Hanifi and D.S. Henningson

–1.0 –0.5 0.5 1.00

2.5

2.0

1.5

1.0

0.5

0 0.1 0.2 0.3 0.4

14

13

12

11

10

9

8

tU
/
c

α
(d

eg
.)

0.4

0.2

0
5 10 15 20 25

Mode i

λ
i/

Σ
kλ

k

1

0

–1
5 10 15 20 25

Realisation i
〈Φ

1
, 
Q

i〉/
|Q

i|

x/c

(b)
(i)

(ii)

(a)

Figure 24. Real part of the first mode of the space–time POD of the full wall stress data for the second Fourier
mode (kz = 1, only the friction coefficient part is shown). (a) Space–time plot. The black line indicates the zero
contour of the mean. (b i) Normalised POD spectrum. The dashed line indicates the mean. (b ii) Normalised
projection of the mode on each realisation.

span with periodic boundary conditions is ultimately equivalent to a truncation of the
dynamics. While this restriction has been shown to have little impact on the onset of
dynamic stall, the poststall dynamics (relevant for the region tU/c ≥ 2) are known to
exhibit long-wavelength dynamics along the span that cannot be captured here (Visbal
& Garmann 2017). Given the lack of coherence in the higher spanwise wavenumbers, we
do not consider these data further in the present study.
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