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Abstract

We describe measurable Hilbert sheaves as Hilbert space objects in a sheaf category constructed from a
measure space. These are quite useful for the interpretation of the direct integral of Hilbert spaces as an
indexed functor. We set up a framework to put this and similar constructions of operator theory on an
indexed categorical footing.

1991 Mathematics subject classification (Amer. Math. Soc): primary 18B25, 18D35; secondary 28A50,
47B40.

1. Introduction

The direct integral of Hilbert spaces, / Jf?(x)dix(x), exhibits both a measure-
indexed nature and a coproduct-like nature. The question arises: can a suitable
universal property be found for it? For example, is it a measure-indexed coproduct?
The answer seems to be no. More precisely, reasonable (from an operator theoretic
point of view) categories of measure spaces do not have products. Constant families
(that is, A of [4]) would then be problematic.

However, we can make sense of 'measurable Hilbert families' and interpret the
direct integral as an indexed functor to set up a systematic, categorical framework for
this and similar constructions. Our project is to describe the elements of the diagram:

c

for X and Y measure spaces and <f> some appropriate morphism of such. This amounts
to understanding X-indexed families of Hilbert spaces and substitution. We may
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190 Michael A. Wendt [2]

'approximate' classical indexed category theory well in this context by constructing a
categorization and generalization of the direct integral. In this paper, we put forth an
approximation where families are Hilbert space objects in a sheaf topos constructed
from the measure space X: Hilb* = H\lb(Sh(X)). The construction 'Sh(X)' embeds
measure spaces in topoi.

We wish to use actual measure spaces for the base. The plan is to determine how
far classical measure theory can go in an indexed category setting. However, there
are other possibilities for a base category. One might consider Grothendieck topoi as
an appropriate base since these have finite products (and A). A similar possibility is
to 'close up' the image of a measure space category under products in the category of
topoi. These ideas will await future work.

One important aspect of our work here is the introduction of a suitable notion of
measurable Hilbert sheaf (defined in Section 4.3). This will be a Hilbert space object
in the topos. In particular, in Section 4.2, we describe how to construct a sheaf from the
classical notion of a measurable field of Hilbert spaces. It is our motivating example
of a Hilbert sheaf and is of interest to analysts.

The second major aspect of this work is to interpret the direct integral in the
indexed categorical setting. For a Hilbert sheaf, H, we define J H as the set of
'square-integrable' global sections of H. With a suitable norm, this is a Hilbert space.
The construction is functorial.

A certain special structure, called a disintegration, on a morphism of measure
spaces, (j>, is enough to define a relative direct integral, / , H, as square-integrable
sections on the fibres of <p (the essence of a disintegration is that the fibres of (f> are given
measures, so that measurement in the domain is obtained by integrating fibrewise
measurements over the codomain). This generalizes / e H and is also functorial.
Moreover, f® is pseudo-functorial with domain measure spaces and disintegrations.

We conclude by discussing connections with indexed category theory. The elements
of the above diagram become:

(1) HHbx = HiIb(S/t(X)),
(2) <p* is the lifting, via an appropriate notion of Cauchy completion, of change of base

Sh(X)-^Sh(Y) to Hilbert sheaves, and
,e

(3) / as the relative direct integral.
Jip

The author would like to thank the referee for helpful and constructive comments.

2. Categories of measure spaces

NOTATION. Measurable spaces are denoted by pairs, (X, srf), (Y, 38), etcetera,
consisting of a set and a a -algebra. Mble denotes the category of measurable spaces
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[3] Measurable Hilbert sheaves 191

and measurable functions. Measure spaces will be denoted by triples, (X, &/, /x),
(Y, 38, v), etcetera, consisting of a measurable space and a measure.

We will assume that singletons are measurable and measure spaces have finite
measure. These are usually called 'finite measure spaces'. Two categories of measure
spaces will be considered:

DEFINITION 2.1. A measurable function, (X, srf, fj,)-U-(Y, 38, v) is called measure
zero reflecting or simply MOR if v(B) = 0 =4> ix(f~\B)) = 0. MOR is the category
whose objects are finite measure spaces and whose morphisms are measure zero
reflecting.

DEFINITION 2.2. An object of Disint is a finite measure space. A morphism,

called a disintegration, between two objects, (X, srf, /x) and (Y, 38, v), consists of an

(X, si)—>(Y, 38) € Mble and a family (Xy, srfy, fiy)yeY of finite measure spaces,
where Xy := / " ' (y) and £?y = [Ad f~l (y) \ A e s/} subject to two axioms:

(1) VA e &/, the map JII-> ixy(AC\ f'l(y)) is measurable and bounded and

(2) VAes/, H(A)= f fiy(Anf-\y))dv(y).

A disintegration is denoted by (X, s/, /x)——^—>(F, 38, v). These form a category

with identity as (X, srf, fi)— > (X, s/, /x) where 1^ is the identity function and ix

is counting measure on yx = {A D l~'0O I A e ^ / } , the discrete CT-algebra on {x}.

For (X, si, /x)——!—>(K, «^, v) 8'"' > (Z, ^ p), the composite is (X, s/, ix) g '" >
(Z, ^ , p) where

0r(E) := /" M , ( £ n r\y))dvz(y) for £ e 4 = {A n / " ^ " ' ( z ) | A € ^ } .

For an extensive list of examples and basic properties, see [7]. Some useful results
are:

PROPOSITION 2.1. (i) MOR and Disint have

(a) an initial object given by (0, {0}, 0),
(b) a terminal object given by (1, 2, counting),
(c) binary coproducts given by (X, si, ix)+(Y, 38, v) = (X+Y, si+38, [x+

v) (the a -algebra consists of sets of the form A + B and (/x + v)(A + B) =
lx(A) + v(B)), and

(d) these coproducts are disjoint.

(ii) MOR and Disint are monoidal categories. The unit is given by (b) above and
the ® is the usual product of measure spaces (the o-algebra is generated by
measurable rectangles; we do not assume it is complete).
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(iii) (/, fiy) e Disint =>• / € MOR.
(iv) The forgetful functor Disint —> MOR reflects isomorphisms.

For future reference (Propositions 5.8 and 5.10), we state an important property of
disintegrations proved in [7]:

PROPOSITION 2.2. Let (X, s?, fi) ' '"'' > (Y, 38, v) be a disintegration. For
X -A- Ran integrable function,

a(x)dfi(x)= f f a{x)dfiy{x)dv(y).
JY Jf-'(y)

We next show that MOR does not have products, which is pertinent to the develop-
ment of indexed category theory over Disint.

PROPOSITION 2.3. The forgetful functor MOR —> Mble has a left adjoint:
(X, srf) i-> (X, st, 0) where 0(A) = Ofor all A e srf.

PROOF. Any measurable function out of (X, si', 0) is MOR.

COROLLARY. MOR does not have products.

