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(Received 10 June 2009)

Abstract

It is well known that an exponential real function, which is Lebesgue measurable (Baire measurable,
respectively) or bounded on a set of positive Lebesgue measure (of the second category with the Baire
property, respectively), is continuous. Here we consider bounded on ‘big’ set solutions of an equation
generalizing the exponential equation as well as the Goła̧b–Schinzel equation. Moreover, we unify results
into a more general and abstract case.
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1. Introduction

Let N, R and C denote the sets of positive integers, real numbers and complex numbers,
respectively, and let K ∈ {R, C}. Fréchet and Ostrowski proved that if a function
f : Rm

→ R (for m ∈ N) is Lebesgue measurable or bounded on a set of the positive
Lebesgue measure and satisfies the exponential functional equation

f (x + y)= f (x) f (y), (1.1)

then f is continuous (see, for example, [16, Theorems 9.3.1 and 9.4.3]). A topological
analog of this fact also holds; more precisely, each solution of (1.1) mapping a linear
topological space over R into R, which is Baire measurable or bounded on a set of
the second category with the Baire property, is continuous (see, for example, [16,
Theorem 9.3.2]). We also know that these results do not hold in the complex case
(see [2, Theorem 2 and Remark]).

Here we characterize solutions of the equation

f (x + M( f (x))y)= f (x) f (y), (1.2)
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assuming that a function f , measurable or bounded on a ‘big’ set (from an abstract
view point), mapping a linear space over K into K and a function M :K→K are
unknown. This equation ‘connects’ Equation (1.1) with the Goła̧b–Schinzel equation

f (x + f (x)y)= f (x) f (y); (1.3)

that is, Equations (1.1) and (1.3) are particular cases of (1.2) with M = 1 and M = idK,
respectively. Equation (1.1) is very well known; for further information we refer
the reader to [16, Ch. XIII, Section 1]. The Goła̧b–Schinzel equation introduced
in [11] is one of the most important composite-type functional equations, because
of its applications (and the applications of its generalizations) in the determination
of substructures of algebraic structures, in the theory of geometric objects, in
the classification of near-rings and quasialgebras, and in differential equations in
meteorology and fluid mechanics (for yet another very simple application of (1.3) see
Remark 4.4 at the end of this paper). In this connection, equations of Goła̧b–Schinzel
type have been considered by many authors in various classes of functions (for more
information concerning (1.3), its applications and further generalizations we refer to a
survey paper [8]).

Lebesgue measurable solutions of an equation of Goła̧b–Schinzel type were first
studied by Popa [20]. He proved that each Lebesgue measurable real function
satisfying (1.3) is continuous or equal to zero almost everywhere. This result confirms
the fact that Equations (1.1) and (1.3) have different natures, so looking for solutions
of (1.2) seems to be an interesting problem.

Brzdȩk [7] proved that each solution f of the equation

f (x + f (x)n y)= f (x) f (y) with some n ∈ N, (1.4)

mapping a separable F-space X over K into K with | f (x)| ⊂ (0, a) for every x ∈ A,
for some a > 0 and for a set A ⊂ X of the second category with the Baire property, is
bounded or continuous. As a consequence, found that every Baire measurable solution
of (1.4) is continuous or equal to zero almost everywhere (that is, f (X\A)= {0} for
a set A ⊂ X of the first category). An analogous result for solutions f : Rm

→ R
(with m ∈ N) of (1.4) bounded on a set of positive Lebesgue measure has been proved
in [13].

Mureńko [18] determined solutions of the following generalization of (1.2):

f (x + M( f (x)y)= f (x) ◦ f (y),

where M : R→ R, the Lebesgue measurable function f : R→ R and ◦ : R2
→ R are

unknown functions.
In this paper, we generalize the results mentioned above by [7, 13, 20] for the case of

Equation (1.2). We also unify these results using an abstract property of measurability
with respect to some families of sets satisfying a certain hypothesis.

