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EQUATION BOUNDED ON ‘BIG’ SETS IN AN ABSTRACT
SENSE
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Abstract

It is well known that an exponential real function, which is Lebesgue measurable (Baire measurable,
respectively) or bounded on a set of positive Lebesgue measure (of the second category with the Baire
property, respectively), is continuous. Here we consider bounded on ‘big’ set solutions of an equation
generalizing the exponential equation as well as the Gotagb—Schinzel equation. Moreover, we unify results
into a more general and abstract case.
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1. Introduction

LetN, R and C denote the sets of positive integers, real numbers and complex numbers,
respectively, and let K € {R, C}. Fréchet and Ostrowski proved that if a function
f:R™ — R (for m € N) is Lebesgue measurable or bounded on a set of the positive
Lebesgue measure and satisfies the exponential functional equation

fx+y)=r0)f», (1.1)

then f is continuous (see, for example, [16, Theorems 9.3.1 and 9.4.3]). A topological
analog of this fact also holds; more precisely, each solution of (1.1) mapping a linear
topological space over R into R, which is Baire measurable or bounded on a set of
the second category with the Baire property, is continuous (see, for example, [16,
Theorem 9.3.2]). We also know that these results do not hold in the complex case
(see [2, Theorem 2 and Remark]).

Here we characterize solutions of the equation

fa+Mf@)y) = fx)f), (1.2)
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[2] Solutions of a Gotagb—Schinzel-type functional equation 431

assuming that a function f, measurable or bounded on a ‘big’ set (from an abstract
view point), mapping a linear space over K into K and a function M : K — K are
unknown. This equation ‘connects’ Equation (1.1) with the Gotab—Schinzel equation

fx+ f)y) =) fO); (1.3)

that is, Equations (1.1) and (1.3) are particular cases of (1.2) with M = 1 and M = idx,
respectively. Equation (1.1) is very well known; for further information we refer
the reader to [16, Ch. XIII, Section 1]. The Gotab—Schinzel equation introduced
in [11] is one of the most important composite-type functional equations, because
of its applications (and the applications of its generalizations) in the determination
of substructures of algebraic structures, in the theory of geometric objects, in
the classification of near-rings and quasialgebras, and in differential equations in
meteorology and fluid mechanics (for yet another very simple application of (1.3) see
Remark 4.4 at the end of this paper). In this connection, equations of Gotab—Schinzel
type have been considered by many authors in various classes of functions (for more
information concerning (1.3), its applications and further generalizations we refer to a
survey paper [8]).

Lebesgue measurable solutions of an equation of Gotagb—Schinzel type were first
studied by Popa [20]. He proved that each Lebesgue measurable real function
satisfying (1.3) is continuous or equal to zero almost everywhere. This result confirms
the fact that Equations (1.1) and (1.3) have different natures, so looking for solutions
of (1.2) seems to be an interesting problem.

Brzdek [7] proved that each solution f of the equation

fGx+ f)"y) = f(x)f(y) withsomen €N, (1.4)

mapping a separable F'-space X over K into K with | f(x)] C (0, a) for every x € A,
for some a > 0 and for a set A C X of the second category with the Baire property, is
bounded or continuous. As a consequence, found that every Baire measurable solution
of (1.4) is continuous or equal to zero almost everywhere (that is, f(X\A) = {0} for
a set A C X of the first category). An analogous result for solutions f :R™ — R
(with m € N) of (1.4) bounded on a set of positive Lebesgue measure has been proved
in [13].
Mureniko [18] determined solutions of the following generalization of (1.2):

Jx+M(fx)y) = fx)o f(y),

where M : R — R, the Lebesgue measurable function f : R — R and o : R? — R are
unknown functions.

In this paper, we generalize the results mentioned above by [7, 13, 20] for the case of
Equation (1.2). We also unify these results using an abstract property of measurability
with respect to some families of sets satisfying a certain hypothesis.