PROOF. We exhibit a contradiction for a particular example. Let ((0, 1), Jz?, X) be
the Lebesgue open unit interval. Assume ((0, 1) x (0, 1), i f <g> _Sf, p) is the product
in MOR (by the proposition, the underlying measurable space must be the product in
Mble).

For each t e [l,oo), the function (0, l)-^>(0, 1); x i-+ x' is MOR. Then
(0, 1) > (0, 1) x (0, 1), where i denotes the inclusion, is MOR. Thus, for each
t, /o(Image(/,)) must be non-null since k(0, 1) is; t ranging over [1, oo) provides
a continuum of disjoint, non-p-null sets, in which case, p((0, 1) x (0, 1)) = oo
contradicting finiteness of measure.

3. Sheaves on a measure space

3.1. Definition Let (X, sf, ft) be a measure space. Sh (X) denotes the sheaf category
whose objects we call measurable sheaves (see also [2, p. 25]). The site has the poset
(si/, c ) as underlying category and a countable family (A 2 A, e -&}T=i w ^ t>e a
cover of A e sf if fi(A \ (X=1 An) = 0.

NOTATION. For a presheaf F, p% : F(A) —> F(A') denotes restriction to A' c A.
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[5] Measurable Hilbert sheaves 193

In general, representables are not sheaves, for consider:

(COUNTER)EXAMPLE 1. Let A, A' e si, A c A', A ^ A', and /x(A' \ A) = 0.
Then .^(A', A) = 0 and si(A, A) = 1. A' covers A, so if si{—, A) were a sheaf, we
would have si (A1, A) = si {A, A).

The associated sheaf of s/(—, A) is

I I fi(A' \ A) = 0,

0 else.

An alternate sheaf category is suggested by 'ix(A' \ A) = 0'.

DEFINITION 3.1. Let JV be the ideal of null sets in si. Then si IJV is a category
with an arrow A —> B if and only if there are two representatives, Ao of A and Bo

of B, such that Ao c Bo. Given A —• B —>• C, with Ao c Bo and fi, C C , , we
have a composite A —>• C via Ao n Bi c Bo (1 Bx c d . We say {An}^, is a cover
of A if Un An = A (we may define \Jn An = [Jn AOn where AOn is any choice of
representatives). Sh(si'/JV) denotes the category of sheaves for this site.

PROPOSITION 3.1. Sh(X) ~ Sh{si/jV).

PROOF. Use the axiom of choice to pick a particular representative r(A) of each
equivalence class A e si/^V. The equivalence

is given as follows: for F e Sh(X), F.(A) = F(r(A)) and for G e Sh(sf/oY),
G\A) = G(A).

Representables become sheaves after passing to Sh{s//^Y). Indeed, we have:

PROPOSITION 3.2. Definition 3.1 provides the canonical topology on si/<vV'.

PROOF. It is straightforward to check that representables are sheaves for this topo-
logy. Suppose J(f is another topology for which representables are sheaves. We must
show, for a J^-cover (A,), there is a countable sub-family (A,n) such that (J A,n = A.
Let

a — sup I /Lt ( I I Atn J | (A,J countable subsequence of (A,) \.
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The supremum exists since iu.([J A,J < /x(A) < oo. For each k, let (A,nt) be a
sequence with [i(Un ^ u ) — a ~ 1/* an(l let ^t, = U*li A.u. Then /x(|J A,J = a
and B := | J A,n = V A, (supremum taken in &//<sV) by maximality of a.

Now, [—, B] is a J^-sheaf. In the equalizer

[A, n A,] and [A,, B] are equal to 1 for each 5 and t (B — V A, so A, < B) so both
products are 1 in which case [A, B] = 1. This implies A < B. But, B < A since
B = V A, and A, < A. Thus, A = B = | J A,n as required.

COROLLARY. Sh(X) satisfies the axiom of choice.

PROOF, srf/<sV is a complete Boolean algebra and sheaves on such is a topos with
the axiom of choice (see, for example, [5, p.215]).

REMARKS. (1) We will implicitly assume that statements made in a measure the-
oretical context are 'up to almost everywhere equivalence.' Such a caveat is avoided
in Sh{srfIJY) where the 'modding out' is done once and for all at the beginning. We
use Sh{stf/^Y) and Sh(X) interchangeably but the latter is more appropriate for our
indexed category theory setting. When the reader sees A, the context is Sh(s?'/JV).
Otherwise, it is Sh(X).

(2) An example of the occurance of the caveat is the following: the corollary above
suggests that our logic is essentially classical up to almost everywhere equivalence.

3.2. Examples and properties We now list some objects of Sh(X) and Sh (srfIJ/).
We have already noted that:

EXAMPLE 1. a(*/(-, A))(A') =\ ^ ~ is a sheaf.
[0 else

EXAMPLE 2. 1(A) = 1, VA e si. This is a terminal object of Sh(X).

EXAMPLE 3. 0(A) = 1 ~ This is an initial object of Sh(X).
[0 else.

EXAMPLE 4. Let (Y, 38) be a measurable space. Define an object in
by My(-) := q(Mble(-, Y)) (that is, MY(A) is the associated sheaf of Mble(-, Y)
evaluated at A e st jJ/").
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[7] Measurable Hilbert sheaves 195

PROPOSITION 3.3.

MY(A) = {(Ao, / ) | Ao e si, Ao C A, /x(A \ Ao) = 0,

(Ao, si\Aa)^-+(Y, SB) measurable }/ ~,

wiVA (Ao, / ) ~ (Ao, / ' ) if and only ifn{x e Ao D Ao | / (*) ^ /'(JC)} = 0.

PROOF. Let {An}^, be a cover of A and let (AOn, /„) be the representatives of a
compatible family in the My(An)'s. Then

Let Cn = AOn \ \Ji<n
 Ao-- The Cn's are pairwise disjoint and \Jn Cn = \Jn AOn.

Define / : |Jn Cn —> Y as follows: x e [Jn Cn implies x is in a unique Cn\ put
f(x) = fn(x). Then f\Cn — fn\Cn by construction and / is measurable for if B e SS,
then f~\B) = UB /n-'(S) n Cn e ^ .

We need only show that this definition of / respects ~. Suppose (AOn, /„) ~
(Aln, gn) for each n. Then (CB, fn\cJ ~ (Z)n, gn|D.) where D« = Aln \ U,<n An,
for /X{JC € Cn n Dn | /„ ^ gn) < ix{x e AOn n Aln | /„ ^ gn) = 0. We claim
(U, CB, / ) ~ ( U Dn, 8). Let JC € U, C« n U ^ and /(JC) = /«0(x), g(jr) =
gnx(x). Then /(JC) ^ g(x) implies /n,(x) ^ gn,(x) or /„„(*) ^ /„, (x). Each of the
latter two occurs on a set of measure zero and taking the union over n0, it\, we get
/ ~ g as claimed.

