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Tests based on heteroskedasticity robust standard errors are an important technique
in econometric practice. Choosing the right critical value, however, is not simple at
all: conventional critical values based on asymptotics often lead to severe size distor-
tions, and so do existing adjustments including the bootstrap. To avoid these issues,
we suggest to use smallest size-controlling critical values, the generic existence of
which we prove in this article for the commonly used test statistics. Furthermore,
sufficient and often also necessary conditions for their existence are given that are
easy to check. Granted their existence, these critical values are the canonical choice:
larger critical values result in unnecessary power loss, whereas smaller critical values
lead to overrejections under the null hypothesis, make spurious discoveries more
likely, and thus are invalid. We suggest algorithms to numerically determine the
proposed critical values and provide implementations in accompanying software.
Finally, we numerically study the behavior of the proposed testing procedures,
including their power properties.

1. INTRODUCTION

Testing hypotheses on the parameters in a regression model with potentially
heteroskedastic errors is an important problem in econometrics and statistics
(see MacKinnon, 2013 for a recent survey). Since the classical t-statistic
(F-statistic, respectively) is not pivotal, or asymptotically pivotal, in such a case in
general, even under Gaussianity of the errors, so-called heteroskedasticity robust
(aka heteroskedasticity consistent) modifications of these test statistics have been
proposed, which are asymptotically standard normally (chi-square, respectively)
distributed under the null. These modifications date back to Eicker (1963, 1967)
(see also Hinkley, 1977) and have later been popularized in econometrics by
White (1980) with great success (see MacKinnon, 2013). Unfortunately, it turned
out that tests obtained from these heteroskedasticity robust test statistics by relying
on critical values derived from the respective asymptotic null distributions have a
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tendency to overreject the null hypothesis in finite samples (and thus are invalid),
especially so if the design matrix contains high-leverage points (see, e.g., Davidson
and MacKinnon, 1985; MacKinnon and White, 1985; Chesher and Jewitt, 1987).
One factor contributing to this overrejection tendency is a downward bias in the
covariance matrix estimators used in these test statistics (see Chesher and Jewitt,
1987). In an attempt to reduce the overrejection problem, variants of the before-
mentioned heteroskedasticity robust test statistics (often denoted by HC1 through
HC4, with HCO denoting the original proposal) have been considered (see Hinkley,
1977; MacKinnon and White, 1985; Cribari-Neto, 2004).! These variants rescale
the least-squares residuals before computing the covariance matrix estimator
employed in the construction of the test statistic. According to simulation studies
reported in, e.g., Davidson and MacKinnon (1985) and Cribari-Neto (2004), these
modifications, especially HC3 and HC4, seem to ameliorate the overrejection
problem to some extent, but do not eliminate it. Further numerical results are
provided in Chesher and Austin (1991) (see also Chesher, 1989). Numerical
results in Section 11 confirm these observations. Variants of HCO-HC3, denoted
by HCOR-HC3R, obtained by using restricted instead of unrestricted least-squares
residuals in the computation of the covariance matrix estimators employed by the
various test statistics (the restriction alluded to being the restriction defining the
null hypothesis), have been introduced in Davidson and MacKinnon (1985). In
their simulation experiments, this typically leads to tests that do not overreject,
but that may substantially underreject; see also the simulation results in Godfrey
(2006), who additionally also considers HC4R. However, as will be shown in
Section 11, also these tests are in general not immune to (sometimes substantial)
overrejection.

Note that, under the typical assumptions used in the literature, all the mod-
ifications of HCO discussed so far have the same asymptotic distribution as
HCO, and thus the same critical value as for HCO (obtained from the asymptotic
null distribution) is also used for these modifications in the before-mentioned
literature. Sometimes small-sample adjustments to the asymptotic critical values
are attempted by using the quantiles from a #;-distribution rather than from the
asymptotic normal distribution, where the degrees of freedom d are either set
to n — k (n and k denoting sample size and number of regressors, respectively),
or are obtained through proposals set down by Satterthwaite (1946) or Bell and
McCaffrey (2002) (see also Imbens and Kolesar, 2016). While these adjustments
can lead to improvements, numerical results presented in Section 11 show that
these adjustments are also not able to solve the overrejection problem in general.
An alternative approach is to use bootstrap methods to compute critical values for
the test statistics HCO-HC4 or HCOR-HC4R. The relevant literature is reviewed
in Potscher and Preinerstorfer (2023), and it is shown that such methods are again
not immune to the overrejection problem in general.” A referee has pointed out

IFor a recent contribution geared toward high-dimensional models, see Cattaneo, Jansson, and Newey (2018).

2 Another possibility is to use Edgeworth expansions to find better critical values (see Rothenberg, 1988 for the case of
the HCO test statistic and Davidson and MacKinnon, 1985 for the HCOR test statistic). Simulation results in Davidson
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the recent papers by Chu et al. (2021) and Hansen (2021), both of which propose
a testing procedure that can be viewed as a parametric bootstrap method.® No
theoretical justification is given in those papers. In fact, as we show in Appendix
G of the Supplementary Material, the proposed procedures can be considerably
oversized, a feature that can already be seen to some extent in the numerical results
given in Chu et al. (2021) and Hansen (2021).

A result by Bakirov and Székely (2005) needs to be mentioned here which states
that—in the special case of testing a hypothesis on the location parameter of a
heteroskedastic location model with errors that are Gaussian or scale mixtures
thereof—the classical two-sided r-test (with the usual critical value) has null
rejection probability not exceeding the nominal significance level under any form
of heteroskedasticity (for a certain range of significance levels); see Ibragimov
and Miiller (2010) for more discussion. Ibragimov and Miiller (2016), extending
a result in Mickey and Brown (1966), provide a related result in the case of the
comparison of two heteroskedastic populations (see also Bakirov, 1998). Section
5.2 provides some more discussion. We note that all results mentioned in that
section are applicable only to testing certain scalar linear contrasts.

Except for the Bakirov and Székely (2005) result and the variations discussed in
Section 5.2, which apply only to quite special situations like, e.g., the heteroskedas-
tic location model, none of the methods discussed so far comes with a theoretical
result implying that their associated (finite sample) null rejection probabilities
are guaranteed not to exceed the nominal significance level whatever the form
of heteroskedasticity may be.  In fact, it transpires from the preceding discussion
and the numerical results in Section 11 that for any of these methods, instances
of testing problems can be found for which the method in question overrejects
substantially. Therefore, it is imperative to be able to find size-controlling critical
values for the test statistics considered, i.e., critical values such that the resulting
worst-case rejection probability under the null hypothesis does not exceed the
nominal significance level. We shall, hence, pursue in this article the construction
of size-controlling critical values for the test statistics HCO-HC4, HCOR-HC4R,
as well as for (two variants of) the classical (i.e., uncorrected) F-statistic (including
the absolute value of the ¢ -statistic as a special case).

In the present article, we consider classes of test statistics that contain the before-
mentioned heteroskedasticity robust test statistics as special cases and show under
which conditions—and how—a critical value can be found such that the resulting

and MacKinnon (1985) and MacKinnon and White (1985) indicate that this does not work too well in practice. Of
course, such expansions could also be worked out for the other versions of the test statistics mentioned, but this does
not seem to have been pursued in the literature.

3 A reader has pointed out that the results in Phillips (1993) could also be developed into numerical approximations
similar to the ones in Hansen (2021).

4In the special case where the number of restrictions tested equals the number of regression parameters, Davidson
and Flachaire (2008) have a result which implies that certain wild bootstrap-based heteroskedasticity robust tests have
size equal to the nominal significance level (and hence do not overreject) in finite samples. We note that this result
in Davidson and Flachaire (2008) is not entirely correct as stated, but needs some amendments and corrections (see
Potscher and Preinerstorfer, 2023).
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test is guaranteed to have size less than or equal to «, the prescribed significance
level.” It turns out that the conditions for size controllability are broadly satisfied;
in particular, for the commonly used test statistics, they are satisfied generically in
a sense made precise further below.

We want to emphasize that the existence of size-controlling critical values
for heteroskedasticity robust test statistics is not a trivial matter, as it has been
shown in Preinerstorfer and Pétscher (2016, Sect. 4) that there are cases where
the size of such tests is always one, regardless of the choice of critical value (see
also the discussion in Proposition 5.7 further below). And, even in cases where
size control is possible by an appropriate choice of critical value, the standard
critical values proposed in the literature (including the small-sample adjustments
discussed above) are not guaranteed to deliver size control; in fact, they may fail
to do so by a considerable margin (i.e., they are much too small to control size
at the desired level) as shown in Section 11. Our theoretical results also show
the existence of a computable “threshold” C*, say, such that any critical value
C satisfying C < C* necessarily leads to a test with size 1 (see Proposition 5.5).
Since C* is not difficult to compute, it can be used as a simple check to weed out
unsuitable proposals for critical values.

Apart from avoiding overrejection by construction, the use of smallest size-
controlling, rather than conventional, critical values offer also advantages in terms
of power in instances where conventional critical values lead to underrejection
(i.e., lead to a worst-case rejection probability under the null hypothesis less than
the nominal significance level) as is sometimes the case (see Sections 6.2.2 and
11.2). In fact, once one has decided on a test statistic to be used for the given null
hypothesis, using the smallest size-controlling critical value (provided it exists) is
obviously the optimal way to proceed.

We also discuss how the critical values that lead to size control can be deter-
mined numerically and provide the R-package hrt (Preinerstorfer, 2021) for their
computation. The usefulness of the proposed algorithms and their implementation
in the R-package are illustrated numerically on some testing problems in Section
1 1. In particular, we compare tests obtained from various of the abovementioned
test statistics when used with smallest size-controlling critical values in terms of
their power functions. The package hrt also contains a routine for determining the
size of a test obtained from a user-supplied critical value. It is important to note
that if in a particular application one uses the observed value of the test statistic
as the user-supplied critical value in this routine, this routine actually returns a
“valid p-value” in the following sense: checking whether or not this “p-value” is
smaller than the prescribed significance level « is equivalent to checking whether
or not the observed value of the test statistic is larger than or equal to the smallest

SAless principled attempt at finding a valid test in a given testing problem (i.e., for given design matrix and restriction
to be tested) could consist in the practitioner studying the size of a handful of tests (obtained from a few of the
abovementioned test statistics in conjunction with a few of the proposed critical values) by means of an extensive
Monte Carlo study and in hoping that one of the test procedures emerges from this study as valid for the particular
testing problem at hand. Besides being a numerically costly procedure, it does not come with any guarantee of success.
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size-controlling critical value. Note that the former check avoids the need to actu-
ally compute the smallest size-controlling critical value, which is advantageous
from a computational point of view. See Section 10 for more details.

In the article, we work under a Gaussianity assumption. We stress, however,
that this assumption is mainly made for convenience of presentation; as shown in
Section 7.1, this assumption can be relaxed considerably.

While a trivial remark, we would like to note that the size-control results given
in this article can easily be translated into results stating that the minimal coverage
probability of the associated confidence set obtained by “inverting” the test is not
less than the nominal confidence level.

The article is organized as follows: after introducing notation and the most
important test statistics in Sections 2 and 3, Section 4 provides some intuition for
our size-control results which are presented in Sections 5 and 6, with some further
results relegated to Appendix A of the Supplementary Material. Section 7 discusses
ways of relaxing the underlying assumptions. Possible extensions to other classes
of test statistics are discussed in Section 8, whereas a few comments on power
are collected in Section 9. Section 11 provides the numerical results including
a power study, with some details relegated to Appendix F of the Supplementary
Material. Section 12 concludes. Proofs and some technical results can be found in
Appendixes B-D of the Supplementary Material. The algorithms for computing
rejection probabilities (including size) and smallest size-controlling critical values
are outlined in Section 10, and are presented in detail in Appendix E of the
Supplementary Material. Appendix G of the Supplementary Material contains a
discussion of Chu et al. (2021) and Hansen (2021).

2. FRAMEWORK
Consider the linear regression model
Y=XB+U, )

where X is a (real) nonstochastic regressor (design) matrix of dimension n x k
and where 8 € R¥ denotes the unknown regression parameter vector. We always
assume rank(X) = k and 1 < k < n. We furthermore assume that the n x 1
disturbance vector U = (uy,...,u,) has mean zero and unknown covariance
matrix o>%, where ¥ varies in a user-specified (nonempty) set € describing
the allowed forms of heteroskedasticity, with € satisfying € C €p,,, and where
0 < 02 < oo holds (o always denoting the positive square root).® The set ¢ will
be referred to as the “heteroskedasticity model.” Here,

Cher = diag(rlz, .. .,rnz) : riz > 0 for all i, er =1,

i=1

0Since we are concerned with finite-sample results only, the elements of Y, X, and U (and even the probability space
supporting Y and U) may depend on sample size n, but this will not be expressed in the notation. Furthermore, the
obvious dependence of € on n will also not be shown in the notation.
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where diag(z?,...,72) denotes the n x n matrix with diagonal elements given
by tiz. That is, the errors in the regression model are uncorrelated but can be
heteroskedastic. In particular, if € is chosen to be €,,, one allows for heteroskedas-
ticity of completely unknown form. The normalization condition ) ;_, rf =1
is included here only in order to guarantee identifiability of o> and X, and
could be replaced by any other normalization condition, such as maxt? = 1, or
7,']2 = 1, without affecting the final results (because any of these normalizations
leads to the same overall set of covariance matrices o>X when o2 varies through
the positive real line). Although a trivial observation, we stress the fact that all
conceivable forms of heteroskedasticity, including parametric ones, can (possibly
after normalization) be cast as submodels € of €y,;.

Mainly for ease of exposition, we shall maintain in the sequel that the dis-
turbance vector U is normally distributed. This assumption can be substantially
relaxed as discussed in Section 7.1. The linear model described in (1), together with
the just made Gaussianity assumption on U and with the given heteroskedasticity
model €, then induces a collection of distributions on the Borel-sets of R”, the
sample space of Y. Denoting a Gaussian probability measure with mean pu € R”
and (possibly singular) covariance matrix A by P, 4, the induced collection of
distributions is then given by

{P,q25 :m€span(X),0 <o? <00, % € €}, )

where span(X) denotes the column space of X. Since every X € € is positive
definite by assumption, each element of the set in the previous display is absolutely
continuous with respect to (w.r.t.) Lebesgue measure on R”.

We shall consider the problem of testing a linear (better: affine) hypothesis on
the parameter vector B € RX, i.e., the problem of testing the null RS = r against
the alternative R #~ r, where R is a g x k matrix always of rank ¢ > 1 and r € RY.
Set 90t = span(X). Define the affine space

My={pnueM: u=Xp and RB =r},
and let
My ={ueM: u=Xpand R #r}.

Adopting these definitions, this testing problem can then be written more
precisely as

Hozueimo,0<az<oo,2€€ VS. le,ueiml,0<c72<oo,26€.
3

With 9", we shall denote the linear space parallel to My, i.e., ML = My — po =
{XB : RB = 0}, where o € M. Of course, Dﬁg” does not depend on the choice of
o € My.

As already mentioned, the assumption of Gaussianity is made mainly for
simplicity of presentation and can be relaxed substantially (see Section 7.1). The
assumption of nonstochastic regressors entails little loss of generality either, which
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is important to emphasize: if X is random and U is conditionally on X distributed
as N(0,02%), witho? =o2(X) > 0and £ = Z(X) € €y, the results of the article
can be applied after one conditions on X (and a similar statement applies to the
generalizations to non-Gaussianity discussed in Section 7.1). See Section 7.2 for
more discussion and details. For arguments supporting conditional inference, see,
e.g., Robinson (1979). Note that such a “strict exogeneity” assumption is quite
natural in the situation considered here.

We next collect some further terminology and notation used throughout the
article. A (nonrandomized) fest is the indicator function of a Borel-set W in R”",
with W called the corresponding rejection region. The size of such a test (rejection
region) is—as usual—defined as the supremum over all rejection probabilities
under the null hypothesis Hj given in (3), i.e.,

sup sup supP, 25 (W).

HEM) 0<o2<oco LEC

In slight abuse of terminology, we shall sometimes refer to this quantity as “the size
of W over €’ when we want to emphasize the role of €. Throughout the article,
we let ,é(y) = (X’X)71 X'y, where X is the design matrix appearing in (1) and y €
R". The corresponding ordinary least-squares (OLS) residual vector is denoted
by #(y) = y — XB(y), and its elements are denoted by #,(y). The elements of X
are denoted by x;, whereas x;. and x,; denote the tth row and ith column of X,
respectively. For A an affine subspace of R” satisfying A C span(X), let S4(y)
denote the restricted least-squares estimator, i.e., X4 (y) solves

g;i}‘l(y —2)'(y—2).