Since Sierpiński [22] noticed that there are some similarities between measure
and category (see also [19]), some authors have introduced abstract properties of
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measurability, using selected analogies between measure and category, to unify the
results concerning those two fields (see, for example, [3, 9, 10, 17, 21]). Our
hypothesis refers to the analogy between a generalization of Steinhaus’s theorem
(see [4]) and its topological analog, that is, a generalization of Piccard’s theorem (see,
for example, [15]).

Throughout this paper, we denote

A := f −1({1}), W := f (X)\{0}, F := {x ∈ X : f (x) 6= 0}

for a function f : X→K mapping a linear space X over K into K.

2. Preliminary lemmas

First, we give some lemmas which will be useful in what follows.

LEMMA 2.1 [5, Lemmas 2, 3]. Let K ∈ {R, C}, let B be a subgroup of (X,+) and let
V be an infinite subgroup of (K\{0}, ·) such that V B ⊂ B. Moreover, in the case when
K= C assume that V \R 6= ∅. Then, for every x ∈ B, the set Bx = {a ∈K : ax ∈ B} is
dense in K (with the usual topology in K).

In the next lemma we collect together some basic properties of the functions
satisfying (1.2), which have been proved in [12] (see Lemmas 2 and 3 and
Propositions 1 and 2).

LEMMA 2.2. Let X be a linear space over K ∈ {R, C}, f : X→K, f 6= 0, f 6= 1
(that is, f is neither the constant function 0 nor the constant function 1) and
M :K→K. If f and M satisfy (1.2), then the following properties hold:

(i) f (M( f (x))−1(z − x))= f (z) f (x)−1 for x ∈ F and z ∈ X;
(ii) (M ◦ f )−1({0})= f −1({0});
(iii) M(a)A = A for a ∈W ;
(iv) A is a subgroup of (X,+);
(v) A\{0} is the set of periods of f ;
(vi) W is a subgroup of (K\{0}, ·);
(vii) y − x ∈ A for every x, y ∈ F where f (x)= f (y);
(viii) there exists a function w :W → X such that F = w(W )+ A;
(ix) if, moreover, M(1)= 1 and M ◦ f 6= 1, then 0 ∈ f (X).

LEMMA 2.3 (See [14, Lemma 3]). Let X be a linear space over K ∈ {R, C}, f : X→
K, M :K→K, f 6= 0, M(1)= 1 and M(W )\{1} 6= ∅. If f and M satisfy (1.2), then
there exists an x0 ∈ X such that

F ⊂ (M(W )− 1)x0 + linK0 A, (2.1)

where linK0 A denotes the linear subspace of X spanned by A over the field

K0 =

{
R if M(W )⊂ R,
C if M(W )\R 6= ∅.

(2.2)
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Furthermore, if A = linK0 A, then x0 /∈ A,

f (x)=

{
a for x ∈ (M(a)− 1)x0 + A and a ∈W,

0 otherwise
(2.3)

and M | f (X) is injective and multiplicative.

The proof of this lemma runs in the same way as in the case when K= R, so we
refer the reader to the proof of Lemma 3 in [14].

3. Ideals and a hypothesis

Let X be a linear space over a field K. First, let us recall that a family I ⊂ 2X is
called a proper linearly invariant σ -ideal provided:

(1) I 6= {∅} and I 6= 2X ;
(2) 2A

⊂ I for each A ∈ I ;
(3)

⋃
n∈N An ∈ I for every {An}n∈N ⊂ I ;

(4) x + A ∈ I and a A ∈ I for every x ∈ X , a ∈K and A ∈ I .

In further considerations we use the following hypothesis.

(H) X is a linear topological space over K ∈ {R, C}, M is a σ -algebra of its subsets
and there exists a nontrivial proper linearly invariant σ -ideal I ⊂ 2X such that:

(H1) int(A + B) 6= ∅ for every A ∈M\I and B ∈ 2X
\I ,

(H2) int[(g(A)+ 1) · (g(A)+ 1)] 6= ∅ for every A ∈M\I and g ∈ X∗\{0},

where X∗ is the space of all linear continuous functionals on X .