NOTATION. In keeping with our idea that the two topoi, Sh (X) and Sh {srf/jV), are
interchangeable, we will also use MY(—) to denote the similar object of Sh(X).

Two important special cases are:

EXAMPLE 5. R(-) := MR(-) where (R, «5f, X) is the Lebesgue real line. In
proposition 4.1, we will show that this is the object of Dedekind reals.

EXAMPLE 6. C(- ) := M c ( - ) where (C, i f <g>_£f, k <g> A.) is the Lebesgue complex
plane.

Obvious measure theoretic constructions may not necessarily be interpreted as
sheaves, however:

(COUNTER)EXAMPLE 7.

L2(A) := { A o ^ C | A o € si, A0£A, [i(A\ Ao) = 0 , f \f\2

J A
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196 Michael A. Wendt [8]

does not define sheaf. Let X := [0, 1], A := (0, 1) with cover An :=
1), l/n) (all with Lebesgue measure) and let fn{x) = l/x. Then, on each piece,
JA \fn\2dfi < oo, but extending to f{x) = l/jcon(0, 1), we see that/0|/|2d/x. ft oo.

However, L2{—) is apresheaf, L2(—) c C(—) as presheaves, and:

PROPOSITION 3.4. C(- ) is the associated sheaf of L2(-).

PROOF. Let A—^C be measurable. We must exhibit a cover of A such that / e L2

on each piece. Let An := [x \ | / (JC)| < n}. Then An is measurable and A = IJ^l, An

and

\2d/x< f n2dn = n
JA»

- 7 i I 2 i 2 2

\f{x)\ d\x < I n dpi = n fi(An) < n n(X) < oo.

REMARK. In a similar manner, C(—) is the associated sheaf of all the Lp(—)
presheaves.

EXAMPLE 8.

M0R(A, Y) := {A0^Y\A0 e^, Ao c A, /x(A \ Ao) = 0, / e M0R}/~

defines a sheaf. This is similar to Example 4 above.

If we try disintegrations in a similar manner to Example 8, we do not get a sheaf.
Before discussing a counterexample, we give a definition:

DEFINITION 3.2. Let (X, srf, n) ( W > (Y, &, v) and (X, si, \x)-^U{y, 06, v)
be disintegrations. We say / ~ g if two conditions hold. The first is ix{x \ f(x) ^
g(x)} = 0. We can restrict / and g to G := {x \ f(x) = g(x)} to get disintegrations,

(G, si\G, n\G) ( / ' c A ) >(r , 06, v) and (G, ^ | G , /x|G) W c ' ° ' ' > (Y, 38, v). On G, / =
g, so / " ' (>)nG = g"1 (v) n G for all y eY. The second condition for ~ is that the
measure structures are equal, fiy =ay, for all y e Y.

PROPOSITION 3.5.

Disint(A, Y) := {(/, (*/\Ao)y, ( M U ) , ) : Ao—+Y \ f e Disint}/-,

where (Ao, f) ~ (A,, / ' ) i//i(A0AAi) = 0 and /Uon^, ~ /'Uon/i, «-? disintegra-
tions, defines a presheaf.

PROOF. Restriction of a disintegration to a subspace yields a disintegration (see
[7]).
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[9] Measurable Hilbert sheaves 197

(COUNTER)EXAMPLE 9. Disint(-, Y) is not a sheaf. This is essentially the same
problem as with L2(—). We may choose representatives for a compatible family

(Cn, (/„, Olc)y)) where theCn are disjoint. PutC = \Jn Cn and define C (/'(Mlc)t> > y
as f(x) — fn(x) where n is the unique index for which x e Cn. Then / is measurable
as in Example 4; (n\c)y is a measure for each y and j i—> (/x|c)y is v-measurable.
However, if the (AI|CJ>'S are bounded, there is no guarantee that these are bounded
over n. Thus, Disint(—, Y) is not a sheaf. But, it almost is; everything works except
boundedness. The extension respects ~ and even Axiom 2 holds:

C), U n /T'oo) dvW = J2 jin\cMA n c « n

A n \JncA .

We next give an explicit description of Sh(X) as a topos over Set.

PROPOSITION 3.6. A-\r in

Sh(X)+^f Set
r

r(F-%G) = F(X)-^G(X) a«^ /or /sT € Set and A e si,

A(K)(A) = {(B, f) | IM(AAB) = 0, B^K,

f(B) countable , /"'(*) € ^ for all k € A-}/~,

(B, / ) ~ (B', / ') if and only if n(BAB') = 0 and fi{x e B D B'\f(x) /
fix)} = 0.

PROOF. A(/Q is the sheafification of a /f-indexed coproduct (in the presheaf cat-
egory) of copies of hom(—, 1). To sheafify, take A"-valued, (s/, /i)-locally constant
functions.

REMARK. In particular, this proposition implies A(K x L) = A(K) x A(L). We
shall implicitly use this when discussing substitution for Hilbert space objects in
Section 5.2.

4. Hilbert sheaves

4.1. Number systems in Sh(X) The natural numbers object in Sh(X) is A(N) =
MN(~) since A is a left adjoint [5, p. 168]. This is also true for the objects of integers
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and rationals (that is, they are just A applied to the appropriate set). Arithmetic
is determined from left exactness of A and is pointwise. For example, for p,q e
Q(A) = MQ(A), q ^ 0,p/q(x) = p(x)/q(x). Global constants (over x) are denoted
by enclosure in '[ ] . '

We noted in Section 3.1 that Sh(X) satisfies the axiom of choice. In particular, it
satisfies the axiom 'supports split' [5, p.141]. Two interesting applications concerning
real numbers arise:

PROPOSITION 4.1. The object ofDedekind reals in Sh(X) is Rx(-) where

RX(A) = MR(A) = {(Ao, / ) | ti(AAA0) = 0 and

(Ao, &?\A0)—KR, Lebesgue) is measurable } /~.

PROOF. ([5, p. 213]) A measurable function, Ao—*R gives a Dedekind cut, (L, U),
by defining L := {q e Q | q(x) < f(x) on Ao} and U := {q € Q | f(x) < q(x)}.

Conversely, given a Dedekind cut (L, U), 'supports split' allows us to choose
sequences qn e L and qn e U with q" — qn < l/n. For almost all x, these two
sequences tend to a common limit f(x) e Rx(/4).

NOTATION. RC denotes the object of Cauchy reals (that is, equivalence classes of
Cauchy sequences in Qx; see [5, p. 218]).

PROPOSITION 4.2. Rc = Rx (that is, the Cauchy and Dedekind reals coincide) in
Sh(X).

PROOF. We claim the canonical inclusion, with components RC(A)—
A e sf, is an isomorphism. Let r = (L, U) be a Dedekind real. Sh(A) satisfies
'supports split' so choose a sequence of sections (qn, q") e Q^ x QA such that qn e L,
q" € U, and q" — qn < l/n. Then (qn) G RC(A) and jA(qn) = r so jA is onto as
required. And so, j is an isomorphism.