Lebesgue measure on the Borel-sets of R” will be denoted by Ars, whereas
Lebesgue measure on an arbitrary affine subspace A of R” (but viewed as a
measure on the Borel-sets of R”) will be denoted by A 4, with zero-dimensional
Lebesgue measure being interpreted as point mass. The set of real matrices of
dimension  x m is denoted by R”™ (all matrices in the article will be real matrices),
and Lebesgue measure on this set equipped with its Borel o-field is denoted by
Agixm. Let B’ denote the transpose of a matrix B € R, and let span(B) denote the
subspace in R/ spanned by its columns. For a symmetric and nonnegative definite
matrix B, we denote the unique symmetric and nonnegative definite square root by
B'/2. For a linear subspace £ of R”, we let £ denote its orthogonal complement
and we let 1. denote the orthogonal projection onto £. The Euclidean norm is
denoted by ||-||, but the same symbol is also used to denote a norm of a matrix. The
Jjth standard basis vector in R" is written as e;(n). Furthermore, we let N denote the
set of all positive integers. A sum (product, respectively) over an empty index set
is to be interpreted as 0 (1, respectively). Finally, for A an affine subspace of R",
let G(A) denote the group of all affine transformations y — §(y — a) + a*, where
8 €R, 8 #0, and a as well as a* are elements of A; for more information, see
Section 5.1 of Preinerstorfer and Potscher (2016).
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3. HETEROSKEDASTICITY ROBUST TEST STATISTICS USING
UNRESTRICTED RESIDUALS

We now introduce two test statistics that will feature prominently in the following.
Variants thereof that use restricted residuals are discussed in Section 6. For results
pertaining to other classes of test statistics, see Section 8. The test statistic we
shall consider first is a standard heteroskedasticity robust test statistic frequently
encountered in the literature. It is given by

(RB () — /'yl ) RB () — 1), if detQpe (v) #0,

. A 4
0, if detQp.; (y) =0,

THet (y ) = {
where QHE, = R\f!Hg,R’ and where \iIHe, is a heteroskedasticity robust estimator
as considered in Eicker (1963, 1967), which later on has found its way into the
econometrics literature (e.g., White, 1980). It is of the form

Wi () = X'X) 7 X diag (di 2 (v), .. ., duli2 () X(X'X) 7,

where the constants d; > 0 sometimes depend on the design matrix. Typical choices
for d; suggested in the literature are d; = 1, di =n/(n—k), d; = (1 —h,-,-)_l, or
d; = (1 — hij)~2, where h;; denotes the ith diagonal element of the projection matrix
X(X'X)~'X’ (see Long and Ervin, 2000 for an overview). Another suggestion is
di=1- h,-,-)"si for §; = min(nh;;/k,4) (see Cribari-Neto, 2004). For the last three
choices of d; just given, we use the convention that we set d; = 1 in case h; = 1.
Note that ; = 1 implies &; (y) = O for every y, and hence it is irrelevant which real
value is assigned to d; in case h; = 1.7 The five examples for the weights d; just
given correspond to what is often called HCO—HC4 weights in the literature.

In conjunction with the test statistic Ty,;, we shall consider the following mild
assumption, which is Assumption 3 in Preinerstorfer and Potscher (2016). As
discussed further below, this assumption is in a certain sense unavoidable when
using Ty, It furthermore also entails that our choice of assigning T, (v) the value
zero in case Qper (y) is singular has no import on the probabilistic results of the
article (because of Lemma 3.1(c) and absolute continuity of the measures P, ,25).

Assumption 1. Let 1 <i; < --- < iy < ndenote all the indices for which e;; (n) e
span(X) holds where e;(n) denotes the jth standard basis vector in R”. If no such
index exists, set s = 0. Let X’ (—(i1,...i)) denote the matrix which is obtained
from X’ by deleting all columns with indices i, 1<ij<---<ig<n(fs=0,n0
column is deleted). Then rank (R(X'X) ' X' (=(iy, ..., i;))) = ¢ holds.

Observe that this assumption only depends on X and R and hence can be
checked. Obviously, a simple sufficient condition for Assumption 1 to hold is
that s = 0 (i.e., that e;j(n) ¢ span(X) for all j), a generically satisfied condition.

T1n fact, hii =1 is equivalent to i; (y) = 0 for every y, each of which in turn is equivalent to e;(n) € span(X).
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Furthermore, we introduce the matrix
B(y) = RX'X) ™' X'diag (in (v), ..., itn (7))
=RX'X)™"X'diag (€} (M) Mpunx)LY: - - -+ €, (M panexy 1Y) - 5)

The facts collected in the subsequent lemma, which is taken from Potscher and
Preinerstorfer (2023) (but see also Lemma 4.1 in Preinerstorfer and Potscher, 2016
and Lemma 5.18 in Potscher and Preinerstorfer, 2018), will be used in the sequel.

LEMMA 3.1.

(@) Qer (v) is nonnegative definite for every y € R".

b) Qs (y) is singular (zero, respectively) if and only if rank (B(y)) < q (B(y) =0,
respectively).

(c) The set B given by {y € R" : rank (B(y)) < q} (or in view of (b) equivalently
given by {y € R" : det(SAZHE, (y)) = 0}) is either a Agn-null set or the entire
sample space R". The latter occurs if and only if Assumption [ is violated (in
which case, the test based on Ty, becomes trivial, as then Ty, is identically
zero).

(d) Under Assumption 1, the set B is a finite union of proper linear subspaces of
R"; in case q = 1, B is even a proper linear subspace itself.

(e) Bisa closed set and contains span(X). Furthermore, B is G(IN)-invariant and,
in particular, B+ span(X) = B holds.

In light of Part (c) of the lemma, we see that Assumption | is a natural
and unavoidable condition if one wants to obtain a sensible test from Tp,,..
Furthermore, note that, if B = span(X) is true, then Assumption 1 must be satisfied
(since span(X) is a Ars-null set due to the maintained assumption k < n). As shown
in Lemma A.3 in Potscher and Preinerstorfer (2018), for any given restriction
matrix R, the relation B = span(X) holds generically in various universes of design
matrices. For later use, we also mention that under Assumption 1, the test statistic
T 1s continuous at every y € R™\B.!°

Next, we also consider the classical (i.e., uncorrected) F-test statistic, i.e.,

A _ 71 N
Toe(y) = RB) =1 (52(y)R (X'X) IR/) (RB(y)—r), ify¢ span(X),
0, if y € span(X),
(6)

where 6%(y) = it (y)' it (y) /(n — k) > 0 (which vanishes if and only if y € span(X)).
Our choice to set T, (y) = 0 for y € span(X) again has no import on the probabilistic
results in the article, since span(X) is a Ars-null set as a consequence of the
maintained assumption that k < n (and since the measures P, ;25 are absolutely

81f Assumption 1 is violated, B equals R" by Part (c).

91f this assumption is violated, then T, is identically zero, an uninteresting trivial case.

101¢ Assumption | is violated, then T, is constant equal to zero, and hence is trivially continuous everywhere.
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continuous). For reasons of comparability with (4), we have chosen not to normal-
ize the numerator in (6) by ¢, the number of restrictions to be tested, as is often
done in the definition of the classical F-test statistic. This also has no import on
the results as the factor é can be absorbed into the critical value. For later use, we
also mention that the test statistic 7, is continuous at every y € R"\span(X).

Remark 3.2.

(i) The test statistics Ty, as well as T, are G(p)-invariant as is easily seen
(with the respective exceptional sets B and span(X) being G(9))-invariant).

(i) Both statistics actually belong to the class of nonsphericity-corrected F-type
test statistics in the sense of Section 5.4 in Preinerstorfer and Potscher (2016)
(terminology being somewhat unfortunate in case of 7, as no correction for
the non-sphericity is applied in this case). See Remark C.1 in Appendix C of
the Supplementary Material for more discussion.

Remark 3.3. For later use, we note the following: suppose (R, r) and (R, 7) are
both of dimension ¢ x (k+ 1) and have rank(R) = rank(R) = . (i) Then (R, r) and
(R, 7) give rise to the same set 9y, and thus to the same testing problem (3), if
and only if (AR,Ar) = (R, 7) holds for a nonsingular g x ¢ matrix A. (ii) The test
statistics Ty, and T, remain the same whether they are computed using (R, r) or
(R,7) provided (AR, Ar) = (R, 7) holds for a nonsingular ¢ x ¢ matrix A. (To see this,
note that the respective exceptional sets B and span(X) are the same irrespective of
whether (R, r) or (R,7) is used, and that A cancels out in the respective quadratic
forms appearing in the definitions of the test statistics.)

4. SOME INTUITION ON WHY CONVENTIONAL CRITICAL VALUES
CAN LEAD TO OVERREJECTION

We begin the heuristic discussion by considering the testing problem (3) with
heteroskedasticity model € = €y, (i.e., heteroskedasticity of unknown form). Let
T stand for any of the test statistics introduced in Section 3, with rejection occurring
whenever T > C, C acritical value.'" !> For simplicity of presentation, we assume
r = 0. As discussed in Section I, basing the test on the conventional critical
value C,2, 05 (the 95% quantile of a chi-square distribution with g degrees of
freedom) often leads to substantial overrejection, i.e., the size of the test (over Cg,,)
is substantially larger than the desired value @ = 0.05. One mechanism leading
to such overrejection is constituted by a concentration phenomenon discussed at
some length in Preinerstorfer and Potscher (2016): in the present situation, the
distribution P .25 “concentrates” on a so-called concentration subspace (given
by span(e;(n))) when X is “close” to one of the singular matrices e;(n)e;(n)’."> In
such a case, depending on the design matrix X and the hypothesis given by (R, 7),

Un case of T = Ters Assumption 1 is supposed to hold.
12The discussion similarly applies to the test statistics introduced in Section 6.

B3There are also other concentration subspaces in the present situation which we can ignore for the heuristic
discussion.
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the concentration space may fall into the rejection region {T' > C,2(,) 005}, leading
to a rejection probability close to one, and thus much larger than & = 0.05.'* Even
if the concentration subspace span(e;(n)) is not contained in the rejection region,
but is sufficiently close to it, a considerable portion of the mass of P ;25> may
nevertheless fall into the rejection region if X is close to, but not too close to
ei(n)e;(n)’. This again leads to arelatively large rejection probability. Overrejection
will often be especially pronounced if certain high-leverage points are present in
the design matrix. ">

In order to obtain a test that has size controlled by « (i.e., size < «) in situations
as just described, the rejection region {7" > C,2, o0s} has to be narrowed down,
Le., Cy2¢4 005 has to be replaced by a suitably larger critical value C. Whether or
not this can successfully be accomplished by a (finite) C, is a nontrivial question,
the answer depending on whether or not all possible concentration subspaces can
be made to fall outside of the rejection region {7' > C} by an appropriate choice of
C larger than C, 2, ¢ os- Sufficient conditions when this is possible are provided in
Theorems 5.1 and 6.4. Note that, in such a situation, the resulting size-controlling
critical values C are then necessarily larger than C,2 ) o.0s-

In light of the preceding discussion, a natural question is whether or not
imposing a heteroskedasticity model more narrow than €y,,, such as

ez, = {diag (tf,....77) € Cpyer : T2 > 77 for all i},

where 7,0 < 7, < n~!/2, is a pre-specified constant set by the user, would mitigate

the failure of conventional critical values. Indeed, under the heteroskedasticity
model €y, -, extreme concentration effects leading to rejection probabilities
(arbitrarily) close to one cannot occur, and it is possible to prove that size-
controlling critical values always exist when €, ,, is used (see Appendix A of
the Supplementary Material). Unfortunately, however, this does not imply that
conventional critical values such as C,2, s Will work. In fact, the size over
Cher,z, Of tests using the critical value C,2(, s can still be considerably larger
than «: to see this, observe that the sets €, are an increasing sequence of
sets as T, | 0, the union of which is €g,,. Consequently, if 7, is small, the size
over Cp,, ., Will be close to the size over €p,,, and thus the former will be much
larger than « in case the latter is so. As a consequence, also in case of the more
narrow heteroskedasticity model €y, ,, size-controlling critical values larger than
C,2(5).005 Will have to be used in such a case. Furthermore, the bound z, has
to be decided upon prior to the data analysis and is thus part of modeling the
form of heteroskedasticity. It is difficult to see how one would come up with a
reasonable value of 7, in practice: if t, is chosen to be small, this may result in a

147This is an oversimplified description ignoring some technical details.

I5We note, however, that there are testing problems (e.g., testing the mean in a heteroskedastic location model
using the test statistic 7,.) for which the text-book critical values obtained under homoskedasticity are actually
valid (see Bakirov and Székely, 2005). The reason is that the “worst-case” distribution in this case corresponds to
homoskedasticity.
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heteroskedasticity model under which the test based on C,2,) ¢ ¢s is still plagued
by overrejection as just discussed, while choosing t, large will typically not be
defensible as it presumes considerable knowledge about the admissible forms of
heteroskedasticity.

5. SIZE-CONTROL RESULTS FOR Ty, AND T, WHEN € = €y,

We introduce the following notation: for a given linear subspace £ of R”, we define
the set of indices Iy(£) via

Ih(L)={i:1<i<nen) eLl}.

We set I1 (L) = {1, ...,n}\Io(L). Clearly, card({y(L)) < dim(L) holds. In particu-
lar, if dim(£) < n holds (which, in particular, is so in the leading case £ = zmg",
since dim(img”) =k —q < n), then card(Iy(L)) < n, and thus card(/; (L)) > 1.

We have the following size-control result for 7, as well as for Ty, over the het-
eroskedasticity model €., (more precisely, over the null hypothesis Hy described
in (3) with € = €p,,). Note that €y, is the largest possible heteroskedasticity model
and reflects complete ignorance about the form of heteroskedasticity.

THEOREM 5.1. (a) For every 0 < o < 1, there exists a real number C(«) such

that
sup  sup sup P, 25 (T > C(@)) <o 7
HOEM) 0<02 <00 ZECH,r
holds, provided that
ei(n) ¢ span(X) forevery i€l (img"). 8)

Furthermore, under condition (8), even equality can be achieved in (7) by
a proper choice of C(a), provided o € (0,a*] N (0,1) holds, where o =
SUPCe(c*,00) SUPs e, Py =Ty = C) is positive and where C* = max{T,.(uo +
ei(n):iel (Emg”)}for Wo € My (with neither a* nor C* depending on the choice
of o € My).

(b) Suppose Assumption 1 is satisfied.’® Then, for every 0 < a < 1, there exists
a real number C(a) such that

sup  sup  sup P, 25 (The = C(@) < 9)
HOEMY 0<a2 <00 ZEC '
holds, provided that
ei(n) ¢ B forevery i€l (93?3”). (10)

16Condition (10) clearly implies that the set B is a proper subset of R" (as card(/; (Smg")) > 1) and thus implies
Assumption 1. Hence, we could have dropped this assumption from the formulation of the theorem. For clarity of
presentation, we have, however, chosen to explicitly mention Assumption 1. A similar remark applies to some of the
other results given below and will not be repeated.
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Furthermore, under condition (10), even equality can be achieved in (9) by a
proper choice of C(a), provided o € (0,a*]1 N (0,1) holds, where now o* =
SUPce(c*, 00) SUPTeC Po. = (Ther = C) is positive and where C* = max{Tye (jro +
e;(n)):iel (E)ﬁg")}for wo € My (with neither a* nor C* depending on the choice
of o € My).

(¢) Under the assumptions of Part (a) (Part (b), respectively) implying existence
of a critical value C() satisfying (7) ((9), respectively), a smallest critical value,
denoted by Co (), satisfying (7) ((9), respectively) exists for every 0 < a < 1.
And, Co(a) corresponding to Part (a) (Part (b), respectively) is also the smallest
among the critical values leading to equality in (7) ((9), respectively) whenever
such critical values exist. (Although Co (o) corresponding to Part (a) and (b),
respectively, will typically be different, we use the same symbol.)'”

We see from the theorem that the condition for size control of Ty, (Tyc,
respectively) over gy, i.e., condition (10) ((8), respectively), only depends on
X and R; in particular, in case of Ty, it does not depend on how the weights d;
figuring in the definition of Ty,, have been chosen (note that the set B only depends
on X and R). Moreover, the sufficient conditions for size control are generically
satisfied in the universe of all n x k design matrices X (of rank k) (see Example
5.1 and the attending discussion further below). Furthermore, it is plain that the
size-controlling critical values C(«) in Theorem 5.1 will depend on the choice of
test statistic as well as on the testing problem at hand. More concretely, the size-
controlling critical values in Part (b) of the theorem thus depend only on X, R, and
r, as well as on the choice of weights d;, whereas in Part (a), the dependence is
only on X, R, and . We do not show these dependencies in the notation. In fact,
as discussed in Remark 5.2, it turns out that the size-controlling critical values in
both cases actually do not depend on the value of r at all (provided the weights d;
are not allowed to depend on r in case of Ty,,). Similarly, it is easy to see that C*
and «* in Theorem 5.1 do not depend on r (under the same provision as before in
case of Ty,;).

Another observation is that any critical value delivering size control over €,
also delivers size control over any other heteroskedasticity model € since € C Cg,,.
Of course, for such a €, even smaller critical values (than needed for €x,,) may
already suffice for size control. Also, note that sufficient conditions implying size
control over €y, may be more restrictive than sufficient conditions implying only
size control over a smaller heteroskedasticity model €. For size-control results
tailored to such smaller models €, see Appendix A of the Supplementary Material.