Since Sierpiniski [22] noticed that there are some similarities between measure
and category (see also [19]), some authors have introduced abstract properties of
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measurability, using selected analogies between measure and category, to unify the
results concerning those two fields (see, for example, [3, 9, 10, 17, 21]). Our
hypothesis refers to the analogy between a generalization of Steinhaus’s theorem
(see [4]) and its topological analog, that is, a generalization of Piccard’s theorem (see,
for example, [15]).

Throughout this paper, we denote

A=f71A1, W= FOON0),  Fi={xeX: f(x)#0)

for a function f : X — K mapping a linear space X over K into K.

2. Preliminary lemmas
First, we give some lemmas which will be useful in what follows.

LEMMA 2.1 [5, Lemmas 2, 3]. Let K € {R, C}, let B be a subgroup of (X, +) and let
V be an infinite subgroup of (K\{0}, -) such that VB C B. Moreover, in the case when
K = C assume that V\R # (. Then, for every x € B, the set By ={a € K:ax € B} is
dense in K (with the usual topology in K).

In the next lemma we collect together some basic properties of the functions
satisfying (1.2), which have been proved in [12] (see Lemmas 2 and 3 and
Propositions 1 and 2).

LEMMA 2.2. Let X be a linear space over Ke {R,C}, f: X > K, f#0, f#1
(that is, f is neither the constant function 0 nor the constant function 1) and
M : K — K. If f and M satisfy (1.2), then the following properties hold:

@) FMFE) " @=x) = f@f@) " forx e FandzeX;
(i) Mo H7'{OH = f71 {0

(iii)) M(a)A= A foraec W;

(iv) A is a subgroup of (X, +);

(v)  A\{O} is the set of periods of f;

(vi) W is a subgroup of (K\{0}, -);

(vil) y —x € A forevery x, y € F where f(x) = f(y);

(viii) there exists a function w : W — X such that F = w(W) + A;
(ix) if, moreover, M(1) =1 and M o f # 1, then 0 € f(X).

LEMMA 2.3 (See [14, Lemma 3]). Let X be a linear space over K € {R, C}, f : X —
KM: K=K f£0, M(1)=1and M(W)\{1} # @. If f and M satisfy (1.2), then
there exists an xo € X such that

FC(M(W)— Dxo+ling, A, 2.1)
where ling,, A denotes the linear subspace of X spanned by A over the field

— ?‘M(W)CR, 02
C if M(W)\R # 0.
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Furthermore, if A =ling,, A, then xo ¢ A,

Fy = a forxe(M(a)— Dxo+AandaecW, (2.3)

0 otherwise

and M| ¢ (x) is injective and multiplicative.

The proof of this lemma runs in the same way as in the case when K =R, so we
refer the reader to the proof of Lemma 3 in [14].

3. Ideals and a hypothesis

Let X be a linear space over a field K. First, let us recall that a family Z C 2X s
called a proper linearly invariant o-ideal provided:
(1) I#{f)andT #2%;
(2) 24 cZforeach A eT;
(3)  Upen An €T forevery {A,}pen C Z;
4) x+AeZandaAeZforeveryx € X,aecKand AeZ.

In further considerations we use the following hypothesis.

(H) X is a linear topological space over K € {R, C}, 91 is a o -algebra of its subsets
and there exists a nontrivial proper linearly invariant o-ideal Z C 2% such that:

(H1) int(A 4 B) # @ for every A € 9M\Z and B € 2X\Z,
(H2) int[(g(A) + 1) - (g(A) 4+ 1)] # ¥ for every A € IM\Z and g € X*\{0},

where X* is the space of all linear continuous functionals on X.

The above hypothesis (especially condition (H1)) corresponds to the hypothesis (M)
introduced in [9] and the hypothesis (H) from [3].

EXAMPLE 3.1. Let X be an F-space over K € {R, C}. Let 9t denote the o -algebra
of all subsets of X having the Baire property and let Z denote the o -ideal of all subsets
of X of the first category. By [7, Lemma 5], for every A C X of the second category
with the Baire property (in X) and g € X*\{0}, the set g(A) is of the second category
with the Baire property (in K). Hence, in view of a generalization of Piccard’s theorem
(see, for example, [15, Theorem 2]), the hypothesis (H) holds.