REMARK. (1) The proof above is similar to [5, Example 6.68] where it is shown
that Rc = Rx in the category of sheaves on a separable zero-dimensional topological
space.

(2) Various entities of Q, R, etcetera are easily described in terms of functions. For
example, the order used for L in Proposition 4.1 is ' / (x) < g(x) on A' which means
'/GO < g(x) for almost all a e A', < is an internal order. Thatis.RxR = R+| < |+
[T] (for (/, g) € (R x R)(A), A, = {x \ f(x) = g(x)}, A2 = {x \ f(x) < g(x)},
and Ai = [x \ f(x) > g(x)} forms a cover).
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[11] Measurable Hilbert sheaves 199

C(—) = Mc(—) is the complex numbers object. Taking the real or imaginary part
of a complex-valued, measurable function yields a real-valued, measurable function
and we have C(—) c R(—) x R(—). In [6], Rousseau notes that a C = R x R is
a suitable complex numbers object in any topos for which Rc is complete (see also
Section 4.3 for a discussion on completeness).

It is a straightforward matter to define operations which give C(—) the structure
of a ring with involution. It satisfies the axiom of non-triviality [3] and is, in fact a
geometric field (in which case, see [3], it will also be a field of fractions and a field of
quotients since Sh(X) is Boolean):

PROPOSITION 4.3. C(- ) is a geometric field.

PROOF. The group of units is

U(A) = {(Ao, f) € C(A) | 304,, g) e C(A), (Ao, f) • (A,, g) ~ fl]}

= {(Ao, / ) e C(A) | n{x e Ao | f{x) = 0} = 0}.

We must show that 1 —>C <— U is a coproduct diagram. Specifically, we must show
for an / e C(A), there is a cover {A, <̂->- A} such that f\Al € U{At) or f\A. ~ 0.
Consider the two sets Az = [a e Ao | f(a) = 0} and An = {a e Ao | f(a) ^ 0}.
{Az, An] forms a cover of A. Furthermore, f\At — 0 and f\An e U(An) ( 1 / / is
measurable on An and will be the inverse g).

4.2. A sheaf from a measurable field

DEFINITION 4.1 ([1]). Let (X, s>/, /J,) be a measure space. A measurable field of
Hilbert spaces or MFHS, (H(x)xeX, CS), is a family of separable Hilbert spaces and a
subset <£ c n*ex ^ 0 0 which is subject to the axioms:

(1) x i->- HgOOH is measurable for each g e <S,
(2) if h(x) e Ylxex H(x) n a s t n e pointwise inner product, x h-> (/z(x), g(x)}, meas-

urable for all g e <£, then h e <£, and
(3) there is a sequence (g,)°^, of elements of <£ such that for each x, Span{g,(;t) |

i = 1, 2, 3, . . .} is dense in H(x).

The elements of Sf are called measurable fields of vectors or MFV's and the sequence
in Axiom 3 is called a fundamental sequence.

In this section, we describe a sheaf, G, to be constructed from a measurable field
of Hilbert spaces. We will use G and C as motivating examples for Hilbert sheaves.

PROPOSITION 4.4. G(A) := {g e &\g(x) = 0 V* £ A}/~. rfe/ines a presheaf
G(-) : ( ^ , C)°P —+ Set.
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PROOF. For A' c A, restriction is given by G(A) —> G(A'), (g(x))x€X *-+

(g'(x))xex, where

'"-If V*
[0 else.

Note that (x h+ {h(x)\g'(x))) = (x h-> (/i(jt)|g(jt)) • *„-) is measurable for all l i e ^ ,
whence, by axiom 2, g' € Sf.

PROPOSITION 4.5. G ( - ) « a s/jea/.

PROOF. The proof is similar to that for Proposition 3.3. The only question is
whether g, the unique extension of a compatible family {g,} on a cover {̂ 4,} of A is in
&. But x M>- (h(x)\gi(x)) is measurable for each g, and for all h e if since each g, is
in ^ . Apply Axiom 2 for ^ .

We can make G(A) into a C(j4)-module by defining operations pointwise. G is a
C-vector space and can be made into a normed vector space. The sheaf of non-negative
reals is given at A by

R+(A) = {A-^-»R+ measurable}/ ~ .

For each A, the function G(A)—^-R+(A) given by g i—>• \\g\\, where ||g||(x) =
ll^(-^)llwu)» is measurable by Axiom 1 for an MFHS. Then g H> ||g|| is well-defined
since if g = g' except on B with ix(B) = 0, then ||g|| = ||g'|| except on B as well.

Since || • || is natural in A, we have a map G >R+ in Sh(X). The norm axioms
follow from those for the H(xYs.

4.3. Hilbert sheaves (definitions and topology) We use the above discussion about
G, C, and the norm, as motivation for our notion of Hilbert space object in Sh(X). In
this section, we define such and discuss topological notions such as completeness.

Recall, there are two equivalent ways to describe distance in a Hilbert space. One is
to give a positive definite inner product, (—|—), which yields a norm (via || • || = >/(•!•>)
that satisfies the parallelogram law,

Another way is to give a norm that satisfies the parallelogram law and define an inner
product using the polarization identity,

(f\g) = \\\f + gf -\\\f~ SW2 + ^11/ + igf - ^11/ " 'SH2-
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Now, suppose H is an inner product space over C in Sh(X). We have natural

transformations: H x H >C and H ^R+. These are to satisfy the obvious
axioms (the classical ones translated as equations for morphisms). For example,
positive definiteness may be regarded as the existence of a factorization of

through R+ considered as a sub-sheaf of C. An inner product yields a norm and a
norm yields an inner product as in the classical case.

DEFINITION 4.2. A pre-Hilbert space object in Sh(X) is a positive definite inner
product space over C. A morphism between two such is a natural transformation
H(A)-^K(A), which is linear (rA(/ +HW g) = xA(f) +KW rA(g)) and bounded
(there is a b e R j such that V7z e H, \\T{h)\\K < b\\h\\H). This gives a category
which we denote by Pre(Sh(X)).

REMARK. If r is bounded, we can find a b > 1 (in particular, bounded away from
zero) such that | |T(/I) | | < b\\h\\. Furthermore, the restrictions pA

A, are linear and
bounded (by 1).

We next discuss completeness.

DEFINITION 4.3. For F in Sh(X), a sequence in F is a map Nx—>F.

REMARK. In a Grothendieck topos, N x = ] C e N \x, so a sequence is simply a
sequence of global elements (that is, a function N—>• F{X)).

DEFINITION 4.4. Let (F, d) be a metric space in Sh(X).