In light of the results of Chesher and Jewitt (1987) and Chesher (1989), it is
useful to interpret the sufficient conditions for size control, i.e., (8) and (10), in
terms of high-leverage points. First, note that e¢;(n) € span(X) is equivalent to
h;; = 1, which corresponds to the ith observation being an “extreme high-leverage
point.” Hence, (8) is equivalent to h; < 1 for every i € Z, (img"). In other words,

17¢f. also Appendix A.3 of the Supplementary Material.
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the condition for a size-controlling critical value to exist in Part (a) of Theorem
5.1 requires that none of the indices in Z, (SUtg”) corresponds to an extreme high-
leverage point. (It is interesting to observe that all indices in Io(img") [note that
this set may be empty] correspond to extreme high-leverage points.) Hence, for the
condition in (8) not to be satisfied, not only must extreme high-leverage points be
present, but the lever needs to be of a particular type depending on the hypothesis
given by (R, r) (namely, it must have i € 7, (Emg”)). Second, note that a sufficient,
but not necessary, condition for (8) is ; < 1,fori =1, ...,n. Sufficiency is obvious
from the preceding discussion. That the condition is not necessary can be seen from
Example 5.2 further below. Finally, condition (10) implies condition (8) (since
span(X) € B), and hence implies h; < 1 for every i € Z; (Emg"). The converse is
not always true: even h; < 1, for every i = 1,...,n, does not guarantee (10) to
be satisfied (see Example 5.5 further below). However, generically (8) and (10)
coincide (see Lemma A.3 in Potscher and Preinerstorfer, 2018), in which case the
discussion given above for (8) also applies to (10).

Remark 5.2 (Independence of the value of r and implications for confidence
sets). (1) As already noted before, the sufficient conditions for size control in both
parts of Theorem 5.1 only depend on X and R. In particular, they do not depend on
the value of r.

(i1) The size of the test based on T, (Tye.s, respectively) in Theorem 5.1 as well
as the size-controlling critical values C(«) (for both test statistics) do also not
depend on the value of r (provided the weights d; are not allowed to depend on r in
case of Ty,,). This follows from Lemma 5.15 in P6tscher and Preinerstorfer (2018)
combined with Remark C.1 in Appendix C of the Supplementary Material.'® This
observation is of some importance, as it allows one easily to obtain confidence sets
for RB by “inverting” the test without the need of recomputing the critical value
for every value of r.

Remark 5.3 (Some equivalencies). If the respective smallest size-controlling
critical values are used (provided they exist), the tests obtained from Tp,; with the
HCO and the HC1 weights, respectively, are identical, as these two test statistics
differ only by a multiplicative constant. The same reasoning applies to the test
statistics based on the HCO-HC4 weights, respectively, in case h; does not depend
oni.

Remark 5.4 (Positivity of size-controlling critical values). Forevery 0 < o < 1
any C(«), satisfying (7) or (9) is necessarily positive. To see this, observe that
{Tye = C} = {The = C} =TR" for C <0, since both test statistics are nonnegative
everywhere.

The next proposition complements Theorem 5.1 and provides a useful lower
bound for the size-controlling critical values (other than the trivial bound given in
the preceding remark).

18For this argument, we impose Assumption | in case of Ty, the case where this assumption is violated being trivial.
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PROPOSITION 5.5. %20 (a) Suppose that (8) is satisfied. Then any C(«) satisfying
(7) necessarily has to satisfy C(a) > C*, where C* is as in Part (a) of Theorem 5.1.
Infact, for any C < C*, we have SUPs ceyy, Prug.o2s (Tue = C) =1 for every po € Mo
and every o* € (0,00).

(b) Suppose that Assumption 1 and (10) are satisfied. Then any C(w) satisfying
(9) necessarily has to satisfy C(a) > C*, where C* is as in Part (b) of Theorem
5.1. In fact, for any C < C*, we have sups.c¢, P, 525 (The = C) =1 for every

o € Mo and every o* € (0,00).

Koo

The preceding observation is useful in two ways: first, critical values suggested
in the literature (such as, the (1 — «)-quantile of a chi-square distribution with
q degrees of freedom or critical values obtained from a degree of freedom
adjustment) can immediately be dismissed if they turn out to be less than C*, as
they then certainly will not guarantee size control.”’ We use this line of reasoning
in the numerical results in Section 11. Second, if the observed value of the test
statistic Ty, (T}, respectively) is less than C*, the decision not to reject the null
hypothesis can be taken without further need to compute size-controlling critical
values. Note that C* as given in Theorem 5.1 is quite easy to compute in any given
application.

Remark 5.6. Suppose the assumptions of Part (a) (Part (b), respectively) of
Theorem 5.1 are satisfied. Then we know from that theorem that the size (over
Cher) of {Tye = Co(@)} ({Ter = Co ()}, respectively) equals o provided « €

0,a*]1N(0,1). If now a* < a < 1, then the size (over &€y,;) of {T,. > Co(a)}
({Ther = Co ()}, respectively) equals a* (where the Co (0)’s pertaining to Parts
(a) and (b) may be different). This follows from Co () > C* (see Proposition 5.5)
and Remark 5.13(i) in Potscher and Preinerstorfer (2018).%” This argument actually
also delivers that Co (o) = C* must hold in case a* < o < 1.

We next discuss to what extent the sufficient conditions for size control in
Theorem 5.1 are also necessary.

191t is not difficult to show in the context of Parts (a) and (b) of the proposition that any critical value C > C* actually
leads to size less than 1. This follows from a reasoning similar as in Remark 5.4 of Potscher and Preinerstorfer (2018).

201f (10) in Part (b) of the proposition does not hold, the conclusion of Part (b) can be shown to continue to hold
with C* as defined in Theorem 5.1(b), and also with C* as defined in Lemma 5.11 of Pétscher and Preinerstorfer
(2018) (note that under the assumptions of Part (b) of the proposition both definitions of C* actually coincide as
shown in the proof of Theorem 5.1). (Recall that under violation of (10), size-controlling critical values may or may
not exist.) If Assumption 1 is not satisfied, then Tx,, = 0, and the conclusion of Part (b) holds trivially (as C* =0
with both definitions). If (8) in Part (a) of the proposition is not satisfied, then no size-controlling critical value exists
by Proposition 5.7; hence, the conclusion of Part (a) holds trivially, again regardless of which of the two definitions
of C* is adopted.

211p contrast, if the critical value turns out to be larger than or equal to C*, it does not follow that size is less than or
equal to «. In fact, substantially oversized tests using a critical value C > C* are certainly possible (see, e.g., Table 2
and the pertaining discussion).

22The assumptions for Part A of Proposition 5.12 in Potscher and Preinerstorfer (2018) required in Remark 5.13 of
that article are satisfied under the assumptions of Theorem 5.1 as shown in the proof of Theorem A.1 in Appendix C
of the Supplementary Material. In this proof also the condition Agn (T, = C*) =0 (Agn (Ther = C*) = 0, respectively)
required in Remark 5.13 of Pétscher and Preinerstorfer (2018) is verified.
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PROPOSITION 5.7. (a) If (8) is violated, then supyce, P, o25Tue = C) =1 for
every choice of critical value C, every py € My, and every o> € (0,00) (implying
that size equals 1 for every C). As a consequence, the sufficient condition for size
control (8) in Part (a) of Theorem 5.1 is also necessary.

(b) Suppose Assumption 1 is satisfied.”> If (8) is violated, then supy, ¢ vt Pt 02%
(Thes = C) = 1 for every choice of critical value C, every [y € My, and every
o? e (0,00) (implying that size equals 1 for every C). (In case X and R are such
that B = span(X), conditions (8) and (10) coincide; hence, the sufficient condition
for size control (10) in Part (b) of Theorem 5.1 is then also necessary in this case.)

Remark 5.8. Suppose Assumption 1 is satisfied. In case B # span(X) and (8)
hold, but (10) is violated, neither Part (b) of Theorem 5.1 nor Part (b) of Proposition
5.7 applies. We note that there are instances of this situation (see Example 5.5)
for which it can be shown by other methods that 7., is size-controllable despite
failure of (10);>* as a consequence, (10) is not necessary for (9) in general. We
conjecture that there are other instances of the situation described here where size
control is not possible, but we have not investigated this in any detail. (What can
be said in general in this situation is that the size of the rejection region {Ty,, > C}
over Cy,, is certainly equal to 1 for every C < max {Tx., (1o +e;(n)) : e;(n) ¢ B},
where we use the convention that this maximum is —oo in case the set over which
the maximum is taken is empty. This follows from Lemma 4.1 in Potscher and
Preinerstorfer (2019) with K equal to the collection {IT onlin L e;(n) : ej(n) ¢ B}.)

Remark 5.9. Let T stand for either Ty, or T,,., and suppose that Assumption 1 is
satisfied in case of T = Ty,,: by Remark C.1 in Appendix C of the Supplementary
Material and Lemma 5.16 in Potscher and Preinerstorfer (2018), the rejection
regions {y : T(y) > C} and {y : T(y) > C} differ only by a Ags-null set. Since
the measures P, ;25 are absolutely continuous w.r.t. Ag= when X is nonsingular,
P, 25(T > C) =P, ;25(T > C) then follows, and hence the results in this section
given for rejection probabilities P, ,25(T > C) apply to rejection probabilities
P, 525 (T > C) equally well (under the above provision in case of T = Tpp).
A similar remark applies to the results in Appendix A.l1 of the Supplementary
Material.

5.1. Some Examples
We illustrate Theorem 5.1 and Proposition 5.7 with a few examples.

Example 5.1. (i) Suppose the design matrix satisfies e;(n) ¢ span(X) for every
1 <i <n(which will typically be the case). Then obviously the sufficient condition
(8) is satisfied (in fact, for every choice of 0, i.e., for every choice of restriction to
be tested). And, the sufficient condition (10) is also satisfied provided B = span(X).

231f this assumption is violated, then T4, is identically zero, an uninteresting trivial case.

241n this example, actually e;(n) € B holds foralli=1,...,n.
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(i1) Suppose the design matrix X and the restriction R are such that e;(n) ¢ B for
every 1 <i < n. Then the sufficient condition (10) is clearly satisfied.

This example shows, in particular, that the sufficient conditions for size control
are generically satisfied in the universe of all n x k design matrices X (of rank k).
Given the example, this is obvious for 7},.; and it follows for Ty, by additionally
noting that, for every given choice of restriction to be tested, the relation B =
span(X) holds generically in the universe of all n x k design matrices X (of rank k)
(see Lemma A.3 in Potscher and Preinerstorfer, 2018). The next example discusses
the case where a standard basis vector is among the regressors.

Example 5.2. Suppose that e;(n) is the first column of X and that e;(n) ¢
span(X) for every 2 < i < n. Suppose further that R is of the form R = (0, R), where
R has dimension g X (k—1). That is, the restriction to be tested does not involve the
coefficient of the first regressor. Then it is easy to see that (8) is satisfied and size
control for T, is thus possible. If also B = span(X) holds, then the same is true for
(10) and Tx,,. (In case R is not as above, but has a nonzero first coordinate, then it is
easy to see that 1 € I; (smg‘"), and hence (8) is violated. It follows from Proposition
5.7 that the rejection region {7, > C} indeed has size 1 for every choice of critical
value C when €., is the heteroskedasticity model; and the same is true for Ty,
provided Assumption 1 is satisfied.>)

We continue with a few more examples where X has a particular structure.

Example 5.3. (Heteroskedastic location model) Suppose k = 1, x,; = 1 for all
t,q =1, R =1, and r € R. The heteroskedasticity model is given by ¢g,,. Then
the conditions for size control in both parts of Theorem 5.1 are satisfied (since it
is easy to see that B coincides with span(X) and that Assumption 1 is satisfied).
Note also that in this example Ty, and T}, actually coincide in case d; =n/(n—1)
for all i, i.e., if the HC1, HC2, or HC4 weights are used, and differ only by a
multiplicative constant if the HCO or HC3 weights are employed; in particular,
all these test statistics give rise to one and the same test if the respective smallest
size-controlling critical values are used (cf. Remark 5.3).%° Furthermore, note that
the here observed size controllability is in line with results in Bakirov and Székely
(2005) stating that, for a certain range of significance levels «, the usual critical
values obtained from an F'; ,_;-distribution actually can be used as size-controlling
critical values C(«) for the test statistic T, (in fact, these are then the smallest size-
controlling critical values C¢ (o)).

The subsequent example is closely related to the Behrens—Fisher problem (see
Remark A.4 in Appendix A.1 of the Supplementary Material).

251F Assumption | is violated, then Ty, is identically zero, an uninteresting trivial case.

261n fact, more is true in the location model: the test statistics THE, using the HCOR-HC4R weights (defined in Section
6) all coincide (cf. Footnote 33), and they also coincide with T, (also defined in Section 6). Perusing the connection
between TM and T, established in Section 6.2.1, we can then even conclude that all the test statistics T, Tger With
HCO0-HC4 weights, Tye, and Ty, with HCOR-HC4R weights give rise to (essentially) the same test, provided the
respective smallest size-controlling critical values are used.
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Example 5.4 (Comparing the means of two heteroskedastic groups). Consider
the problem of testing the equality of the means of two independent normal
populations where the variances of each item may be different, even within a
group. In our framework, this corresponds to the case k =2, x,; = 1for 1 <t <n,,
xq1=0forn; <t<n+ny=n,xp=1—x4,and R = (1, — 1) with r = 0. The
heteroskedasticity model is then again €y,,. We first assume that n; > 2 holds for
i = 1,2. Note that in the present context, 7, is nothing else than the square of
the two-sample ¢-statistic that uses a pooled variance estimator, and that Ty, is
the square of the two-sample 7-statistic that uses appropriate variance estimators
from each group (the particular form of the variance estimator being determined by
the choice of d;). Now, ¢;(n) ¢ span(X) for every 1 <i <n holds, and hence 7, is
size-controllable (cf. Example 5.1(i)). This is in line with results in Bakirov (1998)
(cf. also Section 5.2). Furthermore, it is obvious that Assumption 1 is satisfied (as
s = 0) and a simple calculation shows that B(y) = @i(y)’A, where A is a diagonal
matrix with q; = nl_1 for1 <i<njanda;=—n, ! else. This shows that the set
B coincides with span(X). Consequently, also Ty, is size-controllable (again cf.
Example 5.1(i)). We also note here that the observed size controllability of Ty, is in
line with results in Ibragimov and Miiller (2016), stating that for a certain range of
significance levels o and group sizes n;, the usual critical values obtained from an
F\, min(n;,ny)—1 -distribution actually can be used as size-controlling critical values
C(a) for the test statistic Ty, in case d; is set equal to (1 — hi)~'; in fact, they
are then the smallest size-controlling critical values (cf. the discussion preceding
Theorem 1 in Ibragimov and Miiller (2016)). In the rather uninteresting case n; = 1
and ny > 2, it is easy to see that Assumption | is satisfied and that the size of both
tests equals 1 for all choices of critical values in view of Proposition 5.7, since
ej(n) espan(X) and 1 € [; (smg") ={1,...,n}. The sameis trueifn; >2andn, = 1.
(The remaining and uninteresting case n; = n, = 1 falls outside of our framework
since we always require n > k.)

The next example is an extension of the previous problem to the case of more
than two groups. An interesting phenomenon occurs here: the sufficient conditions
for size control of Ty, given in Theorem 5.1 are violated, but size controllability
can nevertheless be established by additional arguments. Hence, this example
provides an instance where the conditions in Part (b) of Theorem 5.1 are not
necessary.

Example 5.5 (Comparing the means of k heteroskedastic groups). We are given
k integers n; > 1 with Zj‘zl n; = n describing group sizes where k > 3 holds. The
regressors x; for 1 <i < k indicate group membership, i.e., they satisfy x; = 1
for Z';i nj<t=< J'.: 11 and x; = 0 otherwise. The heteroskedasticity model is
given by €p,,. We are interested in testing f; =... = B;. We thus may choose the
(k—1) x k restriction matrix R with jth row (1,0, ...,0, —1,...,0) where the entry
—1 is at position j+ 1. Of course, g = k— 1 and r = 0 hold. We first consider the
case where n; > 2 for all j. Then clearly k < n is satisfied. With regard to T, we see
immediately that e;(n) ¢ span(X) for every 1 <i < n follows (since n; > 2 for all j)
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and thus the sufficient condition (8) for size control of T, is satisfied. Turning to
Ther, it is easy to see that Assumption 1 is satisfied (since s = 0 in view of n; > 2).
Furthermore, the jth row of R(X’X)~'X is seen to be of the form

-1 -1 -1 -1
(n,",...,n,0,...,0, TR TR —nj+1,0...,0),
from which it follows that

RX'X)™'X'diag(d, 83 (y), ..., d 22 YNX(X'X) 'R = Su’ + diag(Ss, ..., k),
(11)

where ¢ is the (k — 1)-dimensional vector with entries all equal to 1 and where
S;= n;z 3 dii}(y) = n;zztd,(yt —¥()* with the summation index 7 running over
all elements in the jth group, and where y; is the mean in group j. From (11), it is
not difficult to verify that the set B is given by

B= Uﬁj:l,i;&j {yeR":85i() =$j(») =0} = Uﬁjzlvi#span (xioxy, {er(n) s x;i = x5 = 0}).