The above hypothesis (especially condition (H1)) corresponds to the hypothesis (M)
introduced in [9] and the hypothesis (H) from [3].

EXAMPLE 3.1. Let X be an F-space over K ∈ {R, C}. Let M denote the σ -algebra
of all subsets of X having the Baire property and let I denote the σ -ideal of all subsets
of X of the first category. By [7, Lemma 5], for every A ⊂ X of the second category
with the Baire property (in X ) and g ∈ X∗\{0}, the set g(A) is of the second category
with the Baire property (in K). Hence, in view of a generalization of Piccard’s theorem
(see, for example, [15, Theorem 2]), the hypothesis (H) holds.

EXAMPLE 3.2. Let X =Kn , where K ∈ {R, C} and n ∈ N. Let M denote the
σ -algebra of all Lebesgue measurable subsets of Kn and let I denote the σ -ideal of all
Lebesgue zero subsets of the space. In view of a generalization of Steinhaus’s theorem
(see [4, Theorem 1]), condition (H1) holds. Condition (H2) holds as a consequence of
Steinhaus’s theorem (see [6, Lemma 10]) and the following fact.

Let g :Kn
→K be a nontrivial linear functional and V ⊂K, where K ∈ {R, C}.

If D is a set of positive inner Lebesgue measure in Kn , then g(D) has positive inner
Lebesgue measure in K.
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The proof of this fact is exactly the same as in the case when K= R, so we refer
the reader to the proof of Lemma 6 in [13].

Taking E := {z ∈K : ∃k∈N zk
= 1} we prove a lemma that will be useful in what

follows.

LEMMA 3.3. Assume (H). If f : X→K and M :K→K satisfy (1.2), M(1)= 1,
M ◦ f 6= 1 and there is a D ∈M\I such that D ⊂ F, then card f (X) > ℵ0 and
M(W )\E 6= ∅.

PROOF. For an indirect proof, suppose that

for every b ∈W there exists a k ∈ N such that (M(b))k = 1. (3.1)

If M(W )= {1}, then f (x + y)= f (x) f (y) 6= 0 for every x, y ∈ F and thus
F + F ⊂ F . By (H1)

∅ 6= int(D + D)⊂ int(F + F)⊂ int F.

Hence, according to Lemma 2.2(i), 0 ∈ int F . Then, for each x ∈ X , there exists an
n ∈ N such that (1/n)x ∈ F . This implies x = n(1/n)x ∈ nF ⊂ F . In this way, we
obtain X = F , which contradicts Lemma 2.2(ix). Thus M(W )\{1} 6= ∅.

Using (1.2) we can prove by induction that, for every n ∈ N\{1} and x ∈ X ,

( f (x))n = f

(
x

(
1+

n−1∑
k=1

(M( f (x)))k
))
, (3.2)

and hence, for each x ∈ X with M( f (x)) 6= 1,

( f (x))n = f

(
1− (M( f (x)))n

1− M( f (x))
· x

)
. (3.3)

By Lemma 2.2(iv), f (0)= 1. Thus, in view of (3.1) and (3.3), we find that for each
b ∈W with M(b) 6= 1 there exists k ∈ N fulfilling bk

= 1. Hence {a ∈W : M(a) 6=
1} ⊂ E .

Now we show that {a ∈W : M(a)= 1} ⊂ E . Fix x ∈ X such that M( f (x))= 1.
Since M(W )\{1} 6= ∅, there exists a y ∈ X with M( f (y))k = 1 for some k ≥ 2. Then,
by Lemma 2.2(ii), f (x) f (y) 6= 0. In view of (1.2),

f (y + M( f (y))x)= f (x) f (y)= f (x + M( f (x))y)= f (x + y).

Hence, according to Lemma 2.2(vii), we find that

x − M( f (y))x ∈ A. (3.4)

Now we prove by induction that

x − M( f (y))nx ∈ A for each n ∈ {1, 2, . . . , k − 1}. (3.5)
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For n = 1, (3.5) coincides with (3.4). Assume that

x − M( f (y))nx ∈ A for some n ∈ {2, . . . , k − 2}.