(i) The sequence N - ^ > F ( X ) is said to be convergent if 3s e F(X)(Vk e N+(3
a cover {A,-}~, of X and SN,, i = 1, 2, 3 , . . . , such that Vn > TV,, d(sn, s) <
1/k on Ai)).

(ii) The sequence N - ^ U F(X) is said to be Cauc/ry if Vjfc e Nj (3 a cover {A,-}~ [
of X and 3N,, i = 1, 2, 3 , . . . , such that Vn, An > Nt d(sn, sm) < \/k on

REMARK. (1) A-convergent and A-Cauchy can be defined as the above with X
replaced by A.

(2) If X = 1, these are the usual notions for ordinary metric spaces.

DEFINITION 4.5. (F, d) is said to be complete if every Cauchy sequence in F
converges in F.
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PROPOSITION 4.6. Rx with its norm-induced metric is complete.

REMARK. The classical proof that R is Cauchy complete involves a sequence of
steps: (1) Cauchy implies bounded, (2) sequence implies 3 monotone subsequence, (3)
monotone sequence and bounded implies convergent, and (4) Cauchy and convergent
subsequence implies convergent. This does not translate to our case. For example,
if sn ->• s pointwise, then we do not necessarily have a subsequence that increases to
s. Proposition 4.6 will be proved in two steps: (1) sn Cauchy implies 3s, sn -> s
pointwise and (2) sn —>• 5 pointwise implies sn —> s. We state these as lemmas for
future reference.

LEMMA 4.1. Let (sn) be a Cauchy sequence in Rx • Then there is an s € Rx such
that sn —>• s pointwise.

PROOF. Let (sn) be a Cauchy sequence. Then, by definition, for each k e N j ,
there is a cover {Aj} and Nt, such that Vn, m > N{, (\\sn(x) — sm(x)\\ < \/k on A,).
In particular, {sn(x)) is a Cauchy sequence for almost all x e X (we can choose k
to be constant). R is complete, so there is an s(x) such that sn(x) —> s(x). Since
s is the pointwise limit of measurable functions, it is measurable and there is an N
such that||s(x) — SN(;C)|| < [11- Now, ||SJVOC)|| < oo, since sN e Rx, which implies
\\s{x)\\ < 1 + \\sN(x)\\ < oo so s e Rx.

LEMMA 4.2. sn(x) —> s(x) pointwise implies sn —> s in Rx.

PROOF. Suppose sn(x) —> s(x) pointwise. Let k e N j . We seek a cover {A,}"^ of
X and Nt such that Vn > Ni(\\sn - s\\ < \/k on A,) (Definition 4.4).

Assume first that k = [jfc] is constant. LetGn = [x | ||sn(x) — s(x)\\ < l/[/t]}and
E, = P£L, Gn = {x | \\sn(x) - s(x)\\ < \/\k~\ for all n > i}. Suppose x e A; then

since sn(x) —> s(x), there is an N such that \\sn(x) — s(x)\\ < 1/T^l for n > N. That
is, x € EN for some N. Thus, the £, 's cover A. Put Nt = i and we have found
our cover and the Nt for which \\sn — s\\ < 1/ffc]. Now suppose k e N£ is locally
constant. By considering Aj = {x | k(x) = j] and applying the above special case to
each Aj, sn —> 5 as required.

DEHNITION 4.6. A Hilbert space object or Hilbert sheaf in Sh(X) is an inner
product space over Cx which is complete in the induced norm.

PROPOSITION 4.7. The pre-Hilbert sheaf constructed from an MFHS is complete.

PROOF. The proof is exactly as that for the completeness of R. The only issue is
whether the pointwise limit, s(x) = lim^oo sn(x), is in Sf. But, for all g e Sf, xi->
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(s(x)\g(x)) = linin^ooix \-> {sn (x) \g(x))) is measurable. By Axiom 2 for measurable
fields, s e <£ as required.

COROLLARY. C(—) is complete.

We end this section with a discussion about the completion of a pre-Hilbert space
object. Many of the proofs mimic classical ones so will be omitted. They require
some translation into the language of sheaves but this is not difficult. As an example
of the techniques used, we prove Lemma 4.3. It exhibits an 'e/2 proof in this context.
Ultimately, we will describe a functor

DEFINITION 4.7. Let H e Pre(Sh(X)). The completion of H, c(H)(A), is the
set of equivalence classes of A-Cauchy sequences with (sn) = (tn) if and only if
lim \\sn - tn || = 0 (this latter limit taken in R

LEMMA 4.3. The relation '=' is an equivalence relation.

PROOF. Certainly, = is reflexive and symmetric: (—(sn — tn) = (tn — sn) and
||(-1)A|| = || - 1 IIP| | = ||A||). Now suppose ||*B - r B | | ^ 0 and \\tn - un\\ -> 0 in
R+(A). Let£ € N j . There is a cover {At} of A and 3M,-(Vn > Mj\\sn-tn\\ < l/(f21it)
on At) and there is a cover {A)} of A and 3Nj(Wn > Nj(\\tn - uu\\ < l/\2]k on A'j)).
Let Pjj — max{M,, Nj] and B,7 = At n A'j. Then {B,;} is a cover of A and

\\sn-uj = \\sn - tn + tn - un\\ < \\sn -tJ + \\tH-uJ +

for all n > P{j on B,7.

c{H){—) is a sheaf and operations on c{H)(A) are defined pointwise: 0 = (O)^Lj,
-(Sn) = {-sn), {sn) + (?„) = (sn + tn), a • {sn) = {a • sn). These operations are well-
defined with respect to = . For example, suppose (sn) = (s'n) and (tn) = (t'n); then
\\(sn+tn)-(s'n+t'n)\\ < \\sH-s'J + \\tH-t'J —> 0(asinthe'€/2-proof'ofLemma4.3).
Furthermore, we may define a norm on c(H)(A) by ||(.?,,)|| = limn^oo \\sn\\. The
following summarize properties of limits and || • ||:

LEMMA 4.4. InRx,

(1) a^a
(2) an —>• a,an positive implies a nonnegative
(3) an — bn -¥• 0, an —> a implies bn —> a
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(4) an —> a, bn —> b implies an — bn -+ a — b
(5) an —> a, bn —> b, , an < bn implies a < b
(6) R—^-R bounded, an -> a implies x{an) -> r(a).

LEMMA 4.5. || • || is we// defined and a norm on c(H)(A).

LEMMA 4.6. (a) Lef //C(A) = {(s)~=1 | s e / /(A)}/ = ffto/ is, equivalence
classes of constant sequences). Then HC{A) is isometric to H(A) and
closure(//c(A)) = c(//)(A).

(b) Cauchy sequences HC{A) converge in c{H){A).
(c) Cauchy sequences in c(H)(A) converge in c(H)(A).

And so, we only need to prove the uniqueness part of the following theorem.