EXAMPLE 3.2. Let X =K", where K€ {R, C} and n € N. Let 99 denote the
o -algebra of all Lebesgue measurable subsets of K” and let Z denote the o-ideal of all
Lebesgue zero subsets of the space. In view of a generalization of Steinhaus’s theorem
(see [4, Theorem 1]), condition (H1) holds. Condition (H2) holds as a consequence of
Steinhaus’s theorem (see [6, Lemma 10]) and the following fact.

Let g : K" — K be a nontrivial linear functional and V C K, where K € {R, C}.
If D is a set of positive inner Lebesgue measure in K", then g(D) has positive inner
Lebesgue measure in K.
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The proof of this fact is exactly the same as in the case when K =R, so we refer
the reader to the proof of Lemma 6 in [13].

Taking &£ :={z € K: Jren =1} we prove a lemma that will be useful in what
follows.

LEMMA 3.3. Assume (H). If f: X - K and M : K — K satisfy (1.2), M(1) =1,
Mo f #1 and there is a D € 9MN\T such that D C F, then card f(X) > Ry and
M(W))\E #0.

PROOF. For an indirect proof, suppose that
for every b € W there exists a k € N such that (M(b))k =1. 3.1

If M(W)y={1}, then f(x+y)=fx)f(y)#0 for every x,y € F and thus
F+ F C F.By (Hl)

A #£int(D + D) Cint(F + F) Cint F.

Hence, according to Lemma 2.2(i), 0 € int F. Then, for each x € X, there exists an
n € N such that (1/n)x € F. This implies x =n(1/n)x e nF C F. In this way, we
obtain X = F, which contradicts Lemma 2.2(ix). Thus M (W)\{1} # @.

Using (1.2) we can prove by induction that, for every n € N\{1} and x € X,

n—1
(f@x)" = f(x(l + Z(M(f(x)))k>), (32)
k=1

and hence, for each x € X with M(f(x)) # 1,

1 — (M(f(x))" ‘x)
1 —M(f(x)) '

By Lemma 2.2(iv), f(0) = 1. Thus, in view of (3.1) and (3.3), we find that for each
b e W with M(b) # 1 there exists k € N fulfilling b =1. Hence {a € W : M(a) #*
1} Cé.

Now we show that {a e W: M(a) =1} C £. Fix x € X such that M(f(x)) =1.
Since M (W)\{1} # @, there exists a y € X with M(f(y))k = 1 for some k > 2. Then,
by Lemma 2.2(ii), f(x)f(y) # 0. In view of (1.2),

JO+HMFDx)=fE) ) =f@x+Mf&x)y)=fx+y).

Hence, according to Lemma 2.2(vii), we find that

(feN"=f ( (3.3)

x—M(f(y))x e A. (3.4)
Now we prove by induction that

x—M(f(y)'xeA foreachnef{l,2,..., k—1}. (3.5
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For n =1, (3.5) coincides with (3.4). Assume that
x—M(f(y)'xeA forsomenec{2,...,k—2}.
Using Lemma 2.2(iii),
M(f)x = M(f))'" x e M(fF()A=A.

Now, in view of (3.4) and Lemma 2.2(iv),
x =M xe A+ A=A.

This ends the proof of condition (3.5).
By (3.5) and Lemma 2.2(iv), we obtain

k—1
A3 (x = M(f(y)"x) =kx —

k
n=1 n

— 1— M(f())*
M My =kx — ———— 2.
Z:;) (FOW'x =kx = T—7 220 -

Since M(f(y))k =1, we have that kx € A. But M(f(x)) = 1. Thus, in view of (3.2),
1= flkx) = f(x)k. Hence, by Lemma 2.2(ii), for each b € W such that M (b) =1,
there exists a k € N fulfilling b* = 1. This means that {a € W : M(a) = 1} C £.