Note that B is not a linear space and is strictly larger than span(X). The set 9’)?3"
is given by the span of the vector e = (1,1, ...,1)’. Hence, I; (imf)’”) ={1,...,n}.
Since e;(n) € B holds for every i, we conclude that the sufficient condition (10)
for size control of Ty, is not satisfied and hence Part (b) of Theorem 5.1 does
not apply. However, it can be shown by additional arguments (see Proposition
C.3 in Appendix C of the Supplementary Material) that Ty, is nevertheless size-
controllable, i.e., that (9) holds.?” Next, in the case where n; = 1 for some j, but not
for all j, Proposition 5.7 shows that the size of the test based on T}, equals 1 for all
choices of critical values, since then for some i the standard basis vector ¢;(n) is one
of the regressors and thus we have e;(n) € span(X) and i € I; (zmg”) ={1,...,n}.
For Tye;, the same is true if n; = 1 holds for exactly one j (because of Part (b) of
Proposition 5.7 and since then Assumption 1 is satisfied as is easily seen); in case
n; = 1 is true for (at least) two, but not all, values of j, Ty,, is identically zero (as
then Assumption 1 is violated), and thus is size-controllable in a trivial way. (The
remaining and uninteresting case n; = 1 for all j falls outside of our framework
since we always require n > k.)

We close this section by one more example. Again, the sufficient conditions in
Part (b) of Theorem 5.1 fail to hold, but additional arguments based on Example
5.3 establish size controllability of the test based on T,.

Example 5.6. Consider again the situation of Example 5.4, except that now R =
I, the 2 x 2 identity matrix (and again r = 0). Then ¢ = k = 2 holds. Consider first
the case where n; > 2, for i = 1,2. Condition (8) is then obviously satisfied, and
hence T, is size-controllable. We next turn to Ty,,. Since 93?{)’” = {0}, we have
I (zmgn) = {1, ..., n}. Furthermore, simple computations show that Assumption |

27 A smallest size-controlling critical value then also exists in view of Appendix A.3 of the Supplementary Material.
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is satisfied and that
B = span (x.1, {e;(n) : i > n}) Uspan (x.,, {e;(n) : i <ni}).

Obviously, the sufficient condition (10) for size control of Ty, is violated. Never-
theless, Ty, is size-controllable by the following argument:?® simple computations
show that Tye (v) = T (¥) + T2(y) for y ¢ B, where T1(y) = m}f2(v)/ L1 diii ()
and To(y) = 3 83 (y)/ > ey 41 didi7 (v). (If the denominator in the formula for 7;(y)
is zero for some y € R”, we define T;(y) as zero.) Since B is a Agn-null set,
Py o25(Thet > C) < Py 25 (T) = C/2) + Py 525 (T2 > C/2) for C > 0. Now, it is
easy to see that Py ;25 (T; > C/2), for i = 1,2, coincides with the null rejection
probability of a test for the mean in a heteroskedastic location model (based on
a test statistic of the form (4)). However, as shown in Example 5.3, such a test is
size-controllable. (In the case n; = 1 and n, > 2 (or vice versa), condition (8) is
violated and the rejection region {T,. > C} has size 1 for every C; furthermore,
Assumption 1 is violated, and hence T}, is identically zero. The case n; =np, =1
falls outside of our framework as then k = n.)

In Appendix C of the Supplementary Material, we discuss yet another example
where the sufficient condition of Part (b) of Theorem 5.1 fails, but size controlla-
bility can nevertheless be established.

5.2. Some Variations on Bakirov and Székely (2005)

(i) As noted in Ibragimov and Miiller (2010), testing a hypothesis regarding a
scalar linear contrast in a heteroskedastic (Gaussian) linear regression model more
general than a location model can often be converted to a testing problem in
a heteroskedastic (Gaussian) location model by suitably dividing the data into
subgroups and by considering groupwise least-squares estimators, thus making
it amenable to the Bakirov and Székely (2005) result mentioned in Section 1.
However, this introduces additional questions such as how to divide up the data. In
any case, this approach is limited to testing hypotheses on scalar linear contrasts.
It also requires that the linear contrast subject to test is estimable in each subgroup.

(i) In case the linear contrast subject to test is not estimable in each subgroup,
but can be written as the difference of two linear contrasts where the first contrast
is estimable in the first G; groups whereas the second contrast is estimable in
the last G, groups (where we consider a total of G| + G, groups), Ibragimov
and Miiller (2016) point out that the problem can be converted into the problem
of comparing two heteroskedastic (Gaussian) populations. Now, for such a two-
sample comparison problem, Bakirov (1998) shows for a certain two-sample
t-statistic (the square of which is T,; cf. Example 5.4) how—in the presence of
heteroskedasticity—size-controlling critical values can be constructed by appro-
priately transforming quantiles of a 7-distribution; this result imposes conditions

28 A smallest size-controlling critical value then also exists in view of Appendix A.3 of the Supplementary Material.
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which entail that the nominal significance level & must be quite small (requiring
a not to exceed 0.01 for many group sizes, and often to be considerably smaller).
This somewhat limits the applicability of Bakirov’s result. Thus, Ibragimov and
Miiller (2016) go on to consider another two-sample ¢-statistic (the square of
which is Ty, with d; = (1 — k)~ cf. Example 5.4) and—extending a result in
Mickey and Brown (1966)—provide a Bakirov and Székely (2005)-type result, i.e.,
they show that the (1 — «/2)-quantile of a t-distribution with degrees of freedom
equal to the smaller of the two sample sizes minus 1 provides the smallest size-
controlling critical value (for the two-sided test) even under heteroskedasticity.”’
This result holds under certain conditions on the sample sizes and only for small
o, but, e.g., allows for the choice o = 0.05. (We note here that the description
of Bakirov’s (1998) result in Ibragimov and Miiller (2016) is inaccurate in that a
certain transformation of the critical value is being ignored.)

(iii) In the problem of comparing two heteroskedastic (Gaussian) populations
based on samples of equal size (“balanced design”) one can—instead of using
the two-sample ¢ -test statistics considered in Bakirov (1998) and Ibragimov and
Miiller (2016)—employ the Bartlett test statistic, which simply is the usual -
test statistic computed from the differences between the observations in the two
samples.®’ An advantage of this approach is that the original Bakirov and Székely
(2005) result is directly applicable, and there is no need to resort to the results
described in (ii).

(iv) Another quite special case that can be brought under the realm of the Bakirov
and Székely (2005) result is a heteroskedastic (Gaussian) regression model with
only one regressor that never takes the value zero. Dividing the #th equation in the
regression model by x, converts this into a heteroskedastic location problem.

(v) The results in (i)—-(iv) immediately also apply if the errors in the regression
are distributed as scale mixtures of Gaussians (cf. also Section 7.1).

6. RESULTS FOR HETEROSKEDASTICITY ROBUST TEST STATISTICS
USING RESTRICTED RESIDUALS

In this section, we consider two further test statistics which are versions of Ty,
and T, with the only difference that the covariance matrix estimators used are
based on restricted—instead of unrestricted—residuals. The first one of these test
statistics has been suggested in the literature, e.g., in Davidson and MacKinnon
(1985). We thus define

(RB () =) Qze, ) RE ) = ). if detQper () # 0. 12

The () =
Het (}’) { ()’ if det QHet (y) = 07

291n the balanced case (i.e., if the two samples have the same cardinality), the test statistic considered in Bakirov
(1998) actually coincides with the test statistic in Ibragimov and Miiller (2016).

3OCertainly, there is some arbitrariness in how the observations are being “paired.”
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where QHE, = R\iJHe,R’ and where \ilHet is given by
i () = (X% Xdiag (478 ), ... i (1)) X0,

where the constants d; > 0 sometimes depend on the design matrix and on the
restriction matrix R. Here, 1 (y) = y— X Bgmo ) = (mlin) 1 (y— o), where the last
expression does not depend on the choice of g € zmo, and where i, (y) denotes
the rth component of u(y). Typlcal choices for d; are d; = 1, d; = n/(n—(k—q)),
d, =(1- h,,)_ , or d, =(1- h,,)_ , Where h,, denotes the ith diagonal element of
the projection matrix Hmzm (see e.g., Davidson and MacKinnon, 1985). Another

suggestion is Zl =(1- it”) i for 8 = mln(nhl, / (k—q),4) with the convention that
si=0ifk= - q. 31 For the last three choices of d; just given, we use the convention
that we set d =1 in case h” = 1. Note that h,, = 1 implies u Iz (y) = 0 for every
v, and hence it is irrelevant which real value is assigned to d in case h,, =1
The five examples for the weights d; just given correspond to what is often called
HCOR-HC4R weights in the literature.™

The subsequent assumption ensures that the set of y’s for which Qe (y) is
singular is a Lebesgue null set, implying that our choice of assigning Ty (y) the
value zero in case Qpe; (y) is singular has no import on the probabilistic results of
the article (as the measures P, ;25 are absolutely continuous). Also, as discussed

further below, the assumption is in a certain sense unavoidable when using T;.

Assumption 2. Let I <i; <--- <i; <ndenote all the indices for which ¢; (n) €
S)ﬁg” holds where e;(n) denotes the jth standard basis vector in R". If no such index
exists, set s = 0. Let X' (—(iy, ... i,)) denote the matrix which is obtained from X’
by deleting all columns with indices i;, 1 <ij < --- <i; <n (if s =0, no column
is deleted). Then rank (R(X'X) ' X' (=(iy, ..., iy))) = ¢ holds.

Observe that this assumption only depends on X and R and hence can be
checked. Obviously, a simple sufficient condition for Assumption 2 to hold is that
s=0(.e., thate;(n) ¢ zmgn for all j), a generically satisfied condition. Furthermore,
we introduce the matrix

B(y) = RX'X)™'X'diag (@1 (). - ., ita (7))
— ROCX)~'X/diag (él (D) gy (9= 10, €4 (1) g (v — MO)) .
13)
Note that this matrix does not depend on the choice of po € My. The following

lemma collects some important properties of Qp,, and B (defined in that lemma)
and is reproduced from Po6tscher and Preinerstorfer (2023) for ease of reference.

31Note that in case k = g, we have hii =0, and hence d; = 1 regardless of our convention for 5i.
321n fact, hii=11is equivalent to #; (y) = 0 for every y, each of which in turn is equivalent to ¢;(n) € Emg".

331n the case k = g, the HCOR-HC4R weights all coincide (d; =1 for every i), and hence result in the same test
statistic.
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LEMMA 6.1.

(a) QHE, (v) is nonnegative definite for every y € R".

(b) Qper (v) is singular (zero, respectively) if and only if rank(B(y)) < g (B(y) =
respectively).

(c) The set B given by {y e R": rank(é(y)) < q} (or, in view of (b), equivalently
given by {y € R" : det(Qper (y)) = 0}) is either a Agn-null set or the entire
sample space R". The latter occurs if and only if Assumption 2 is violated (in
which case, the test based on THE, becomes trivial, as then THet is identically
zero).

(d) Suppose Assumption 2 holds. Then, for every g € My, the set B — g is a
finite union of proper linear subspaces; in case g =1, B — 1o is even a proper
linear subspace itself.**7° (Note that B — o does not depend on the choice of
o € Mo. In particular, if r =0, i.e., if My is linear, we thus may set oy =0.)

(e) B is a closed set and contains M. Also, B is G(MMy)-invariant, and in

particular, B+ 9" = B

In light of Part (c) of the lemma, we see that Assumption 2 is a natural
and unavoidable condition if one wants to obtain a sensible test from THe,.%
Furthermore, note that if B= My is true, then Assumption 2 must be satisfied
(since My is a Arn-null set as k — g < n is always the case). For later use, we
also mention that under Assumption 2, the statistic THE, is continuous at every
y e R"\B.Y

We finally consider for completeness, and in analogy with 7,

A o
Tuc(w:{ REG) =) (FORXX)'R) RE®) =1, ity ¢ 0,
0, if y € My,

(14)

where 62(y) = it(y) 4 (y) /(n — (k — q)) > 0 (which vanishes if and only if y €
IMy). Of course, our choice to set Tm.(y) =0 for y € 91, again has no import on
the probabilistic results in the article, since 97 is a Agrs-null set (and since the
measures P, .25 are absolutely continuous). For later use, we also mention that

T, is continuous at every y € R"\9My. As we shall see in Section 6.2.1, there is a
close connection between T, and 7.

Remark 6.2. The test statistics THgt as well as Tuc are G(9My)-invariant as is
easily seen (with the respective exceptional sets B and M also being G(MNy)-
invariant), but typically they are not nonsphericity-corrected F-type tests in the
sense of Section 5.4 in Preinerstorfer and Potscher (2016).

34C0nsequent1y, B is a finite union of proper affine subspaces, and is a proper affine subspace itself in case g = 1.
351f Assumption 2 is violated, then B— o =B =R" in view of Part (c).
361f this assumption is violated, then TH,H is identically zero, an uninteresting trivial case.

371f Assumption 2 is violated, then THW is constant equal to zero, and hence trivially continuous everywhere.
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Remark 6.3. Remark 3.3 also applies to THe, and Tm.. (To see this, note that the
respective exceptional sets B and 9%, are the same irrespective of whether (R, r) or
(R,7) is used, and that A cancels out in the respective quadratic forms appearing in
the definitions of the test statistics.)

6.1. Size-Control Results for Ty, and T, when € = €p,;

Here, we discuss size-control results for Tuc as well as for THE, over the het-
eroskedasticity model €g,, (more precisely, over the null hypothesis Hy described
in (3) with € = €g,,). Some peculiar properties of the test statistics Tuc and Tye,
are then discussed in the following section.

We note that the first statement in Part (a) of the subsequent theorem is actually
trivial, since Tuc is bounded as shown in the next section (which also provides a
discussion when nontrivial size-controlling critical values exist).

THEOREM 6.4. (a) For every 0 < o < 1, there exists a real number C(«) such
that

sup sup sup P, w25 (Tue > C(@)) <a 15)
HOEM) 0<o2 <00 Z€CH,
holds. Furthermore, even equality can be achieved in (15) by a proper choice of
C(a), provided a € (0,a*] N (0, 1) holds, where o™ = SUpce ¢+ o) SUPs ey, Puo. =
(Tue = C) and where C* = max{T,. (1o + ¢;(n)) : i € [, M)} for po € Mo (with
neither o nor C* depending on the choice of o € My). _

(b) Suppose Assumption 2 is satisfied.>® Suppose further that Ty, is not constant

on R"™\B.* Then, for every 0 < a < 1, there exists a real number C(a) such that

sup sup sup P zZ(THe, >Ca) <« (16)

o0
HOEM) 0<o2 <00 ZECH

holds, provided that for some o € My (and hence for all gy € M),
o +ei(n) ¢ B forevery i I (MM (17)

Furthermore, under condition (17), even equality can be achieved in ( 16) by
a proper choice of C(a), provided o € (0,a*] N (0,1) holds, where now a*
SUPce(c*, 00) SUPseC MO,Z(THE, > C) and where C* = max{Tye (1o + ¢; (n))

38Condition (17) clearly implies that the set B is a proper subset of R” and thus implies Assumption 2. Hence, we
could have dropped this assumption from the formulation of the theorem. A similar remark applies to some of the
other results given below and will not be repeated.

39The case where Ty, is constant on R”\B can actually occur under Assumption 2 (see Remark D.2 in Appendix D
of the Supplementary Material). In such a case, THg, is trivially size-controllable (since Bisa Arn-null set under
Assumption 2 and since all probability measures in (2) are absolutely continuous). However, neither a smallest
size-controlling critical value exists (wWhen considering rejection regions of the form {TH(,, > C}) nor can exact size
controllability be achieved for 0 < o < 1. (If Assumption 2 is violated, Tiier is identically zero and a similar remark
applies.)
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iel (E))?g”)} for o € My (with neither o* nor C* depending on the choice of
o € Mp).

(c) Under the assumptions of Part (a) (Part (b), respectively) implying existence
of a critical value C(a) satisfying (15) ((16), respectively), a smallest critical
value, denoted by Co (), satisfying (15) ((16), respectively) exists for every 0 <
a < 1.*0 And, Co () corresponding to Part (a) (Part (b), respectively) is also the
smallest among the critical values leading to equality in (15) ((16), respectively)
whenever such critical values exist. (Although Co (o) corresponding to Part (a)
and (b), respectively, will typically be different, we use the same symbol.)*'

We see from the theorem that TM is always size-controllable over €y, but
as discussed in Section 6.2, there is a caveat: Unless (8), i.e., the necessary and
sufficient condition for size controllability of 7., is satisfied, size-controlling Toe
leads to trivial tests. We also see that the condition for size control of Ty, over €p,r,
i.e., condition (17) is always satisfied in case B= My (since (17) is then equivalent
to ei(n) ¢ 93“(”” for every i € 1) (93?””)) Furthermore, condition (17) always only
depends on X and R; in particular, it does not depend on how the weights d; fi guring
in the definition of 7, have been chosen (note that o+ ¢;(n) ¢ Bis equivalent to
ei(n) ¢ B — 10 and that the set B — 1 depends only on X and R). Furthermore, the
size-controlling critical values C(«) in Part (b) of the preceding theorem depend
only on X, R, and r, as well as on the choice of weights Zii, whereas in Part (a)
the dependence is only on X, R, and r. We do not show these dependencies in the
notation. In fact, as shown in Lemma D.3 in Appendix D of the Supplementary
Material, it turns out that the size and the size-controlling critical values in both
cases actually do nor depend on the value of r at all (provided the weights d; are
not allowed to depend on r in case of Tyet). Similarly, it is easy to see that «* and
C* do not depend on r (under the same provision as before in case of THe,).