THEOREM 4.1. For H a pre-Hilbert sheaf, there is a Hilbert sheaf, c{H), which
contains a dense, isometric copy of H. Furthermore, if K is another Hilbert sheaf
with this property, then K is isometric to c(H).

PROOF. Suppose H = Hc c c(H) and H = Hz c K with Hc-U-Hz an isometric
isomorphism. The isometry between c(H) and K is defined as follows: Given
(hn) € c(H), put k = lim^oc <p(hn). Conversely, given k e K, let hn ->• k with
hB eH\ We get ((/r1 (hn)) e c(H).

DEFINITION 4.8. c(H) is called the completion of / / .

For H-^K in Pre(SA(X)), define c(//)-^>c(/sT) by c(T)(sn) = {T(sn)). Then
(sn) Cauchy implies (T(sn)} Cauchy and (sn) = (?„> implies (T(sn)} = (T{tn)}. And
so, there is a functor (which, in fact, is left adjoint to the forgetful functor):

REMARK. In Proposition 4.2, we showed that the Cauchy and Dedekind reals
coincide in Sh(X). In view of the above completion process, we note that the Cauchy
formulation is more useful for our purposes.

Another useful result which we state without proof (it is simply another e/2 argu-
ment) is the following:

PROPOSITION 4.8. c(—) is product preserving.

REMARK. This proposition says that algebraic constructions on a normed space get
transported to its completion. For example, this is the essence of much of what is said
in Lemma 4.4.
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5. Application to measure indexing

5.1. The direct integral We begin by describing the direct integral of a Hilbert sheaf
and will generalize below. Let H e Hilb(Sh(X)), and define

H = Is : 1 H(X) | j \\s\\\ dn < oo\

REMARK. Since we are working in Sh(X), we must specify that the above integral
is finite for any choice of representative of ||s|| (it is an element of R so may be
considered as an equivalence class). It is easy to show that 'for any choice' may be
replaced by 'for some choice'. We note that such choices are part of the price to
be paid when working with the more index-oriented setting, Sh(X), as opposed to

Operations on /ffi H are inherited from those on H. We may define an inner product
in an obvious way:

DEFINITION 5.1. Fors, t e / e / / , define their inner product as {s\t)2:= j(s\t)xdix.
The resulting norm is called the || • ||2 norm.

THEOREM 5.1. / e H is complete in the || • ||2 norm.

PROOF. Let {sn) be a 2-Cauchy sequence in / e H. We can choose a subsequence,
also called (sn), such that J2T=\ \\s"+\ — s J b < oo. We claim that tN = Si +
12n=i (s"+i ~~ s») converges to a t e H and t = lim^oo sn e /ffi H. To prove this, we
must show that tN is a Cauchy sequence. That is, for each k e N j , we seek a cover,
{A,}^ of A,andan Ni suchthatVn, m > Ni(\\tn - tm\\ < l/jfcon A,-) (Definition 4.4).

Suppose first that k is a constant. T h e n J ^ j ||5n+i— sn\\2 < oo implies Y1T=\ Wsn+\~
sn\\(x) < oo for almost all x e X. Put AM,k = [x | Y^=M \\sn+x - sn\\(x) < l/k}.
Then {AMk}^=l forms a cover of X and \\tp — tq\\ < l/k for all p,q > M. So tN is
Cauchy. For a general, locally constant k, put A, = [x | k{x) = 7'}. Then AMJ n Aj
is the required cover and M is the required 'Nj' of Definition 4.4. So tN is Cauchy.

Since H is complete, tN -+ t = S\+Y^=x(sn+x-sn)&n&\\tN-t\\2 < Y.7=N \\S»+I-

snh -> 0 as N -> 00 so tN ->2 t as well. Furthermore, ||r||2 < ||si ||2 + Y.7=i Ws"+i ~
sn\\2 < 00 so / e / e H.

REMARK. tN and / are special in the above, hi general, un —> u does not imply
"n —̂2 u(ii\\uNi—u\\(x) < l / £ o n A,, then we do not necessarily have ||MW—U\\2 < e,
say, on all of X; the Af,'s may increase (over /') without bound). In order to ensure
2-convergence, we would require some uniformity (a common bound) of the Nt 's.
However, if un ->• u and un,u e j H, then un —>2 u if and only if ||MB||2 —> ||«||2-
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A straightforward result is:

PROPOSITION 5.1.

is a functor where the objects of UHilb(Sft (X)) are Hilbert sheaves and the morphisms
are uniformly bounded natural linear transformations (that is, H —> K linear and for
which there is a constant b such thatVh e H, \\r(h)\\K < b\\h\\H).

REMARKS. (1) For H—*K a bounded (by b e Rj , say, which is not necessarily
a constant) linear transformation and s e f® H, f \\T(S)\\2

X dfi < f \\b\\2
x\\s\\2

x d\i.
There is, however, no guarantee that this second integral is finite. So, bounded linear
transformations are not adequate to make /ffi functorial. We need a stronger condition
on the bound.

(2) The set of square-integrable sections of H(A) has a Hilbert space structure,
f® H, for each A e srf. And so, we get an element of FIAE^ H(A). This .c^-family is
not arbitrary though, in view of the fact that the restrictions pA

A, are uniformly bounded
linear transformations.

5.2. Substitution We next look at substitution and will consider the special case of
A first. Recall from Section 3.2, for K e Set,

A(K)(A) = {(B, / ) | n(AAB) = 0, B-UK,
f(B) countable, f'\k) e #/Vk e K}/

gives a sheaf in Sh(X). For H e Hilb, operations on A(H)(A) are the obvious
ones: 0 e A(//)(A) = A-^UH; -(B, f) = (B, - / ) ; (B, f) + (B1, /') = (B n
B', f + / ' ) . These make A(H)(A) into an additive group. However, for a e Cx

and (B, f) e A(H)(A), a(x) • f(x) does not necessarily have a countable image.
Thus, A(H) is not even a Cx-vector space (let alone a Hilbert space). Incidentally,
that A(Hilbert) ^ Hilbert is not entirely surprising since A is not logical (Sh(X) is
not atomic if, for example, X has no atoms). It does preserve finite products but not
necessarily logically more complicated entities like C.

Let C;c = A(C) be the set of equivalence classes of locally constant C-valued
functions. C/c is a geometric field in a similar manner to Cx (see Proposition 4.3).
Then A(H) is a C/c-vector space. Put ||(B, / ) | | := (B, \\f\\) € A(R) c Rx. This
satisfies positive definiteness and the triangle inequality. As one might expect, this is
not a complete norm but the last containment is 'dense' in the following sense:
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PROPOSITION 5.2. Every f e Cx is the pointwise limit of some sequence in
A(C)(X).