Using Lemma 2.2(iii),

M( f (y))x − M( f (y))n+1x ∈ M( f (y))A = A.

Now, in view of (3.4) and Lemma 2.2(iv),

x − M( f (y))n+1x ∈ A + A = A.

This ends the proof of condition (3.5).
By (3.5) and Lemma 2.2(iv), we obtain

A 3
k−1∑
n=1

(x − M( f (y))nx)= kx −
k−1∑
n=0

M( f (y))nx = kx −
1− M( f (y))k

1− M( f (y))
· x .

Since M( f (y))k = 1, we have that kx ∈ A. But M( f (x))= 1. Thus, in view of (3.2),
1= f (kx)= f (x)k . Hence, by Lemma 2.2(ii), for each b ∈W such that M(b)= 1,
there exists a k ∈ N fulfilling bk

= 1. This means that {a ∈W : M(a)= 1} ⊂ E .
In this way, we find that W ⊂ E and, consequently, card W ≤ ℵ0. By

Lemma 2.2(viii), there exists a function w :W → X such that

F =
⋃

a∈W

(w(a)+ A).

Since D 6∈ I , we have that F 6∈ I and, consequently, A 6∈ I . Furthermore, using (H1)
and Lemma 2.2(v),

∅ 6= int(D + A)⊂ int(F + A)⊂ int F.

Hence A is of the second category. In view of Piccard’s theorem, this implies
0 ∈ int(cl A − cl A) and consequently, by Lemma 2.2(iv), int(cl A)= X . Hence A
is dense in X and, according to Lemma 2.2(v), X = F + A = F , which contradicts
Lemma 2.2(ix). 2

4. Main results

In what follows, for a set T ⊂K we put |T | := {|a| : a ∈ T } and S := {z ∈ C :
|z| = 1}. Now we prove our main theorem.

THEOREM 4.1. Assume (H). Let D ∈M\I , f : X→K and

| f (D)| ⊂ (0, a) for some a > 0, (4.1)

and let M :K→K be continuous. Let, moreover, int(S\ f (D)) 6= ∅ (with respect to
the usual topology in S) in the case when W ⊂ S. Functions f and M satisfy (1.2) if
and only if one of the following conditions holds:
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(i) f = 1;
(ii) M ◦ f = 1 and f : X→K\{0} is an exponential function;
(iii) there exist some c > 0 and a nontrivial continuous R-linear functional

g : X→ R such that either

f (x)= |g(x)+ 1|1/c sgn(g(x)+ 1) for x ∈ X,

M(y)= |y|c sgn y for y ∈ R

or

f (x)= (max{0, g(x)+ 1})1/c for x ∈ X,

M(y)= yc for y ∈ [0,∞);

(iv) there exist a continuous multiplicative bijection H : C→ C and a nontrivial
continuous C-linear functional g : X→ C such that

f (x)= H−1(g(x)+ 1) for x ∈ X,

M(y)= H(y) for y ∈ C.

REMARK 4.2. Clearly, there are two constant solutions of (1.2), f = 0 and f = 1, but
in the above theorem condition (4.1) implies f 6= 0.

Proof of Theorem 4.1. First, assume that functions f and M satisfy (1.2). The case
f = 1 is clear, so assume that f 6= 1. Define a function M̃ :K→K as

M̃(a)=
M(a)

M(1)
for each a ∈K (4.2)

and put x = 0 in (1.2). Then, in view of Lemma 2.2(iv), we obtain f (M(1)y)=
f (y) f (0)= f (y) for each y ∈ X . By Lemma 2.2(ii), we have M(1) 6= 0. Hence,
replacing y by z/M(1), f (z/M(1))= f (z) for z ∈ X . Consequently, for every
x, z ∈ X ,

f (x + M̃( f (x))z)= f

(
x + M( f (x))

z

M(1)

)
= f (x) f

(
z

M(1)

)
= f (x) f (z).