Similarly as in Section 5, a critical value delivering size control over €g,, also
delivers size control over any other heteroskedasticity model € since € C &g,,. Of
course, for such a €, even smaller critical values (than needed for €p,,) may already
suffice for size control. Also, note that sufficient conditions implying size control
over Cp,, may be more restrictive than sufficient conditions only implying size
control over a smaller heteroskedasticity model €. For size-control results tailored
to such smaller models €, see Appendix A of the Supplementary Material.

Remark 6.5 (Some equivalencies). If the respective smallest size-controlling
critical values are used (provided they exist), the tests obtained from Tye, with
the HCOR and the HCIR weights, respectively, are identical, as these two test
statistics differ only by a multiplicative constant. The same reasoning applies to
the test statistics based on the HCOR—-HC4R weights, respectively, in case /;; does
not depend on i.

40Note that there are in fact no assumptions for Part (a). We have chosen this formulation for reasons of brevity.

41Cf. also Appendix A.3 of the Supplementary Material.
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Remark 6.6 (Positivity of size-controlling critical values). Forevery 0 < a < 1,
any C(«) satisfying (15) or (16) is necessarily positive. To see this, observe that
{Tuc >C}= {THe, > C} = R" for C <0, since both test statistics are nonnegative
everywhere.

The next proposition complements Theorem 6.4 and provides a lower bound
for the size-controlling critical values (other than the trivial bound given in the
preceding remark). The lower bound is useful for the same reasons as discussed
subsequent to Proposition 5.5.

PROPOSITION 6.7. *>* (a) Any C() satisfying (15) necessarily has to satisfy
C(a) = C*, where C* is as in Part (a) of Theorem 6.4. In fact, for any C < C*, we
have sups ¢, . Puo,ozz(fuc > C) = 1 for every o € My and every o> € (0,00).

(b) Suppose Assumption 2 and (17) are satisfied, and that Ter is not constant
on R"\é. Then any C(w) satisfying (16) necessarily has to satisfy C(a) > C*,
where C* is as in Part (b) of Theorem 6.4. In fact, for any C < C*, we have
SUPsce,, P,ILQ,O’ZE(THef > C) = 1 for every o € My and every 0% € (0,00).

Remark 6.8. Suppose the assumptions of Part (a) (Part (b), respectively) of
Theorem 6.4 are satisfied. Then we know from that theorem that the size (over
Cher) of (Tue > Co(@)} (Ther > Cola)}, respectively) equals « provided o €
(0,a*1N(0,1). If now a* < & < 1, then the size (over €pp) of {Tue > Co (@)}
({TH,_,, > Co ()}, respectively) equals o™ (where the Co (o0)’s pertaining to Parts
(a) and (b) may be different). This follows from C¢ (o) > C* (see Proposition
6.7) and Remark 5.13(i) in Potscher and Preinerstorfer (2018)).* This argument
actually also delivers that C¢ (o) = C* must hold in case o™ < o < 1.

Remark 6.9. In contrast to Section 5, we have little information on the extent
to which the sufficient conditions for size control in Part (b) of Theorem 6.4 are
also necessary. This is due to the fact that Ther is typically not a nonsphericity-
corrected F-type test as noted in Remark 6.2. What can be said in general in
the context of Part (b) of Theorem 6.4 in case (17) is violated, is that the size
of the rejection region {THE, > C} over Cp,, is certainly equal to 1 for every
C < max{THe,(/Lo +ei(n)) : wo +ei(n) ¢ é}, where o € 9y is arbitrary (the
maximum being independent of the choice of o € 9My) and where we use the

421t is not difficult to show in the context of Parts (a) and (b) of the proposition that any critical value C > C* actually
leads to size less than 1. This follows from a reasoning similar as in Remark 5.4 of Potscher and Preinerstorfer (2018).
431f (17) in Part (b) of the proposition does not hold, the conclusion of Part (b) can be shown to continue to hold with
C* as defined in Theorem 6.4(b), and also with C* as defined in Lemma 5.11 of Potscher and Preinerstorfer (2018)
(note that under the assumptions of Part (b) of the proposition, both definitions of C* actually coincide as shown in
the proof of Theorem 6.4). If f"Hg, is constant on R" \é or if Assumption 2 fails (the latter implying THE, = 0), the
conclusion of Part (b) also holds as is easily seen (regardless of which of the two definitions of C* is adopted).
#The assumptions for Part A of Proposition 5.12 in Potscher and Preinerstorfer (2018) required in Remark 5.13 of
that article are satisfied under the assumptions of Theorem 6.4 as shown in the proof of Theorem A.5 in Appendix D
of the Supplementary Material. In this proof also the condition Ag» (Tue =C*) =0 (Agn (Ther = C*) =0, respectively)
required in Remark 5.13 of Pétscher and Preinerstorfer (2018) is verified.
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convention that this maximum is —oo in case the set over which the maximum is
taken is empty. This follows from Lemma 4.1 in Potscher and Preinerstorfer (2019)
with K equal to the collection {H(mgn)L ei(n) : pwo+e;(n) ¢ B}.

Remark 6.10. Suppose ¢ = k. Then Assumption 2 is always satisfied (since 91,
being a singleton {uo} implies smg" = {0}, and thus s = 0 in Assumption 2). The
subsequent claims are proved in Appendix D of the Supplementary Material.

(1) Incase g =k > 1,itis not difficult to see that then 1o+ ¢;(n) € B, for everyi=
1, ...,n, holds, implying that the sufficient condition (17) in Theorem 6.4(b) is
violated. (In contrast, in case ¢ = k = 1, both examples where (17) is satisfied
as well as examples where (17) is not satisfied can be found.)

(ii) Despite of (i), in case g = k > 1, the test statistic Ther is always size-
controllable over €g,,. This is so since in case ¢ = k > 1 the statistic THe,
is a bounded function.

(iii)) We also note that in case ¢ = k > 1, both the case where THE, is constant
on R"\B as well as the case where Ty, is not constant on R"\B can occur.
(In the latter case, a smallest size-controlling critical value exists in view of
Appendix A.3 of the Supplementary Material. In the former case, no smallest
size-controlling critical value exists [when considering rejection regions of
the form {7y > C}1.)

Remark 6.11. Let T stand for either THe, or Tm, where in case of T = THe,
we suppose that Assumption 2 is satisfied and that Tie: is not constant on R”\B:
By Lemma D.1 in Appendix D of the Supplementary Material, the rejection
regions {y : T(y) > C} and {y : T(y) > C} differ only by a Ags-null set. Since
the measures P, ;25 are absolutely continuous w.r.t. Ag» when X is nonsingular,
lezz(T >C) = PM,UZE(T > () then follows, and hence the results in this and
the subsequent section given for rejection probabilities Pmazz(]ﬂ" > C) apply to
rejection probabilities P, ;25 (T > 0) equally well (under the above provision in

case of T = THE,). A similar remark applies to the results in Appendix A.2 of the
Supplementary Material.

6.2. Tests Obtained from T, or Tx.: Can Be Trivial

For the test statistic 7, the rejection regions {T,, > C}, as well as their com-
plements, have positive (n-dimensional) Lebesgue measure for every positive real
number C.* This follows from Parts 5 and 6 of Lemma 5.15 in Preinerstorfer and
Potscher (2016) together with Remark C.1 in Appendix C of the Supplementary
Material. As a consequence, all rejection probabilities—under the null as well
as under the alternative—are positive and less than one regardless of the choice
of C > 0. (This is so because of our Gaussianity assumption and the fact that

45The case C <0 is uninteresting as the rejection region of 7, (and of all other test statistics considered) then are
the entire space R”, since T, (and the other test statistics considered) take on only nonnegative values.
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all ¥ € €y, are positive definite.) For similar reasons, the same is true for Tp,,
provided Assumption 1 is satisfied.*® The situation is somewhat different for tests
derived from 7, or Ty, as we shall discuss next. In the course of this, we also
establish a connection between T, and Tm. that is of independent interest. In this
section, the size of a test always refers to size over Cppy.

6.2.1. The Case of T.c. First, observe that T, (y) <n— (k—g) holds for every
y € R" and that this bound is sharp. To see this, note that using standard least-
squares theory,

T = (n—(k—q) (1= Y 00/ X i; () <n—(k—q) (18)

for y ¢ My and that T,.(y) = O else; the bound is attained precisely for y €
span(X)\9My. An immediate consequence of this observation is that any critical
value C > (n — (k— gq)) leads to a test with rejection region {Tm. > C} that is
either empty (if C > n — (k — g)) or is a Ags-null set, namely span(X)\9, (if
C =n—(k—q)). Consequently, such a test is trivial in that all rejection probabilities
(under the null as well as under the alternative) are zero (because of our Gaussianity
assumption and the fact that all ¥ € €y, are positive definite). As an aside, we note
that any C < n — (k — g) leads to a nontrivial test as is easily seen.

Of course, a critical value C satisfying C > n — (k — q) is certainly size-
controlling, but is useless since it leads to a trivial test as just discussed. We now
ask if and when the smallest size-controlling critical value C¢ (cr), guaranteed to
exist by Part (c) of Theorem 6.4, leads to a nontrivial test. (This is certainly so
if «* in Part (a) of Theorem 6.4 is positive, but note that the theorem is silent on
this issue.) To obtain insight, we establish a simple, but important, relationship
between the test statistics Tm. and T,,. that is of independent interest also: note that
standard least-squares theory gives

Tue) = (n—k) (X1, (0 /L0, 5 (0) — 1)
for y ¢ span(X), and recall 7,,.(y) = 0 for y € span(X). Hence, we obtain

for every y ¢ span(X), where g : [0,00) — [0,n — (k — g)) is continuous and
strictly increasing with lim,_, o, g(x) = (n— (k—¢q)). (Since T .. (y,,) — oo for every
sequence y,, — y € span(X)\2y, the sharpness of the bound n — (k — g) can thus
also be read-off from (19).) As a consequence, for every critical value C > 0, the
rejection regions {T,u. > C} and {T,. > g~'(C)} differ at most by span(X), which
is a Agn-null set; in particular, the rejection probabilities (under the null as well as
under the alternative) are the same.*’ That is, the test statistics TM and T, give
rise to (essentially) the same test, if the critical values chosen are linked by the

do1f Assumption | is not satisfied, then T, = 0, and the resulting test (with rejection region {T#,; > C}) is trivial as
it never rejects for C > 0, while it always rejects for C < 0.

4TThis is so because of our Gaussianity assumption and the fact that all ¥ € €p,; are positive definite.
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function g as above. In particular, as we shall see, this is the case if the respective
smallest size-controlling critical values are used for both test statistics (provided
both these values exist).

To see what the preceding discussion entails for the existence of nontrivial size-
controlling critical values for Ty, we distinguish two cases. In the first case, we
shall see that nontrivial size-controlling critical values do not exist, whereas in the
second case, they do indeed exist.

Case 1: Condition (8) is violated. Recall from Proposition 5.7 that then the size
of {T,, = D} is 1 for every real D (in particular, implying that 7, is not size-
controllable). It transpires from the preceding discussion, that hence the size of
{T,,c > C} must equal 1 for every C satisfying 0 < C < n— (k—¢q) (and a fortiori
for C < 0), because D := g~ (C) is well defined and real for 0 < C < n— (k —g).
As a consequence, any size-controlling critical value C for T, must satisfy C > n—
(k— q) (with the smallest size-controlling critical value given by n — (k — q)), thus
leading to a rejection region that is trivial in that it is empty (if C > n— (k—¢q)) or is
a Arn-null set, namely span(X)\9MM (if C =n— (k—gq)). That is—while Tuc is size-
controllable in the present case—it is so only in a trivial way.*® (Another way of
arriving at the above conclusion is to use Part (a) of Proposition 6.7 and to observe
that in Part (a) of Theorem 6.4, the quantity C* equals n — (k — g). To see the latter,
note that violation of condition (8) implies existence of an index i € [; (zmg") with
ei(n) € span(X). In particular, a(uo + e;(n)) = 0. Since ¢;(n) ¢ Dﬁg” must hold in
view of i € [} (S)J"(g”), and thus o+ e;(n) ¢ My for every o € M, must be true,
we may use (18) to arrive at Tuc(,uo +e;(n)) =n— (k—gq) for this i € I (93?6”‘).
This shows C* > n — (k — g). Equality then follows since C* < n— (k — g) trivially
holds by (18). As a point of interest, we also note that C* = n — (k — g) implies
that o* in Part (a) of Theorem 6.4 satisfies ¢* = 0.)

Case 2: Condition (8) is satisfied. In this case T, is size-controllable according
to Theorem 5.1. In particular, for any given o € (0, 1), there exists a smallest real
number D¢ (o) such that the size of {T,, > Do («)} is less than or equal to «,
with equality holding for & € (0,a7 1N (0,1) where a7, = refers to «* appearing
in Theorem 5.1(a), and recall from that theorem that o7, > 0; and Do (a) > 0
by Remark 5.4.% Also, note that the rejection region {7, > D (a)} is not trivial
as it has positive Agz-measure (and the same is true for its complement) (see the
discussion at the very beginning of Section 6.2). Setting Co () = g(Do(«¢)) and
using that {T,,. > Co ()} and {Tye > g~ (Co ()} = {T\e > Do ()} differ at most
by the Ar»-null set span(X), we see that (i) 0 < Co (o) < n— (k—¢q), (ii) the size of
{Tuwe > Co ()} is less than or equal to «, with equality holding for « € (0,7, 1N
(0,1), (iii) Co (@) is the smallest size-controlling critical value (recall that g is
strictly increasing), and (iv) the rejection region {T.e > Co(a)} is not trivial as it
has positive Agrz-measure (and the same is true for its complement). In particular,

48 The trivial size-controlling critical values C for Tye sort of correspond to using oo as a “size-controlling critical
value” for 7).

O1f a;‘.w <« < 1, then the size, in fact, equals a;l (see Remark 5.6).
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note that 7, and T give rise to (essentially) the same test if the respective smallest
size-controlling critical values are used. We furthermore note that in the present
situation C* =g(Cy,) and oz~ = oy, hold, where C7. , a7 correspond to C*,

* in Part (a) of Theorem 5 l “Whereas C* aT correspond to C*, o™ in Part

uc uc

(a) of Theorem 6.4.°" In particular, ai > Oand 0 < C* L <n-— (k — g) follow.
These claims can be seen as follows: under condition (8) we have ug + e;(n) ¢
span(X) foreveryie [, (93?””) and every o € M. Consequently, TuC (no+ei(n) =
g(Tyc (1o + €;(n))), which proves C;m_ = g(C*M) in view of strict monotonicity
of g. The relation a;m = aj then follows from the definitions of a; and a7

uc

using that (T > C}and (T, > > ¢~ !(C)} differ at most by the Ags-null set span(X)

for every C > 0. Positivity of O‘T now follows from positivity of a7, ~discussed
before, and C* <n—(k—q) follows since C* =g(C7, ) and C7, < 0o. (Another
way of provmg O‘T >0and 0 < C* L <n-— (k q) without usmg relationship
(19), is to first estabhsh C* <n-— (k q) [from observing that u(iug+ e;(n)) #0

(as po +e;(n) ¢ span(X)) for every i€l (Emg”), which implies Te(peo + ei(n)) <
n— (k — g) for every such i in view of (18)] and then to proceed analogously as in
the proof of Theorem 6.12.)

While 7, is always size-controllable, whereas 7, is not, this does not represent
any real advantage of Tm over T,., as we have seen that Tuc admits only trivial size-
controlling critical values in the case where T, is not size-controllable. Even more
importantly, and already noted above, these test statistics give rise to (essentially)
the same test if for both test statistics the respective smallest size-controlling
critical values are used (provided they both exist).

6.2.2. The Case of THe,. For THE,, we find that, not infrequently, it is also a
bounded function, although we have no proof that this is always so. We illustrate
the problems that can arise here first by an example. See also Remark 6.14.