PROOF. This is simply the statement that a measurable function is the limit of
functions with countable image. / e Cx can be written as / = g + ih, where
g, h G Rx and g and h are each the difference of two non-negative functions. Thus,
let f(x) > 0 and consider

An = {x | n - 1 < f{x) <n] (n = 1, 2, 3 , . . . ) and

(* = 1. 2, 3, . . . )

and put fNx(x) = Yln=i 2Zf=i((n — 1) + l/(^ + 1))AA,»- Then fNK —> f pointwise.

There is a substitution functor Sh(X)*^—Sh(Y) for each (X, s/, fi)-^-(Y, &, v)
in MOR. Indeed, 0"1 is a morphism of sites, so we have a geometric morphism
0* H </>* where, for G € Sh(X), A e ^ , and a the associated sheaf functor,

0*(G)(A) =

and for F e 5A(X) and B e J ,

As we have noted, <j>* does not preserve Hilbert space objects. However, the proof
of Lemma 4.2 and Proposition 5.2 actually give:

PROPOSITION 5.3. c(AxC) = Cx (the completion of the sheaf of locally constant
functions is the sheaf of all measurable functions).

And so, substitution, Hilb(,S/i(X))*^Hilb(S/i(y)), may be defined as the triple
composite:

We next give a brief outline to show that this makes sense (that is, that <p* preserves
Hilbert space objects). Many of the proofs are left to the reader. <p* preserves finite
limits so it preserves Abelian group objects. In addition,
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Sh(Y)

Set

commutes. In particular, (t>*AYC = (j>*CY,i.c. = AXC = CXjc- Thus, (p* lifts to
C/c-modules.

Let G be a C/c-module. A norm on G yields a pseudo-norm, || • ||*, on <p*G as the
transpose of

or, equivalently, as the composite

where 0*Rj-U-Rj is the transpose of R ^ — ^ - ^ R ^ . This becomes a norm on 0*G
after completion. As an example of the techniques used, we prove:

PROPOSITION 5.4. || • ||* is homogeneous with respect to scalar multiplication by
locally constant (complex) functions.

PROOF. Homogeneity for a Qc-module, G, means that

R+ x R j KY

commutes. Apply (p* to this square and augment to arrive at the following diagram,
which we will prove commutative:

https://doi.org/10.1017/S1446788700000197 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000197


[21] Measurable Hilbert sheaves 209

CXJc x <t>*G ~ X l • (j)*CY,lc x <t>*G <p*G

The top square is <f>* of the homogeneity square for G, so commutes. To show the
bottom square commutes, transpose and use the fact that multiplication is pointwise.
The left triangle is the product of two triangles. The second factor commutes by
definition of || • ||*. The first factor commutes, since

commutes because its transpose does.

Now, complete to get <p*. For this, we need:

PROPOSITION 5.5. Let G be normed with Cic-homogeneity and suppose it is com-
plete in this norm. Then G can be made into a normed C-module with C-homogeneity
and it is complete.

PROOF. ¥oxa{y) € C,letan(j) —>• o;^) withan locally constant. Put (a(j)) • g :=
• g (the sequence is Cauchy in G).
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For each <p, 0#, as a triple composite, is functorial. Moreover,

PROPOSITION 5.6.

M 0 R o p - ^ U c A T is pseudo-functorial.

PROOF. 1* = 1 is straightforward. We will show (ij/<t>)# = <f>*
are is in the diagram:

where <p and \j/

Hi\b(Sh(X))

ux

Pre(Sh(X))

t

<p* Hilb(Sh(Y)) Hilb(S/z(Z))

Uy

Pre(Sh(Y)) Pre(5/i(Z))

and where u denotes the forgetful functor and c denotes the completion functor.

We first claim that (p*cY = cx(p*. Let P e Pre(Sh(Y)). Theorem 4.1 says
P —> uYcYP is a dense inclusion. Then (p*P —> <t>*uYCyP is also a dense
inclusion since <p* preserves such. Completing gives cx<p*P = cx4>*cYP which is
4>*cY(P) by definition. Naturality is easy to check. Similarly, V#cz = Cyifr* and

z = cx(ir<p)*- Thus, we have

Now, compose on the right with uz to get (I^</>)#CZMZ = <p*\j/*czuz. But czuz = 1
(Section 4.3). And so, (0i/r)# = <j>*\/f* as required.

5.3. Direct integration revisited Let (X, #/, /J.)——->(y, 88, v) be a disintegra-
tion and H e Hilb(5A(X)). Put

(£Hh= seH(<p~\B)) L 2(x) d/j,y(x) < oo almost all y \.
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PROPOSITION 5.7. (f® H\ (-) is a sheaf

PROOF. H(<p~l(—)) is a sheaf. It is, in fact, (cptH)(—) and the square-integrability
condition is on the points, v, independent of covers.

,/TN

We next look at the algebraic properties of J. . Operations [0], —, and + are

as in H{(j>~l{B)). For example, because || • \\A is a norm, we have ||s + s'||2(;t) <

22(||s||2(x) + ||s'||2(;t)) as in the ordinary sense. If B e C(B), we can compose with

4> to get B o 0 e C(4>-\B)). For s e (f® H^ (B), define scalar multiplication by

8 • s = (B o <j>) >-i(B) s. Now,

/ \\(B o(f>) • s\\2 d/j,y(x) = I \\B o(j)(x)\\2\\s\\2(x) dixy{x)

= W(y)\\2l \\s\\2{x)d^y{x)<oo.
«/0 (y)

Furthermore, if 8 ~ y B',thenBo<p ~ x B'ocj) because /x{x | 8o<p(x) ^ B'o(f>(x)} —
k B'(y)}) = 0, since <p e MOR.

PROPOSITION 5.8.

\\s\\2{x)dny{x)
' (> • )

\J<t> i
defines a norm on\ I H\ (B) where [—] denotes equivalence class in Mble(B, R + ) /~ .

PROOF. AS an example, we only prove positive definiteness. Suppose/ , ||s||2(x)
dny(.x) = 0. By Proposition 2.2, fx \\sf(x) dfi(x) = fr /#.1(y) \\s\\2(x)dfiy\x)dv(y)
— 0 which implies 5 = 0.

REMARKS. (1) Although generally we have left the 'almost all' caveat to the reader
to avoid unnecessary repetition, we stress that the relative direct integral consists of
local sections which are almost everywhere square-integrable. This is motivated by
statements from measure theory, as in the above proof, like: f f(x)dx < oo implies
f(x) < oo almost everywhere and not everywhere.

(2) Again, in Sh(X), we must choose a representative of the equivalence class ||s||.
It is easy to show that '/ti-almost everywhere equality' leads to lixy-almost everywhere
equality' on almost all of the fibres.

(3) Completeness of the norm of the proposition seems to be difficult to prove in
general (however, the examples below are complete). Finding a subsequence such
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that J2™=\ Wsn+\ - Snhiy) is finite for almost all y, a step crucial to theorem 5.1, is
not easy. We avoid the issue as to whether /ffi is complete for general 4> by defining

new /ffi = c (old f. ) where c denotes completion of a pre-Hilbert sheaf.