In this way, we find that W C £ and, consequently, card W <&y. By
Lemma 2.2(viii), there exists a function w : W — X such that

F={Jw@+A4).
aeW

Since D ¢ 7, we have that F ¢ 7 and, consequently, A ¢ Z. Furthermore, using (H1)
and Lemma 2.2(v),

B #int(D + A) Cint(F + A) Cint F.

Hence A is of the second category. In view of Piccard’s theorem, this implies
0 €int(cl A —cl A) and consequently, by Lemma 2.2(iv), int(cl A) = X. Hence A
is dense in X and, according to Lemma 2.2(v), X = F + A = F, which contradicts
Lemma 2.2(ix). o

4. Main results

In what follows, for a set T CK we put |T|:={|la|:a€T} and §S:={z€C:
|z| = 1}. Now we prove our main theorem.

THEOREM 4.1. Assume (H). Let D € M\Z, f : X — K and
|f(D)| C (0,a) forsomea >0, 4.1

and let M : K — K be continuous. Let, moreover, int(S\ f (D)) # @ (with respect to
the usual topology in S) in the case when W C S. Functions f and M satisfy (1.2) if
and only if one of the following conditions holds:
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O f=L

(i) Mo f=1and f: X — K\{0} is an exponential function;

(ii1) there exist some c¢ >0 and a nontrivial continuous R-linear functional
g : X — R such that either

Fx)=lg(x) + 1|" sgn(g(x) + 1) forxeX,
M(y)=|y|“sgny foryeR

or

f(x) = (max{0, g(x) + 1DV forx e X,
M(y) =y foryel0, 00);

(iv) there exist a continuous multiplicative bijection H : C — C and a nontrivial
continuous C-linear functional g : X — C such that

f)=H Y gx)+1) forxeX,
M(y)=H(y) foryeC.

REMARK 4.2. Clearly, there are two constant solutions of (1.2), f =0and f = 1, but
in the above theorem condition (4.1) implies f # 0.

Proof of Theorem 4.1. First, assume that functions f and M satisfy (1.2). The case
f = lisclear, so assume that f £ 1. Define a function M : K — K as

M(a)

M) = M(1)

foreacha € K “4.2)
and put x =0 in (1.2). Then, in view of Lemma 2.2(iv), we obtain f(M(1)y) =
f) f@O) = f(y) for each y € X. By Lemma 2.2(ii), we have M (1) # 0. Hence,
replacing y by z/M(1), f(z/M(1)) = f(z) for z € X. Consequently, for every
x,z€X,

~ < V4

fx+M(f(x)z) = f(x + M(f(X))M(1)> = f(X)f<M(1)> = f(x) f(2).
This means that the functions f and M given by (4.2) also satisfy (1.2), where
M()=1. f Mo f =c, then M o f =1. Hence, using (1.2), f is an exponential
function. Since f #0, we have that 0 ¢ f(X) (if f(xg) =0 for an x¢ € X, then
f(x) = f(x — x0) f(x0) =0 for each x € X). Putting x =0 in (1.2), we have that
Sf((c—=1)y)=1foreach y € X. Thus ¢ = 1 (because f # 1).

Now suppose that M o f 7#c. Then M o f # 1 and, in view of Lemma 2.2(ix),
0 € f(X). Since f # 1, by Lemma 2.2(ii), M (0) = 0. First we show that ling, A # X
for the field Kq given by (2.2). So suppose that this is not the case. Then A must
contain a basis for X. Moreover, by Lemma 2.2(iii),

aA=A foraeW,, “4.3)
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where Wy is a multiplicative group generated by M (W). Using Lemma 3.3, we find
that Wy is an infinite subgroup of the group (Kop\{0}, -). Consequently, in view of
Lemma 2.1, A is dense in X. Define a set
_JxeFilf)l <a} if W\S # 0,
" T lixeF: fx) gint(S\f(D))} if WCS.