Example 6.1. Consider the n x 2 design matrix X where the first column

represents an intercept, the second column is x := (1, — 1,0,...,0), and n > 3.
Let R = (0,1), r =0, and hence g = 1. Obviously, the first column of X spans
OMlin_ Since e;(n) ¢ M, for every i = 1,...,n, Assumption 2 holds. Furthermore,

I~1,-,- = n~!. Thus, c~i,< = ;i] holds for every i = 1,...,n and for every of the five
choices HCOR-HC4R. Note that d; ' = 1 (HCOR), d;' = 1 —n~! (HCIR), d;"' =
1—n"' (HC2R),d; ' = (1—n"")? (HC3R),and d; ' = 1 —n~! (HC4R), and hence
0< Zil_' < 1 for all five choices. Straightforward computations now show that
Qi () = di [ =7+ (2 —5)°] /4 and

T ) = dy 51 =y / [01 =)+ 52— )] (20)

501t a;f_ < a < 1, then the size of {Tw > Co (@)} is, in fact, equal to a;‘-m = a; (cf. Footnote 49 and Remark 6.8).
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whenever the numerator is positive, and THE,(y) = 0 otherwise. Here, y denotes the
arithmetic mean of the observations y;. (For later use, we also note that the set Bis
given by {y € R" : y; =y, =y}, and that the size control condition (17) is satisfied,
since e;(n) ¢ B for every i = 1,...,n [also note that py can be chosen to be zero
because of r = 0]. Furthermore, T, is not constant on R”\B, since Ty (e; (1)) =
Ther(e2(n)) = dy ' n?/[(n— 1)+ 1] and Ty (e;(n)) = 0 for i > 3 [note n > 3] and
since e;(n) ¢ B for every i.) It is now evident from (20) that Tye,(y) < 2211_' for
every y € R” and that this bound is attained whenever y; +y, = 2y and y; # y»
(e.g., for y = x). It follows that any critical value C > 2211_1 leads to a test with
rejection region that is empty if C > 221;1, and is a Lebesgue null set if C = 221;1
(the latter following from Lemma D.1(d) in Appendix D of the Supplementary
Material together with some of the observations just noted after (20)); thus, in
both cases, all the rejection probabilities are zero under the null as well as under
the alternative (given our Gaussianity assumption and the fact that all ¥ € €g,,
are positive definite); in particular, these tests have zero power. Since Zlfl <1, this
eliminates all critical values C > 2 from practical use. In particular, this eliminates
the commonly used choice where C is the 95% quantile of a chi-square distribution
with 1 degree of freedom, which is approximately equal to 3.8415.

In the preceding example, any critical value C > 2&1_1 is trivially a size-
controlling critical value for the given significance level « (0 < o < 1), butitis “too
large” and leads to a trivial test. Certainly, one would prefer to use the smallest size-
controlling critical value C¢ (o) instead (which in the preceding example exists by
Theorem 6.4 and by what has been shown in the example) and one would hope that
the resulting test is not trivial. As we shall show, this is indeed the case. To this
end, we first give a general result that, in particular, is applicable to the preceding
example. Recall that Co (@) is positive (Remark 6.6), and that Theorem 6.4 is silent
on whether o™ > 0 or not.

THEOREM 6.12. Suppose Assumption 2 and (17) are satisfied and that Ther is
not constant on R"\B. Let a satisfy 0 < o < 1, and let C* and a* be as defined
in Part (b) of Theorem 6.4. If C* < SUPycRn THe:(y) holds, then we have a* > 0,

and the rejection region {Ther > Co (@)} is not a Agn-null set, where Co(ct) is the
smallest size-controlling critical value as in Part (c) of Theorem 6.4.

Remark 6.13. (i) The preceding theorem clearly implies that—under its
assumptions—the rejection probabilities associated with the rejection region
{Thet > Co(a)} are positive under the null as well as under the alternative (in
view of our Gaussianity assumption and the fact that all ¥ € €p,, are positive
definite). (While we already know from Theorem 6.4(b) and Remark 6.8 that the
rejection region {THel > Co ()} has size equal to « in case @ € (0,0*]N (0, 1), and
has size equal to o™ if &* < & < 1, this by itself does not allow one to conclude
that the rejection region has positive Ags-measure as the case «* = 0 is not ruled
out by Theorem 6.4(b) and Remark 6.8.)
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(i1) Suppose C* = SUPycpn THK,(y), but that the other assumptions of Theorem

6.12 hold. ' Then the rejection region {Tje; > Co (cr)} is a Aga-null set; thus, also
the smallest (and hence any) size-controlling critical value leads to a trivial test.
To prove the claim, note that by Proposition 6.7 we have Co (o) > C*, implying
that the rejection regions are either empty or coincide with the sets {The = C*},
respectively. In the latter case, apply Part (d) of Lemma D.1 in Appendix D of the
Supplementary Material. We also point out that in the present case, o™ = 0 must
hold since the rejection regions appearing in the definition of «* are all empty
(because of C > C* = SUP, Tye,(y) in the definition of o*).

(iii) If Assumption 2 holds, but Ty, is constant on R"\B, any rejection region
of the form {7y, > C} is trivial in that the rejection region or its complement is a
Are-null set. (This case can actually occur [see Remark D.2 in Appendix D of the
Supplementary Material].) If Assumption 2 is violated, Tier i identically zero and
a similar comment applies.

Example 6.2. We continue the discussion of Example 6.1. As noted prior to
Theorem 6.12, any critical value C > 2511_1 is size-controlling in a trivial way, but
leads to trivial rejection regions. We now show that the smallest size-controlling
critical value C¢ (o) indeed leads to a nontrivial test (which, in particular, has
positive rejection probabilities in view of our Gaussianity assumption and the fact
that all ¥ € €y, are positive definite). For this, it suffices to verify the assumptions
of Theorem 6.12. The first three assumptions have already been verified above.
From the calculations in Example 6.1, it is now easy to see that C* = Eil_ b2 l(n—
1)% 4 1], which is smaller than 2211_1 = SUPycRn THet (). This completes the proof
of the assertion. From Remark 6.13(i), we furthermore see that the rejection region
{Ther > Co ()} has size equal to v if ¢ € (0,*]N (0, 1), and has size equal to o*
if ™ < a < 1. Finally, we note that size-controlling critical values that do not lead
to trivial tests must lie in the interval [d;'n?/[(n — 1) 4-1],2d;") which is quite
narrow as it is contained in the interval [gll_l, 2;11_1 ).

While the situation in Example 6.1 is somewhat particular, the example may per-
haps contribute to a better understanding of the Monte Carlo findings in Davidson
and MacKinnon (1985) and Godfrey (2006), namely that the tests, obtained from
Ther (employing HCOR—HC4R weights) in conjunction with conventional critical
values such as the 95% quantile of a chi-square distribution with appropriate
degrees of freedom, can suffer from severe underrejection under the null.

Remark 6.14. Another class of examples where 7~"He, is bounded is the case
q = k discussed in Remark 6.10. Recall from that remark that in case ¢ = k >
1, condition (17) is, however, never satisfied and thus Theorem 6.12 is then not
applicable. We have not further investigated nontriviality of tests based on Tier in

51We have not investigated whether this case can actually occur for THer. Recall that for Ty this case indeed can
occur (see Case 1 in Section 6.2.1).
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case g = k beyond the observations made in Remark 6.10(iii) that constancy of
Ty on R™\B is possible in case ¢ = k > 1 and thus then Remark 6.13(iii) applies.

7. GENERALIZATIONS
7.1. Generalizations Beyond Gaussianity

(i) All results in the preceding sections (as well as the extensions described in
Appendix A of the Supplementary Material) referring to properties under the
null hypothesis carry over as they stand to the situation where the error term
U in (1) is elliptically symmetric distributed and has no atom at zero, i.e., U is
distributed as o X !/%z where z has a spherically symmetric distribution on R” that
has no atom at zero.”” This is so since—under this distributional model—the null
rejection probabilities of any G(9)%)-invariant rejection region coincide with the
corresponding null rejection probabilities under the Gaussian model (i.e., where
z is standard Gaussian); see the discussion in Section 5.5 of Preinerstorfer and
Pétscher (2016) and Appendix E.1 of Potscher and Preinerstorfer (2018).%® This
implies, in particular, not only that the sufficient conditions for size controllability
under the above elliptically symmetric distributed model as well as under the Gaus-
sian model are the same, but also that the numerical values of the size-controlling
critical values coincide. As a consequence, the algorithms for computing the size-
controlling critical values in the Gaussian case (used in Section 11 and described
in Section 10 and Appendix E of the Supplementary Material) can be used in the
above elliptically symmetric distributed case without any change whatsoever. The
same is actually true if z has a distribution in a certain class larger than the class
of spherical symmetric distributions with no atom at zero (see Appendix E.1 of
Potscher and Preinerstorfer, 2018).

(ii) Furthermore, as discussed in detail in Appendix E.2 of Pd&tscher and
Preinerstorfer (2018), the sufficient conditions for size controllability that we have
derived under Gaussianity also imply size controllability for many more forms
of distribution of z than those mentioned in (i); however, the corresponding size-
controlling critical values may then differ from the size-controlling critical values
that apply under Gaussianity.

(iii) Similarly as in Section 5.5 of Preinerstorfer and Pétscher (2016), the
negative results given in the preceding sections (as well as the ones described in
Appendix A of the Supplementary Material) such as e.g., size 1 results, extend in
a trivial way beyond the Gaussian model as long as the maintained assumptions on
the feasible error distributions are weak enough to ensure that the implied (possibly
semiparametric) model, i.e., set of distributions for Y, contains the set given in (2),
but possibly contains also other distributions.

52ZNote that all results in the preceding sections (as well as the extensions in Appendix A of the Supplementary
Material), except for a few comments in Section 6.2, are results referring to properties under the null hypothesis.

53 Note that all rejection regions considered in the preceding sections are G(9)1()-invariant, because the test statistics
considered are so.
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(iv) A further generalization beyond Gaussianity in the important special case
where € = €p,, is as follows: suppose U is distributed as o ©!/?diag(r)z where z is
standard normally distributed on R” and where the n-dimensional random vector
r is independent of z with distribution p, where p is a distribution on (0, 00)".
(This includes the case where the elements of diag(r)z form an i.i.d. sample from
a scale mixture of normals.) Let Q,, 25 , denote the implied distribution for Y
given by (1) where © = XB. Consider now instead of (2) the (semiparametric)
model given by all distributions Q,, ;25 , where € span(X), 0 < 0’ <00, T e,
and p is an arbitrary distribution on (0, c0)". Then the sufficient conditions for size
controllability derived under Gaussianity in earlier sections (and in Appendix A of
the Supplementary Material) also imply size controllability in this larger model.
In fact, the size-controlling critical values that apply under Gaussianity deliver
also size control under this more general model. This follows from the following
reasoning: let W be a Borel set in R” such that PmﬂzE (W) <« for every ugy € My,
every 0 < 02 < oo, and every ¥ € €y,,. Then, for every such u, 0%, =, and every
distribution p on (0, 00)", we have

00025, (W) = Pr(uo+ o '/ diag(r)z € W) = E[Pr(po + o ='/*diag(r)z € W|r)]
1/2

= E[Pr(uo+0vZy*z€ WD =E[P, 2z W] =<a.

where /% := £1/2diag(r) /s, with s, denoting the positive square root of the sum
of the diagonal elements of (£'/2diag(r))? = Ldiag?(r) and where o, = o's,.. Here,
we have used that Pu,afzr(w) < « by assumption since X, = Ediagz(r) /sf € Chor
and 0 < o, < oo hold for every realization of r. In the above, Pr denotes the
probability measure governing (r,z) and E the corresponding expectation operator.
As a consequence, the smallest size-controlling critical value under Gaussianity is
also the smallest size-controlling critical value under the semiparametric model
considered here, as the latter model contains the Gaussian model as a submodel.
(In the special case where diag(r) is a (random) multiple of the identity matrix
I, the assumption € = €, is superfluous as then X, = X, which by assumption
belongs to the given €. In this case, U satisfies the assumptions in (i), and hence
(iv) adds little new, except that—in contrast to (i)—the reasoning works without
use of G(My)-invariance.)

(v) It is apparent from the reasoning in (iv) that Gaussianity of z can be replaced
by any other distributional assumption for which size controllability has already
been established. For example, one can in (iv) choose z to have a spherically
symmetric distribution without an atom at zero or to have a distribution in the more
general class mentioned in (i) (note that all relevant rejection regions discussed
in earlier sections are G(91y)-invariant and thus (i) applies). In a similar vein,
one can combine the results in Appendix E.2 of Potscher and Preinerstorfer
(2018) discussed in (ii) above with the reasoning outlined in (iv). We abstain from
presenting details.
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7.2. Generalizations to Stochastic Regressors

The assumption of nonstochastic regressors can be easily relaxed as follows:
suppose X is random and U is conditionally on X distributed as N(0,02%), with
02 =0%X) > 0and T = =(X) € €y, where o%(-) and X (-) may vary in given
classes of functions. The size control results such as Theorems 5.1 and 6.4 can then
obviously be applied after one conditions on X provided almost all realizations of
X satisfy the assumptions of those theorems, which will typically be the case (for
brevity, we do not provide a formal statement here).”* The resulting conditional
size control statements then immediately imply that the so-obtained conditional
size-controlling critical values C = C(«, X) also control size unconditionally. Size
1 results such as, Propositions 5.5, 5.7, or 6.7, also extend to conditional size 1
results in a similar manner provided o>(X) and X (X) vary independently through
all of (0,00) and €., respectively, for (almost) every realization of X, when
the functions o%(-) and X () vary in the before-mentioned function classes.”
Generalizations to non-Gaussianity similarly as discussed in Section 7.1 are also
possible in the present context.

8. RESULTS FOR OTHER CLASSES OF TESTS

The results in Sections 5 and 6 (and in Appendix A of the Supplementary Material)
have been obtained with the help of a general theory developed in Section 5
of Preinerstorfer and Potscher (2016), Section 5 of Potscher and Preinerstorfer
(2018), and Section 3.1 of Potscher and Preinerstorfer (2019) that covers a very
broad class of test statistics (and actually allows also for correlated errors). We note
that, like in Section 7.1, Gaussianity is again not essential for a good portion of
this general theory (see Section 5.5 of Preinerstorfer and P6tscher, 2016 as well as
Appendix E of Pétscher and Preinerstorfer, 2018).°® We next discuss a few further
situations that can also be handled by the general theory just mentioned, but we
refrain from spelling out the details:’’

(1) The test statistic considered is an OLS-based test statistic like Ty,,, but where
Qpyer is NOW replaced by an appropriate estimator derived from a given (possibly
misspecified) parametric heteroskedasticity model described by a parameter vec-
tor 6.

(i1) The test statistic is a Wald-type test statistic based on a (feasible) generalized
least-squares estimator together with an appropriate covariance matrix estimator
based on a given (possibly misspecified) parametric model. (This includes the

54 An appropriately modified statement applies to the size control results in Appendix A of the Supplementary
Material.

55See Footnote 40 in Potscher and Preinerstorfer (2023) for a discussion of sufficient conditions.
56 Also, arguments like in (iv) and (v) of Section 7.1 can be applied to try to obtain generalizations.

57 Applying some of the main results of this general theory (e.g., Corollary 5.6 or Proposition 5.12 of Potscher and
Preinerstorfer, 2018) will require one to determine the set J(£, €) defined in Appendix B of the Supplementary
Material. For the important cases € = € and € = &, ,,) (defined in Appendix A of the Supplementary
Material), this is already accomplished in Propositions B.1 and B.2 in Appendix B of the Supplementary Material.
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(quasi-)maximum likelihood estimator (provided 6 is unrelated to §).) Alterna-
tively, the test statistic is the (quasi-)likelihood ratio or (quasi-)score test statistic
based on this parametric model.

(iii) The test statistic is a Wald-type test statistic as in (ii), except that the covari-
ance matrix estimator is now nonparametric (in the spirit of heteroskedasticity
robust testing) as described in Romano and Wolf (2017). See also Cragg (1983,
1992), Flachaire (2005), Wooldridge (2010, 2012), Romano and Wolf (2017), Lin
and Chou (2018), and DiCiccio, Romano, and Wolf (2019).

9. SOME COMMENTS ON POWER

Under our maintained assumptions, heteroskedasticity robust tests based on Ty,
or T, (using an arbitrary critical value C, including size-controlling ones) have
positive power everywhere in the alternative (cf. the discussion at the beginning of
Section 6.2). These tests can furthermore be shown to have power that goes to one
as one moves away from the null hypothesis along sequences (i, 07, £;) where 1
moves further and further away from 901 (the affine space of means described by
the restrictions R = r) in an orthogonal direction as [ — oo, where 012 converges
to some finite and positive o2, and X, converges to a positive definite matrix.
Despite of what has just been said, these tests can have, in fact not infrequently
will have, infimal power equal to zero if € is sufficiently rich, e.g., if € = €y, (cf.
Theorem 4.2 in Preinerstorfer and Potscher, 2016, Lemma 5.11 in Potscher and
Preinerstorfer, 2018, and Theorem 4.2 in P6tscher and Preinerstorfer, 2019). (This
does not contradict the before-mentioned result as for this result sequences X; that
converge to a singular matrix as / — oo were ruled out.)

For tests based on THQ, or T,,C, the situation is somewhat different. As shown in
Section 6.2, tests based on THE, or T,,C can be trivial for some choices of critical
values C (and then will have power zero everywhere in the alternative). However,
if C is chosen to be the smallest size-controlling critical value (provided it exists),
the resulting tests obtained from Tiier or Ty will typically have positive power
(under appropriate assumptions). In particular, then the test based on T, has the
same power function as the test based on T}, that uses its smallest size-controlling
critical value, provided the latter exists (see Section 6.2.1). We have not further
investigated the power properties of the tests based on T, in any more detail
on a theoretical level. The numerical results in Section 11.2 seem to suggest that
for these tests, power may not go to one along sequences (1, 012, ¥;) as mentioned
above: in fact, power does not rise above the significance level « in some examples
(on the range of alternatives considered). This feature makes tests based on THe,
rather undesirable.