This means that the functions f and M̃ given by (4.2) also satisfy (1.2), where
M̃(1)= 1. If M ◦ f = c, then M̃ ◦ f = 1. Hence, using (1.2), f is an exponential
function. Since f 6= 0, we have that 0 6∈ f (X) (if f (x0)= 0 for an x0 ∈ X , then
f (x)= f (x − x0) f (x0)= 0 for each x ∈ X ). Putting x = 0 in (1.2), we have that
f ((c − 1)y)= 1 for each y ∈ X . Thus c = 1 (because f 6= 1).

Now suppose that M ◦ f 6= c. Then M̃ ◦ f 6= 1 and, in view of Lemma 2.2(ix),
0 ∈ f (X). Since f 6= 1, by Lemma 2.2(ii), M̃(0)= 0. First we show that linK0 A 6= X
for the field K0 given by (2.2). So suppose that this is not the case. Then A must
contain a basis for X . Moreover, by Lemma 2.2(iii),

a A = A for a ∈W0, (4.3)
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where W0 is a multiplicative group generated by M̃(W ). Using Lemma 3.3, we find
that W0 is an infinite subgroup of the group (K0\{0}, ·). Consequently, in view of
Lemma 2.1, A is dense in X . Define a set

D0 :=

{
{x ∈ F : | f (x)|< a} if W\S 6= ∅,

{x ∈ F : f (x) 6∈ int(S\ f (D))} if W ⊂ S.

Clearly D ⊂ D0. Moreover, by Lemma 2.2(v), A + D0 ⊂ D0. Hence we obtain

A ∩ [(X\D0)− D0] = ∅.

Thus X\D0 ∈ I , because otherwise, in view of (H1), we would have

∅ 6= int((X\D0)− D)⊂ int((X\D0)− D0),

which contradicts the density of A. Now, according to Lemma 2.2(vi), there is
a sequence (xm)m∈N ⊂ F such that, for each x ∈ F , there exists an m ∈ N with

f (xm + M̃( f (xm))x)= f (xm) f (x) ∈ f (X\D0)

(in the case when W ⊂ S, in view of Lemmas 2.2(vi) and 3.3, W is dense in S and
hence (xm)m∈N is a countable subset of F such that ( f (xm))m∈N is dense in S).
According to Lemma 2.2(ii),

D ⊂ F ⊂
⋃

m∈N
((X\D0)− xm)M̃( f (xm))

−1.

Then X\D0 ∈ I implies D ∈ I , which contradicts the assumption. In this way, we
obtain linK0 A 6= X .

By Lemma 3.3, M̃(W )\{1} 6= ∅. Thus, in view of Lemma 2.3, there exists an x0 ∈ X
such that (2.1) holds. Hence

F − F ⊂ (M̃(W )− M̃(W ))x0 + linK0 A.

Next, by (H1), ∅ 6= int(D − D)⊂ int(F − F). Since linK0 A 6= X , we have that
x0 6∈ linK0 A. Consequently,

intK0(M̃(W )− M̃(W )) 6= ∅

and
K0x0 + linK0 A = X. (4.4)

Thus
intK0(W0 −W0) 6= ∅.

Moreover, by (4.3) and Lemma 2.2(iv), K0 A ⊂ A, which implies A = linK0 A. Then,
according to Lemma 2.3,

F = (M̃(W )− 1)x0 + A (4.5)
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and M̃ | f (X) is injective and multiplicative. Moreover, from (4.4) we find that A is
a hyperplane of X (that is, codimK0 A = 1). So, we can define a linear functional
g : X→K0 as follows:

g(ax0 + y)= a for every a ∈K0 and y ∈ A. (4.6)

In view of (4.5)
g(x)= M̃( f (x))− 1 for each x ∈ F. (4.7)

Hence g(D)+ 1⊂ M̃(W ) and g is bounded on D. Consequently, by (H1), g is
bounded on int(D + D) 6= ∅ and thus g is continuous. Then, using (H2) and the
continuity of M̃ ,

intK1 M̃−1((g(D)+ 1)(g(D)+ 1)) 6= ∅

for the field

K1 =

{
R if W ⊂ R,
C if W\R 6= ∅.