Clearly D C Dgy. Moreover, by Lemma 2.2(v), A + Do C Dy. Hence we obtain
AN[(X\Do) — Dol =9.
Thus X\ Dy € Z, because otherwise, in view of (H1), we would have
¥ # int((X\ Do) — D) C int((X\ Do) — Do),

which contradicts the density of A. Now, according to Lemma 2.2(vi), there is
a sequence (Xx;,)meN C F such that, for each x € F, there exists an m € N with

G + M(f (n))x) = f(xm) £ (x) € f(X\Do)

(in the case when W C §, in view of Lemmas 2.2(vi) and 3.3, W is dense in S and
hence (x;;)men is a countable subset of F such that (f(x;;))men is dense in S).
According to Lemma 2.2(ii),

DcFc | J\Do) = xm)M(f(xm) "
meN

Then X\ Do € Z implies D € Z, which contradicts the assumption. In this way, we
obtain ling, A # X._

By Lemma 3.3, M(W)\{1} # @. Thus, in view of Lemma 2.3, there exists an xg € X
such that (2.1) holds. Hence

F—FC(MW)—M(W))xo + ling, A.

Next, by (H1), @ #int(D — D) C int(F — F). Since ling, A # X, we have that
xo ¢ ling, A. Consequently,

intg, (M (W) — M(W)) #
and
Koxg + linKo A=X. “4.4)

Thus
intg, (Wo — W) # 4.

Moreover, by (4.3) and Lemma 2.2(iv), KoA C A, which implies A = ling, A. Then,
according to Lemma 2.3, ~
F=MW)—-1Dxo+ A 4.5)
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and M | r(x) is injective and multiplicative. Moreover, from (4.4) we find that A is
a hyperplane of X (that is, codimg, A =1). So, we can define a linear functional
g: X — Ky as follows:

glaxo+y)=a foreveryacKpandyc A. (4.6)
In view of (4.5) _
g(x)=M(f(x))—1 foreachx e F. (4.7)

Hence g(D)+ 1 C A71(W) and g is bounded on D. Consequently, by (HI), g is
bounded on int(D + D) # ) and thus g is continuous. Then, using (H2) and the
continuity of M, _
intx, M~'((g(D) + 1)(g(D) + 1)) # 0
for the field
R if WCR,

Ky = ]
C if W\R # 0.

Next, by (H2), Lemma 2.2(vi) and the multiplicativity of M l x>
intg, M(W) D intg, (M(W) - M(W)) D intx, (g(D) + 1) - (g(D) + 1)) # 2,

intg, W D intg, (W - W) D intg, (M~ (g(D) + 1) - M~ (g(D) + 1))
=intx, M~ ((g(D) + 1) - (3(D) + 1)) #,
and, consequently, W, A7I£W) € {C\{0}, R\{0}, (0, c0)}.
In the case when M(W)= (0, 4+00), in view of (4.4) and (4.5), X\F =

(—o0, —1]x0 + é Hence, by (4.6), g(x) € (—oo, —1] for x € F. Moreover, by
Lemma 2.2(ii), M (f(x)) = 0 for x &€ F so, in view of (4.7),

M(f(x)) =max{0, g(x) + 1} forx e X. (4.8)

Finitely, consider the case when M(W) € {R\{0}, C\{0}}. Then, by (4.4) and (4.5),
X\F = —xo + A. Hence, in view of (4.6), g(x) = —1 for x € F. On the other hand,
using Lemma 2.2(ii), M (f(x)) = 0 for x ¢ F. Thus, according to (4.7),

M(f(x)=g(x)+1 forxeX. (4.9)

So, M | 7(x) is injective and multiplicative and Mo f is given by (4.8) or (4.9).
Hence, by (4.2), M| f(x) is injective,

MM (ab) = M(a)M(b) fora,be f(X) (4.10)
and either
M(f(x))=M1)(g(x)+1) forxeX 4.11)
or
M(f(x)) = M(1) max{0, g(x) + 1} forx € X. 4.12)
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Moreover, by Lemma 2.2(ii), F={xe€ X :g(x)> —1} when Mo f is given
by (4.11), and F = {x € X : g(x) # —1} in the other case. From (4.10) we find that,
forevery x, y € F,

M M
M(f(x)f(y) = (f(z)(l)(ﬂy” = (g(x) + D(g(y) + DM(D).