10. COMPUTING THE SIZE AND SMALLEST SIZE-CONTROLLING
CRITICAL VALUES

Consider a testing problem as in equation (3) with € = &€,,, and let T be one of
the test statistics considered in the present article (e.g., Ty, With some choice for
the weights d;). Suppose we want to numerically determine the size of the test with
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rejection region {7T" > C} for some user-supplied critical value C, i.e., we want to
determine

sup sup sup P
HOEM) 0<o2 <00 ZECH,

wo.02x (T'=C). 21)
Now, for all test statistics T’ considered in the present article, this can be simplified
to

sup P, s(T=>C), (22)
YeChes
where, subject to o € My, o can be chosen as desired. This is due to invariance
properties of T (cf. Remarks 3.2 and 6.2). The quantity in (22) can now be
approximated numerically by any maximization algorithm where the probabilities
are evaluated by Monte Carlo methods or by the algorithm described in Davies
(1980) in case ¢ = 1 (cf. Appendix E.1 of the Supplementary Material).>

Suppose next that we want to numerically determine the smallest size-
controlling critical value Co (o) € R (0 < o < 1) when using the test statistic
T. (We assume here that the user knows that the smallest size-controlling critical
value indeed exists, e.g., because the user has checked that the sufficient conditions
developed in the present article hold, or because of other reasoning as, e.g., used
in Example 5.5.) Then, in view of (21) and (22), we need to compute Cq (v) as the
smallest real number C for which

sup Py s(T>C)<a 23)
YeChey
holds. The quantity to the left in (23) is non-increasing in the critical value C.
Hence, to determine the smallest size-controlling critical value C¢ (), any line-
search algorithm (in combination with an algorithm to determine the sizes as
described before) can be used to compute C¢ (o). We stress that it is of foremost
importance to know that the testing problem at hand actually allows for size control
before one attempts to numerically determine C¢ (o). Hence, the theoretical results
of the present article are of paramount importance also for the algorithmic aspect
of the problem.

The specific algorithms we use to determine size and size-controlling critical
values in our numerical studies are based on the above observations and are
described in detail in Appendix E of the Supplementary Material. They are made
available in the R package hrt (Preinerstorfer, 2021) for the convenience of the
user. The numerical procedures we use are heuristic in nature. Questions of efficacy
of these algorithms or about theoretical guarantees are certainly important, but are
beyond the scope of the present article.

Determining smallest size-controlling values numerically is important, e.g., if
one wants to compare their magnitude with that of standard critical values in some

58 Alternative to Davies (1980), other algorithms like Imhof’s algorithm, etc., can be used, some of which are also
implemented in the R package CompQuadForm (Duchesne and de Micheaux, 2010).
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special cases, as we do inter alia in the next section, or if one wants to obtain a
confidence interval. However, a user who has observed the data and only wants to
decide whether or not to reject the null hypothesis at significance level o (0 < @ <
1) when using T combined with the smallest size-controlling critical value C¢ (o),
can actually perform this test without needing to compute Ce (c): let y s be the
observed data. Define the “maximal p-value” as

P(Vobs) = SUp  sup  sup Pﬂo,o‘zz({z €R":T(2) = T(Yors)})

mo€Mp 0<o2 <00 Z€CH,

= sup Py, s({z€R":T(2) = TWobs)})s (24)

XeChe

where the second equality in the display follows from the invariance properties
mentioned before (and g € MMy can be chosen as desired). It is now not difficult
to see that p(yps) < « is equivalent to T(y,ps) > Co (). That is, rejecting if
and only if p(y,ps) < o leads to exactly the same test as rejecting if and only if
T (Yops) = Co (@), with the former description having the advantage that the more
costly computation of C () can be avoided. What needs to be computed is (24),
which, however, is nothing else than the size of the test when using the “critical
value” T (y,»s). Hence, p(y,5s) can be determined by any algorithm that determines
the size (22) for the user-supplied “critical value” C = T (y,»s). In particular, the
routine “size” provided in the R package hrt (Preinerstorfer, 2021) can be used
for this purpose. Note that checking whether p(y,»;) < « avoids the line-search
part (as outlined following (23)), and is thus computationally more efficient than
first determining C¢ (o) (as outlined above) and then checking whether T (y,ps) >
Co(a).

Finally, we note that if (contrary to what we assume in this section) no size-
controlling critical value exists for a given significance level o € (0, 1), then the
maximal p-value in (24) is larger than « for every possible observed value y,;,, and
the corresponding test thus never rejects and thus is uninformative. Hence, while
the explicit computation of a smallest size-controlling critical value can be avoided
for performing a single test, knowing its existence is important as then the resulting
test is guaranteed to be informative (nontrivial) if Ty, or T, is being used, and the
same is true for THe, and T,,C under the conditions discussed in Section 6.2.

We also note that in view of the discussion in Section 7.1, the algorithms for
computing null rejection probabilities, size, and smallest size-controlling critical
values discussed in this section and Appendix E of the Supplementary Material
remain valid for elliptically symmetric distributed data without any need for
modification. With regard to computing size and smallest size-controlling critical
values, the same is also true for the semiparametric model described in (iv) of
Section 7.1.

11. NUMERICAL RESULTS

In this section, we pursue two goals:
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1. In Section 11.1, we show numerically that any of the usual heteroskedasticity
robust tests can suffer from overrejection of the null hypothesis (sometimes
by a large margin) when they are based on conventional critical values. While
this adds to similar evidence already present in the literature for the HCO-
HC4-based tests (see Section 1), this seems to be a new observation for the
HCOR-HC4R-based tests. In any case, this drives home the point that none
of these heteroskedasticity robust tests based on conventional critical values
comes with a guarantee that size is controlled by the nominal significance level
«. Consequently, instead of using conventional critical values, this strongly
suggests to use (smallest) size-controlling critical values as investigated in this
article.

2. In Section 11.2, we then numerically compute smallest size-controlling critical
values and study the power behavior of tests based on such size-controlling
critical values in some examples.

In this section (and in the attending Appendixes E and F of the Supplementary
Material), we shall often refer to Ty,; as HCO-HC4 when we want to stress that
the weights d; being used are the HCO-HC4 weights, respectively (see Section 3).
Similarly, we shall refer to THgt as HCOR-HC4R when the HCOR-HC4R weights
are used (see Section 6). For reasons of uniformity of notation, we shall then
often denote T, as UC and T, as UCR. Furthermore, throughout this section, we
consider the heteroskedastic Gaussian linear model with € = €p,, as introduced in
Section 2; in particular, the notion of size in the present section (and the attending
appendixes) always refers to this model.

The algorithms for computing rejection probabilities, the size of a test, and size-
controlling critical values used in the before-mentioned numerical computations
are described in Section 10 and Appendix E of the Supplementary Material.
Implementations are available as an R package hrt (Preinerstorfer, 2021).

11.1. Tests Based on Conventional Critical Values

We consider the important case ¢ = 1, and first illustrate numerically that none
of the test statistics UC, HCO-HC4, UCR, and HCOR-HC4R combined with the
critical value C,2 (o5 ~ 3.8415 results in a test that is guaranteed to have size
less than or equal to @ = 0.05. This is achieved by providing instances of design
matrices X and of hypotheses, described by (R, r), such that the respective test
has size larger than the nominal significance level o = 0.05, often by a large
margin. Here, C,2 o5 denotes the 95%-quantile of a chi-square distribution with
1 degree of freedom. (This critical value has a justification for use with HCO—
HC4 or HCOR-HCH4R via asymptotic considerations, but, in general, there is no
such justification for use with UC or UCR, which we nevertheless include here
for completeness.”) That is, in the instances we exhibit, this conventional critical

590f course, in the special case of homoskedasticity, the before-mentioned justification also applies to UC and UCR.
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value turns out to be too small. We next show similar results for other suggestions
of critical values, e.g., for “degree-of-freedom” adjustments to the conventional
chi-square-based critical value such as the Bell-McCaffrey adjustment (Bell and
McCaffrey, 2002; Imbens and Kolesar, 2016). It is important to note here that in
all the instances mentioned, our conditions for size controllability are satisfied,
showing that size-controlling critical values can actually be found; hence, the
overrejection problems mentioned before are not intrinsic problems, but only
reflect the fact that conventional critical values can be a bad choice and do not
guarantee size control. (In the present context, it is worth recalling that for the test
statistics HCOR-HC4R, we have already shown in Example 6.1 in Section 6.2 that
other situations can be found in which conventional critical values such as C,2 ¢ g5
are too large, as the resulting tests reject with probability zero only (under the null
as well as under the alternative), rendering these tests useless.)

To uncover instances where the conventional critical value C,2 (5 is too small,
we make use of the following observation: in case a given test statistic from the
above list (together with a given design matrix X and hypothesis described by
(R, r)) is such that the lower bound C* on size-controlling critical values obtained
in Proposition 5.5 (Proposition 6.7, respectively) exceeds C,2 o5, We are done, as
we then know that the critical value C 2 o5 leads to a test that has size 1. (As noted
subsequent to Theorems 5.1 and 6.4, the value of r actually plays no role here, and
we may set it to zero.)

Since the lower bounds C* for size-controlling critical values in Proposition 5.5
(Proposition 6.7, respectively) depend on the given test statistic, on X and on R, we
may—for any given choice of test statistic and any given R—numerically search
for particularly “hostile” design matrices, i.e., for design matrices for which the
lower bound is large, to see whether matrices X exist for which the lower bound
exceeds C,2 oos- We only do this for k =2, R = (0,1), r =0, and n = 25, and
restrict ourselves to matrices X with first column representing an intercept. The
concrete search used is detailed in Appendix F.1 of the Supplementary Material
(see Algorithm 5 in particular). Table 1 provides, for every test statistic considered,
the lower bound C* corresponding to the most “hostile” design matrix found by
the search. (As the searches are run separately for each test statistic, the resulting
“hostile” design matrices will typically differ across the runs.)*’

In combination with the theoretical results from Propositions 5.5 and 6.7, Table 1
shows that for some design matrices X, the critical value C 2 (o5 &~ 3.8415 results
in a test with size equal to 1 when combined with UC, HCO-HC2, and also with
UCR. (This is so despite the fact that, for any of the 12 test statistics considered,

60Since, for example, HCO is a multiple of HC1, where the factor is n/(n — k) = 1.09, we know that the “hostile”
design matrix obtained from the search for HC1 leads to a C*-value of 1.09 x 1,711.19 = 1,865.20 for HCO, larger
than the value 95.56 obtained from the search for HCO (cf. Table 1). We could have reported this larger value, but
decided to present the raw results from our searches as this is sufficient for our purposes. We also note that our search
procedure detailed in Appendix F.1 of the Supplementary Material does not seriously attempt to optimize the C*-
value (for every one of the test statistics considered) over the set of all feasible X, but is only a crude search for finding
a matrix resulting in a C*-value sufficiently large for our purposes.
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TABLE 1. C* under respective “hostile” X.

ucC 731.60 UCR 23.59
HCO 95.56 HCOR 1.08
HC1 1711.19 HCIR 1.04
HC2 52.23 HC2R 1.04
HC3 1.00 HC3R 1.00
HC4 1.02 HC4R 1.04

TABLE 2. “Worst-case” sizes using C,2  os-

ucC 0.98 UCR 0.98
HCO 0.99 HCOR 0.16
HC1 1.00 HCIR 0.17
HC2 0.99 HC2R 0.17
HC3 0.19 HC3R 0.14
HC4 0.11 HC4R 0.10

the sufficient conditions for size control in the pertaining theorems in Sections
5 and 6.1 are satisfied for all relevant X matrices encountered in the numerical
procedure [as we have checked], and hence it is known that size-controlling critical
values exist in all these situations!) Table 1 is not informative about the size of
the remaining seven tests, since the corresponding entries in that table are all less
than C,2 ( os. To obtain insight into the sizes of the remaining seven tests, we do
the following: for each of the tests, we numerically compute the size for various
instances of design matrices (the ones that give rise to Table 1) and report the
largest one of these sizes (“worst-case” sizes) in Table 2.° We actually do this
for all the 12 tests considered. The algorithm used in the size computation is the
implementation of Algorithm 1 in the R package hrt (Preinerstorfer, 2021) (cf.
the description in Appendixes E.2 and F.1 of the Supplementary Material). Table 2
now clearly shows that for every test statistic considered, an instance can be found,
in which the size of the test (when using the critical value C 2  5) clearly exceeds
the nominal significance level « = .05. The lowest value in that table is attained
by HC4R, but a size of 0.10 is still twice the nominal significance level «.

We note that the numbers shown in Table 2 actually only represent numerically
determined lower bounds for the actual sizes, as their computation involves (for any
given X) a numerical search procedure (over the set €p,,) for the worst-case null
rejection probability; that is, the numbers shown in Table 2 correspond to the null
rejection probability computed from a “bad” covariance matrix X, but potentially
not for the “worst” possible one. (In this process, for any given ¥ € Cg,,, we have
to numerically compute the null rejection probability, which can be done quite

610f course, considering additional design matrices X would potentially lead to even larger sizes.
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TABLE 3. “Worst-case” sizes using F-critical value.

uc 0.98 UCR 0.98
HCO 0.99 HCOR 0.15
HC1 1.00 HCIR 0.16
HC2 0.98 HC2R 0.15
HC3 0.18 HC3R 0.13
HC4 0.09 HC4R 0.08

accurately in case g = 1 by algorithms like the Davies algorithm [see Appendix
E.1 as well as Appendix E.2 of the Supplementary Material].) In particular, the
entries in the 0.98—0.99 range in Table 2 are numerically determined lower bounds
for the size, which, in fact, we know to be equal to 1 in light of Table 1. (We could
have used this knowledge to replace the entries in question in Table 2 by 1, but
we decided otherwise in order to showcase the concrete outcome of the numerical
algorithm that has been run. Of course, one could also improve this outcome by
using a higher accuracy parameter in the optimization procedures involved.)

Sometimes—without much theoretical justification in general—it is suggested
in the literature to replace C,2 (o5 by the 95% quantile of an F ,—,-distribution,
which is approximately 4.28 in the situation considered here (n — k = 23).
Obviously, from Table 1, we see that the conclusions regarding UC, HCO-HC2,
and UCR remain the same when this critical value is used. Repeating the exercise
that has led to Table 2, but with C,2 o5 replaced by the 95% quantile of an F -
distribution, gives Table 3, leading essentially to the same conclusions.

“Degree-of-freedom” adjustments to the conventional chi-square-based critical
value such as the Bell-McCaffrey adjustment (Bell and McCaffrey, 2002) have
been discussed in the literature. In particular, Imbens and Kolesar (2016) suggested
to use this adjustment with the HC2 statistic. We have repeated the above exercise
that has led to the entry for HC2 in Table 2, but with C, 2 (, o5 replaced by the Bell-
McCaffrey adjustment. For the computation of the Bell-McCaffrey adjustment,
we relied on the R package dfadjust (Kolesar, 2019). For the resulting test, the
largest size that was found in our computations was 0.24, which is more than four
times the nominal significance level. It transpires that this adjustment does also
not come with a size guarantee.

We conclude here by stressing that the negative findings in this subsection were
obtained in a very simple model with only two regressors and where only one of
the parameters is subject to test. For more complex models and test problems, the
size distortions may even be worse.

11.2. Power Comparison of Tests Based on Size-Controlling
Critical Values

A power comparison of two tests, both conducted at a given nominal significance
level o, makes sense only if both tests actually are level « tests, i.e., if both tests
have a size not exceeding the given «. For this reason, we now compare the

https://doi.org/10.1017/50266466623000269 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466623000269

VALID HETEROSKEDASTICITY ROBUST TESTING 291

tests obtained from the statistics UC, HCO-HC4, UCR, and HCOR-HC4R only
when respective smallest size-controlling critical values are used. Our theoretical
results concerning the existence of size-controlling critical values, together with
the algorithms for their computation in Appendix E of the Supplementary Material,
allow for such a comparison in terms of power. In all cases considered in this
section, ¢ = 1 will hold.

Throughout, in addition to the power functions of the before-mentioned tests,
we also show as a benchmark the power function of the infeasible (i.e., oracle)
GLS-based F-test conducted at the 5% significance level, that makes use of
knowledge of X. For given £ € €, the distribution of this infeasible GLS-based
F-test statistic is (under Pyg .25 with 8 € R¥, 02 € (0,00)) a noncentral Fy,_;-
distribution with noncentrality parameter §2, where

§=RX'T'X) 'Ry VERB—-1)/o.

Since the power functions of all the tests considered in our study depend on the
parameters 8, o2, and ¥ only through (RS — r)/o and ¥ (because of G(IMy)-
invariance and Proposition 5.4 in Preinerstorfer and Pé6tscher, 2016), and thus
depend only on § and X, we shall—for given X—present all these power functions
as a function of §. We show only results for § > 0, as the power functions in fact
depend on § only through |§| (for given X) (see Proposition 5.4 in Preinerstorfer
and Potscher, 2016).