We next give some basic examples of relative direct integrals.

EXAMPLE 1. Identity: In this case,

J \\s\\2(t)dtAt)<oo\ =J
The finiteness condition on the integral holds for any 5 since norms are real-valued.

EXAMPLE 2. Terminal Object: For (X, &/, 11) (''M>>(1, 2, counting),

(Jm H\ (B) = Is e //(!-'(£)) I j^ Wsfd^ix) < ooj .

If B = {*}, this is the ordinary direct integral as described above.

EXAMPLE 3. Finite Sets: If X = (n, 2", counting), Sh(X) ~ Set". Here, 2" is
equipped with the 'topology of unions' and a set is covered by a family if the union
of the family equals the set. In this case, every set is covered by the collection of
its points. An H e Y\\\b(Sh(X)) corresponds to {Hu H2,..., //„) € Hilb(Sef") and
H{A) = Y[xeA H{x). In particular, C(A) = UX£A

C and t h e n o r m i s H(A) —>
R(A), {hx)x€A 1—> {\\hx\\)x&A. Now, suppose, n—>m is a disintegration (such is
just a function from n to m\ see [7]). In this case, ( / 0 H\ (B) = H(<p~\B)) =
nir60-'(fl)) H(x)- Operations are pointwise and the norm is the Euclidean one:

n , H(x)—> R, (hx)\—> Jy* \\h

PROPOSITION 5.9. \mi\b(Sh(X))^^\JHilb(Sh(Y)) is a functor for each <p.

PROOF. Suppose H-^H' e \]Hilb(Sh(X)). For s e f /®// ) (B), we have

-.(>.) I|T5||2(JC) dnyix) < b2 /0_,w \\s\\2(x) dfiy(x) < 00 for almost all y.

PROPOSITION 5.10. /® : Disintop ->• CAT is a pseudo-functor.
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PROOF. Example 1 above shows that / * = 1. Let

be two disintegrations and let (ijf<p, 9Z) denote their composition. For H a Hilbert
sheaf, the two relevant direct integrals are:

(f //)(C)-Le//(fV(C))|f |M|2Cx)</02(;t)<ooa.a. zj and

(f f H)(C) = [ / e ( f / / ) ( ^ - ' ( O ) | / \\t\\2(y)dvz(y) < oo a.a. zl
\Ji(, J<t> / [ \J<t> / J^-'U) )

= \t e H{4>'X^-\C)) | / \\t\\\x)diiy(x) < oo a.a. y and

f [ \\t\\2(x)diiy(x)dvz(y)<oc a.a. z l .

The two choices of representatives are 'absorbed' into one choice. We claim that
these two sets are equal. We have 2 since, by an argument similar to Proposition 2.2,

-Hz) /«-'( ) = fs-'f-Hz)- ^ o r —' t n e r e is a choice of representative of ||s|| to make
_,._.,. ||s||2(x)d0z(;c) finite for all z. Thus, L-I( T ) fs-'o WSW2(X)diiy(x)dv2(y) is

finite for all z which implies the inside integral is finite for almost all y. We have
already noted that if the integral is finite for some choice, then it is finite for any
choice.

REMARK. We have actually shown that relative direct integration is functorial in <p.
In the context of this paper, we are only interested in the fact that it is pseudo-functorial.

We close with some remarks about interesting open problems:

6. Epilogue

(1) MOR, as base category for substitution, and Disint, as base category for direct
integration, do not have products so this is not classical indexed category theory (in
the sense of [4]). The direct integral is a useful construction, however, and perhaps
this points to the existence of a generalization of their theory (that is, where the base
is not necessarily finitely complete). The power of indexed category theory is in its
descriptions of internal completeness and internal category objects. Of course, this is
where the finite limits for the base category are required. It would be interesting to
explore similar examples and see what fragment of the classical theory remains.
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(2) As we noted in the introduction, one could change the base category and use
Grothendieck toposes or 'expand' MOR (or Disint) to a finitely complete category. In
these cases, it would be interesting to see what fragment of classical direct integration
remains.
(3) It would be interesting to determine what a disintegration yields in <p* H </>» for
sheaves. It may equip Sh(X), regarded as a topos over Sh(Y), with a notion of
measure. This is not straightforward, however, since passing to sheaf topoi does
not capture the measure exactly. A more general notion of 'disintegration' would be
required. But, this would be a fruitful enterprise. For example, /ffi would simply be

the internalization (in Sh(Y)) of / e (in Set).
(4) The direct integral functor is not left adjoint to A. For H a Hilbert sheaf and K a
Hilbert space, we would require a bijection

a© \
H,K I = Hi]b

As a special case, let K = C and H = A(C) = C* so

HHb(L2(X, C), C) = Hilb*(MWe(-, C) /~ , Mble(-,

Now suppose (X, s/, n) is (N, 2N, /x) with Y1T=\ MM < °° (to m a k e it a finite
measure). The left hom set is Hilb(L2(X), C) = L2(X) (that is, the dual space). An
element of the right is a natural transformation

(Mble(A, C)/~^+Mble(A, C)/~>^-

By the sheaf property, such is uniquely determined by singletons: A = {x}. Now,
Mble({x], C) /~ = C, boundedness in the Hilb* sense places no condition on the
i/f(t)'s, and linearity means they are 'ordinary' linear. So \j/M is just a 1 x 1 matrix
C—^C. Thus, each natural transformation, \(r, corresponds to a sequence {ax)x€N.
And so, the right hom set consists of all sequences which is much larger than the left.
(5) We can, however, end on a more positive note than 4. First of all, we note that the
'L1-direct integral' of Banach spaces (defined in an obvious way) works in a context
similar to the above counterexample. Specifically, it is well-known that /' is left
adjoint to the unit ball functor for Banach spaces and contractions. In future work,
we will explore measure-indexed families of Banach spaces, C*-algebras, etcetera.
These should work better than Hilbert spaces.

For Hilb, we do not have an adjunction but we almost do in the following sense. Let
X be as in Remark 4. If we use transformations with uniformly bounded sup norms
throughout our theory, the right side of the intended adjunction becomes L°°(X) for
that example. A collection of maps, H(x)——*• K, whose sup norms are uniformly
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bounded (in x), yields a unique extension

->K; s(x) i—>• y~̂  T(x)s(x).
xeX

This does not give the adjunction since composing a bounded linear transformation
with the inclusions, H(X) —>• /ffi H{x)d^i{x), does not give a collection of maps
whose sup norms are uniformly bounded. But, L°°(X) is dense (in the topology of)
L2(X) so everything works except at the 'last stage', that of taking limits. This is an
interesting phenomenon worth exploring in more detail. For example, one may then
explore this 'almost adjunction' in its full generality (with Te and (/>*). It is useful to
begin with the special case above, however, for a more basic understanding.
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