On the other hand, in view of (1.2) and Lemma 2.2(ii), M (f (x + M (f(x))y)) # 0 for
x, y € F and hence
M(f(x+M(f(x)y) =MD (g +M(f(x)y)+ 1)
=M1)(g(x)+gM(f(x)y) + 1)
= M(l)(g(x) T4 Mg(M(l)y))
M(1)
=M)(g(x)+ D(g(M(1)y) + 1).

Now, from (1.2), we obtain g(y) = g(M(1)y) for each y € F. Thus

g((1—M(1)y)=0 foryekF. (4.13)

Suppose that M (1) # 1. Since M o f # const, there exists a z € X such that g(z) # 0.
Let w= (1 — M(1))~'z. Then, in view of (4.13), w ¢ F. Hence g(w) < —1, when
M o f is given by (4.11), and g(w) = —1 in the other case. Now, by R-homogeneity
of g, there exists an r € R\{0} such that rw € F. This means that

0=2g((l —M1)rw) =g(rz) =rg(z) #0.

This contradiction proves that M (1) = 1. Thus, from (4.2), M=M.

Hence, by Lemma 2.2(ix), f(X), M(f(X)) € {C, R, [0, o0)}. Moreover, the
multiplicative bijections M : C - R, M : C — [0, co), M : ]1% — [0,00),M :R — C,
M : [0, c0) - C and M : [0, oo) — R do not exist (since M (a) = —1 if and only if
a=—1 and M(a) € {i, —i} if and only if a € {—i, i}). Hence f(X)=M(f(X)) €
{C, R, [0, 00)} and continuity of M implies continuity of M|s(x). In the case when
f(X)=M(f(X)) € {R, [0, co0)} either

M(y)=|y|“sgny foryeR
or
M(y)=y“ fory € [0, 0c0)

with a certain ¢ > 0 (see for example [16, Theorem 13.1.6]). If M : C — C, then we
put H = M. Hence conditions (iii) and (iv) hold.

If f and M are given by condition (i) or (ii) of this theorem, then it is easy to check
that f and M satisfy (1.2). So consider the case when f and M are given by (iii)
or (iv). Then (M o f)(x) = g(x) + 1 for each x € X and hence M o f satisfies (1.3).
Thus, by multiplicativity of M| r(x),

M(f(x+M(fNy) =MfIMf(y)=M(f(x)f(y) forx,yeX.
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Consequently, according to injectivity of M| 7(x), the functions f and M fulfill (1.2),
which completes the proof. u

COROLLARY 4.3. Assume (H) and let f : X — K with M : K — K satisfy (1.2). If
f is M-measurable (that is, f~(U) € M for every open subset U of X) and M is
continuous on K, then M o f is continuous or F € T.

PROOF. Assume that M o f # const and, for an indirect proof, suppose that F ¢ 7.
Since F = f~1(K\{0}), we have that F € 9. Take

B(c) = {be]K:|b—c| < ‘g“ forc € K.

Then there exists a sequence (¢;;)men C K such that

K\{0} C | J B(ewm).

meN

Hence
FclJ B
meN
and thus there exists an m € N such that the set D= f “1(B(cpw)) € IMN\Z and
| f(D)| C (0, 2|]ciy]). Moreover, if f(X)\{0} C S, then int(S\ f (D)) # @ (otherwise
we would have S C B(c;,,)) for an m € N, which contradicts {—1, 1} ¢ B(c;,). Now,
to end the proof it suffices to apply Theorem 4.1. O

REMARK 4.4. Let f: X — K and M = idk satisfy the assumptions of Theorem 4.1.
Define a binary operation  : X2 — X by x * y := x + f(x)y. Then it is easy to check
that (X, %) is a semigroup if and only if f satisfies the Golab—Schinzel equation (1.3).
Consequently, in view of Theorem 4.1, (X, %) is a semigroup if and only if f is given
by

fx)=gx)+1 forxeX

or
f(x) =max{0, g(x) + 1} forx e X.
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