11.2.1. Comparing the Means of Two Heteroskedastic Groups. As a prac-
tically relevant example, we here compare the power of tests based on size-
controlling critical values in the context of Example 5.4. That is, we treat the
problem of comparing the means of two heteroskedastic groups (e.g., a treatment
and a control group), the null hypothesis being that the difference of expected
outcomes in each group is zero. We consider the case where n = 30 and o = 0.05.
Furthermore, we vary the size n; of the first group (n; € {3,9, 15}), corresponding
to a “strongly unbalanced,” “moderately unbalanced,” and “balanced” design,
respectively. We compute the power for a number of covariance matrices ¥, given
as follows: for a = 1,5, 9, define

10— 10—
zu:m—'diag(i,... e 77a a) € Crren

9 b 9 9
n n n—m n—ny

where the first n; (and the last n — ny, respectively) diagonal entries of each X,
are constant. That is, we look at power functions evaluated at covariance matrices
under which the subjects in the same group actually have the same variances. (For
brevity, we do not report power functions for covariance matrices not sharing this
property.) For the balanced design, we note that | and X lead to the same power
of each test (but we report all results for completeness), and that X5 corresponds
to homoskedasticity.

The critical values are chosen in each case as the smallest critical value
guaranteeing size control over €y, (implying, of course, that the corresponding
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tests can have null rejection probabilities smaller than « for the covariance matrices
%, considered). The existence of said critical values follows from our theory
and is discussed in detail in Example 5.4 for the test statistics UC and HCO-
HC4; in particular, all assumptions of Theorems 5.1 are satisfied. For UCR, the
existence is guaranteed by Part (a) of Theorem 6.4. With regard to the test statistics
HCOR-HCA4R, note that Assumption 2 is satisfied since e;(n) ¢ 93?3” =My =
span((1,...,1)") forevery i =1,...,n as n = 30 > k = 2. This also shows that the
sufficient condition for size control (17) is satisfied as B= My is easily verified
and since one may set ;1o = 0. We have verified the non-constancy assumption on
the test statistics HCOR—HCA4R in Theorem 6.4 numerically. As a consequence, all
assumptions of Part (b) of Theorem 6.4 are satisfied.

We note that some of the test statistics differ from each other only by a known
multiplicative constant and hence are equivalent in the sense that they give rise
to the same test when the respective smallest size-controlling critical value is
employed (see Remarks 5.3 and 6.5): in the unbalanced case (n; € {3,9}), HCO
and HCI are equivalent in this sense, as are HCOR-HC4R (the latter is so since
fz,-,- = 1/n which does not depend on i). In the balanced case (n = 15), UC and
HCO0-HC4 are all equivalent, and the same is true for UCR and HCOR-HC4R as is
not difficult to see. Furthermore, in the balanced case as well as in the unbalanced
case, the rejection regions of the tests based on UC and UCR coincide essentially
(i.e., up to a Arn -null set) as a consequence of the relationship established in
Section 6.2.1. In particular, it follows that in the balanced case, all tests considered
(essentially) coincide. We nevertheless compute the power functions for each of
the tests separately without making use of the noted equivalencies; this provides a
double check of our numerical results.®?

Numerically, the critical values were determined through the implementation of
Algorithms 1 and 3 in the R package hrt (Preinerstorfer, 2021) version 1.0.0, and
the power functions were computed with the implementation of the algorithm by
Davies (1980) in the R package CompQuadForm (Duchesne and de Micheaux,
2010) version 1.4.3 (see Appendixes E.2 and F.2 of the Supplementary Material
for more details). For the sake of illustration, we also report the critical values
obtained for every test considered and every balancedness condition in Table 4.

In relation to Table 4, we note that the equivalences discussed before predict,
e.g., that the ratio between the entries in the column labeled HCO and the
corresponding entries in the column labeled HC1 should be equal to n/(n —
2) = 30/28 ~ 1.0714. The ratios computed from the table are 1.0414, 1.0761,
and 1.0721 (for n; = 3,9,15), which is in pretty good agreement (especially
if one converts the critical values shown in the table to critical values for the
corresponding “f -test” versions by computing their square roots). The agreement
between theoretical and observed ratios for the HCOR—-HC4R columns is similar. In
the balanced case, one can also use the additional equivalences mentioned before

62The equivalencies mentioned in this paragraph for the two-group-comparison problem analogously hold for general
n, ny, and ny as is easily seen.
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TABLE 4. The smallest size-controlling critical values for comparing the means
of two heteroskedastic groups.

n ucC HCO HC1 HC2 HC3 HC4
3 225.97 26.69 25.63 17.48 11.86 5.43
12.70 5.80 5.39 5.10 4.55 4.70
15 4.59 491 4.58 4.59 4.28 4.58
ni UCR HCOR HCIR HC2R HC3R HC4R
3 25.82 3.25 3.14 3.14 3.02 3.13
9.05 4.28 4.15 4.14 4.06 4.19
15 4.08 4.23 3.92 4.08 3.95 4.09

and one again finds very good agreement. Similarly, the critical values for UC
and UCR in Table 4 are in excellent agreement with their theoretical relationship
found in Section 6.2.1. The reason for the small discrepancies observed lies in
the fact that the algorithm underlying the computations for Table 4 makes use
of a random search algorithm. Concerning Table 4, we also mention that, in the
example considered here and for the test statistic HC2, Ibragimov and Miiller
(2016) prove in their Theorem 1 (see also the discussion preceding that theorem)
that the smallest size-controlling critical values are given by 18.51 (n; = 3), 5.32
(n; =9), and 4.60 (n; = 15), respectively. The numerically determined critical
values in Table 4 are reasonably close to these values (after conversion of the
critical values to corresponding “z-test” critical values the maximal difference is
about 0.1). Of course, the accuracy of our algorithm could be increased by using
more stringent accuracy parameters in the optimization routines underlying the
computation of the critical value, but this would come with a longer runtime.

From Table 4, it is clear that for the tests based on unrestricted residuals, the
smallest size-controlling critical values obtained are always larger, sometimes
considerably, than C,2 (o5 = 3.8415, again showing that the latter critical value is
not effecting size control. For the tests based on restricted residuals, the smallest
size-controlling critical values sometimes fall below C,2 (s in the strongly
unbalanced case (which is not completely surprising in view of Section 6.2.2);
while in this case C,2 (s effects size control, using the smaller size-controlling
critical values given in Table 4 can only be advantageous in terms of power.

That being said, we emphasize a trivial, but important point, namely that
comparing the magnitudes of size-controlling critical values relating to different
test statistics is not very meaningful and, in particular, not a valid way of comparing
the quality of the resulting tests. That is, while it may be tempting to infer from
Table 4 that the HCO test should be considerably more conservative than the HC4
test, or that the UC test should be considerably more conservative than the UCR
test, such a conclusion would be false and not warranted at all (in particular, recall
that UC and UCR in fact result in (essentially) the same test if the critical values
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F1GURE 1. Power functions for n; = 3. Left column: tests based on unrestricted residuals (cf. legend).
Right column: tests based on restricted residuals (cf. legend). The rows correspond to ¥, fora =1,5,9
from top to bottom. The abscissa shows §. In the left panel, the HCO-HC4 curves turn out to be barely
distinguishable, with the HC1 curve lying on top of the HCO curve. In the right panel, the HC4R curve
lies on top of the HCOR-HC3R curves. See the text for an explanation.

from Table 4 are being used). While this would be correct if the critical values
were all meant to be used with the same test statistic (which they are not), critical
values belonging to different test statistics can certainly not be compared in such
a way. Instead, one has to compare the corresponding power functions, which is
what we shall do next.

The power functions are shown in Figure 1 (“strongly unbalanced,” n; = 3),
Figure 2 (“moderately unbalanced,” n; = 9), and Figure F.1 (“balanced,” n; = 15),
where only the first two figures are shown in the main text, and the last figure (in
which the power functions of all the feasible tests lie “on top of each other”) is
available in Appendix F.3 of the Supplementary Material. Readers are referred to
the online version for colored figures.

The power functions illustrate that the testing problem is getting easier (i.e.,
power gets closer to the oracle benchmark), for more balanced design, which has
intuitive appeal. Except for the strongly unbalanced case (n; = 3), the power loss of
the tests based on HCO-HC4 and HCOR-HCH4R relative to the oracle benchmark
is surprisingly small (see Figure 2 as well as Figure F.1 in Appendix F.3 of the
Supplementary Material). In the unbalanced cases (n; € {3,9}), the HCO-HC4-
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F1GURE 2. Power functions for n; = 9. Left column: tests based on unrestricted residuals (cf. legend).
Right column: tests based on restricted residuals (cf. legend). The rows correspond to ¥, fora =1,5,9
from top to bottom. The abscissa shows §. In the left panel, the HCO-HC4 curves turn out to be barely
distinguishable, with the HC1 curve lying on top of the HCO curve. In the right panel, the HC4R curve
lies on top of the HCOR-HC3R curves. See the text for an explanation.

based tests behave all very similarly, with the power functions of the HCO- and
HCl1-based test being virtually indistinguishable (as they should in view of the
before discussed equivalence). The UC-based test shows markedly worse power
performance. Similarly, the HCOR-HC4R-based tests have virtually indistinguish-
able power functions (as they should because of the before discussed equivalence).
The UCR-based test again is inferior (and its power function coincides with the
one of UC as mentioned before). There appears also to be little difference between
basing the test statistics on unrestricted or restricted residuals in this example. In
the balanced case, we know that all the feasible tests have exactly the same power
function in view of our earlier discussion. This is visible in Figure F.1 in Appendix
F.3 of the Supplementary Material. Also, the different forms of heteroskedasticity
considered seem not to have much effect on the power functions (when expressed
as a function of §), except for UC and UCR in the unbalanced cases.

Hence, within the scenario considered in this section, perhaps the most impor-
tant conclusion concerning the choice of a test statistic appears to be to avoid
UC and UCR. Everything apart from that, i.e., whether one uses unrestricted
or restricted residuals to construct the test or which specific heteroskedasticity
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correction one decides to use, seems to be a comparably irrelevant part of the
problem once the right (i.e., smallest size-controlling) critical value is used. We
shall see in the next subsection that this conclusion very much depends on the
scenario considered here and does not generalize beyond, illustrating the danger
of drawing conclusions from a limited numerical study.

11.2.2. A High-Leverage Design Matrix. In this section, we consider testing
B> = 01in a model with intercept and a single regressor x = (10, cos(2), cos(3), ...,
cos(n))’. Obviously, the regressor has a dominant first coordinate, leading to
diagonal elements h; of X(X’X)~'X’ such that the ratio of largest to smallest
h;; is roughly 26 (maxh; ~ 0.879, minh; ~ 0.033). Hence, the design matrix X
provides (on purpose) an extreme case, which leads to quite interesting results.
We consider again the case n = 30 and o = 0.05, but now show power functions
for £¥,a=0,...,4, where

~Ta—1 —Ta—1
zgzn—‘diag(7a+1,”n_al - n_“l )e(’ZHe,.

Note that ¢ = n~'1, and that increasing a from 0 to 4 leads to covariance matrices
that approach the degenerate matrix e;(n)e;(n)’. All conditions in Theorems 5.1
and 6.4 are seen to be satisfied in this example: as no vector e;(n) belongs to
span(X) (and thus also not to Dﬁg"), Assumptions | and 2 as well as the sufficient
condition for size control (8) are obviously satisfied. The size control conditions
(10) and (17) have been checked numerically, as has been the condition that none
of the test statistics HCOR-HC4R is constant on R"\B.

As in the preceding subsection, the critical values for each test statistic are again
chosen as the smallest critical value guaranteeing size control over Cy,, and they
are presented in Table 5. (Existence follows from our theory since all assumptions
are satisfied as noted before.) For their computation, the same algorithms were
used as in Section 11.2.1, with a similar statement applying to the numerical
routines used for computing the power functions. Note that the critical values
for the test statistics UC and HCO-HC3 are large, reflecting the high leverage
in the design matrix; an exception is HC4, the reason being that some of the
HC4 weights are considerably larger than the weights for HCO-HC3. Similarly
as in the preceding subsection, the tests based on HCO and HC1 coincide (since
HCO and HCI1 differ only by a multiplicative constant and since smallest size-
controlling critical values are being used), and the same is true for the tests based
on HCOR-HC4R (see Remarks 5.3 and 6.5). It is easily checked that the ratios of
the respective critical values provided in Table 5 are in good agreement with the
theoretical ratios predicted by theory. Furthermore, the tests based on UC and UCR
coincide (see Section 6.2.1), and the critical values for UC and UCR in Table 5 are
in excellent agreement with their theoretical relationship found in Section 6.2.1.

Table 5 shows that, in this example, the smallest size-controlling critical values
are—except in one case—always larger, sometimes considerably larger, than
C,2.005 ~ 3.8415, once more showing that the latter critical value is not effecting
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TABLE 5. Smallest size-controlling critical values for the high-leverage design

matrix.
ucC HCO HC1 HC2 HC3 HC4
217.58 355.56 333.31 121.89 29.34 1.12
UCR HCOR HCIR HC2R HC3R HC4R
25.69 541 5.45 5.34 5.29 5.44
w | BUC © | ®mUCR
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| mHc B HCIR
o HC2 O HC2R
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F1GURE 3. Power functions for the design matrix considered in Section 11.2.2. Left column: tests based

on unrestricted residuals (cf. legend). Right column: tests based on restricted residuals (cf. legend).
The rows from top to bottom correspond to X for a = 0, 1,2,3,4, the case a = 0 corresponding to
homoskedasticity. The abscissa shows 8. In the left panel, the HC1 curve lies on top of the HCO curve. In
the right panel, the HC4R curve lies on top of the HCOR-HC3R curves. See the text for an explanation.

size control in general. In the exceptional case, namely when the HC4 test statistic
is used, C,2 (5 is considerably larger than the smallest size-controlling critical
value, which is 1.12; while in this case C,2 s effects size control, using the
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smaller size-controlling critical value 1.12 can only be advantageous in terms of
power.

The power functions, when the size-controlling critical values from Table 5 are
being used, are shown in Figure 3. Readers are referred to the online version for
a colored figure. Again, as predicted by theory, the power functions of the tests
based on HCO and HC1 shown in Figure 3 coincide, as do the power functions
of the tests based on HCOR-HC4R; the same is true for the power functions
of the tests based on UC and UCR. The figure furthermore shows that in the
setting considered here, there is now a marked difference between tests based on
HCO-HC4 and on HCOR-HCA4R, respectively: the power of the tests based on
HCOR-HC4R is nowhere greater than «, their power function being even non-
monotonic, whereas the tests based on HCO-HC4 have increasing power as a
function of §. In contrast to the example considered in the preceding subsection,
the power functions of the tests based on HCO-HC4 and UC are now all markedly
different and typically intersect, an exception being the case of X; where the
test based on UC offers the highest power for that covariance matrix. Overall,
however, there is no clear ranking between the tests using unrestricted residuals
in the example considered here, although we note that the test based on UC (or,
equivalently, on UCR) performs very badly in the case of X. This is not surprising
as X corresponds to homoskedasticity and the critical value used here is much
larger than the classical critical value one would use given knowledge of this
homoskedasticity. Furthermore, and in contrast to the results in the preceding
subsection, the different forms of heteroskedasticity considered have a noticeable
effect on the power functions. The main takeaway is that tests based on HCOR—
HC4R (and probably on UC and UCR) should rather be avoided.

12. CONCLUSION

The usual heteroskedasticity robust test statistics such as Ty, (using HCO—
HC4 weights) or Tye, (using HCOR-HC4R weights), used in conjunction with
conventional critical values obtained from the asymptotic null distribution, are
often plagued by overrejection under the null. This has been clearly documented
in the literature for Ty,,, and is shown numerically for THe, (as well as for Ty,,)
in Section 11. Not surprisingly, similar observations apply to the “uncorrected”
test statistics 7, and Tm.. We show theoretically that all these test statistics can be
size-controlled under quite weak conditions by an appropriate choice of critical
values.

From the above discussion and the numerical results in Section 11, it transpires
that smallest size-controlling critical values rather than conventional critical values
should be used in order to avoid the risk of overrejection. For the computation of
smallest size-controlling critical values, we provide algorithms which have been
implemented in the R package hrt (Preinerstorfer, 2021) and thus are readily
available for the user.
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An additional advantage from using smallest size-controlling critical values
over conventional critical values is that this typically leads to improved power in
instances where conventional critical values lead to underrejection (i.e., lead to
worst-case rejection probability under the null less than the nominal significance
level) as is sometimes the case (see Sections 6.2.2 and 11.2).

If smallest size-controlling critical values are adopted (as they should), the
numerical results in Section 11 suggest that the test statistic THE, (with the usual
weights HCOR-HC4R) should be avoided, as the resulting tests may have very
poor power properties (see the example in Section 11.2.2). The test statistic Ty,
seems to perform better in terms of power, with no clear ranking emerging with
regard to the weights HCO-HC4 being used. The “uncorrected” test statistics 7,
and Tuc appear to be inferior to Ty, in terms of power in almost all of the numerical
examples considered. We also point out that—when using smallest size-controlling
critical values—the tests based on Ty, employing the HCO and HC1 weights,
respectively, in fact coincide, and the same holds for tests based on T, employing
the HCOR and HC1R weights, respectively. Also, the tests based on T}, and Tuc
then (essentially) coincide. See Remarks 5.3 and 6.5 and Section 6.2.1 as well as
the pertaining discussion in Section 11 for more information, including additional
equivalencies when the design matrix X and the restriction R have certain special
properties.
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