Next, by (H2), Lemma 2.2(vi) and the multiplicativity of M̃ | f (X),

intK0 M̃(W )⊃ intK0(M̃(W ) · M̃(W ))⊃ intK0((g(D)+ 1) · (g(D)+ 1)) 6= ∅,

intK1 W ⊃ intK1(W ·W )⊃ intK1(M̃
−1(g(D)+ 1) · M̃−1(g(D)+ 1))

= intK1 M̃−1((g(D)+ 1) · (g(D)+ 1)) 6= ∅,

and, consequently, W, M̃(W ) ∈ {C\{0}, R\{0}, (0,∞)}.
In the case when M̃(W )= (0,+∞), in view of (4.4) and (4.5), X\F =

(−∞,−1]x0 + A. Hence, by (4.6), g(x) ∈ (−∞,−1] for x 6∈ F . Moreover, by
Lemma 2.2(ii), M̃( f (x))= 0 for x 6∈ F so, in view of (4.7),

M̃( f (x))=max{0, g(x)+ 1} for x ∈ X. (4.8)

Finitely, consider the case when M̃(W ) ∈ {R\{0}, C\{0}}. Then, by (4.4) and (4.5),
X\F =−x0 + A. Hence, in view of (4.6), g(x)=−1 for x 6∈ F . On the other hand,
using Lemma 2.2(ii), M̃( f (x))= 0 for x 6∈ F . Thus, according to (4.7),

M̃( f (x))= g(x)+ 1 for x ∈ X. (4.9)

So, M̃ | f (X) is injective and multiplicative and M̃ ◦ f is given by (4.8) or (4.9).
Hence, by (4.2), M | f (X) is injective,

M(1)M(ab)= M(a)M(b) for a, b ∈ f (X) (4.10)

and either
M( f (x))= M(1)(g(x)+ 1) for x ∈ X (4.11)

or
M( f (x))= M(1)max{0, g(x)+ 1} for x ∈ X. (4.12)
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Moreover, by Lemma 2.2(ii), F = {x ∈ X : g(x) >−1} when M ◦ f is given
by (4.11), and F = {x ∈ X : g(x) 6= −1} in the other case. From (4.10) we find that,
for every x, y ∈ F ,

M( f (x) f (y))=
M( f (x))M( f (y))

M(1)
= (g(x)+ 1)(g(y)+ 1)M(1).

On the other hand, in view of (1.2) and Lemma 2.2(ii), M( f (x + M( f (x))y)) 6= 0 for
x, y ∈ F and hence

M( f (x + M( f (x))y)) = M(1)(g(x + M( f (x))y)+ 1)

= M(1)(g(x)+ g(M( f (x))y)+ 1)

= M(1)
(

g(x)+ 1+
M( f (x))

M(1)
g(M(1)y)

)
= M(1)(g(x)+ 1)(g(M(1)y)+ 1).

Now, from (1.2), we obtain g(y)= g(M(1)y) for each y ∈ F . Thus

g((1− M(1))y)= 0 for y ∈ F. (4.13)

Suppose that M(1) 6= 1. Since M ◦ f 6= const, there exists a z ∈ X such that g(z) 6= 0.
Let w = (1− M(1))−1z. Then, in view of (4.13), w 6∈ F . Hence g(w)≤−1, when
M ◦ f is given by (4.11), and g(w)=−1 in the other case. Now, by R-homogeneity
of g, there exists an r ∈ R\{0} such that rw ∈ F . This means that

0= g((1− M(1))rw)= g(r z)= rg(z) 6= 0.

This contradiction proves that M(1)= 1. Thus, from (4.2), M̃ = M .
Hence, by Lemma 2.2(ix), f (X), M( f (X)) ∈ {C, R, [0,∞)}. Moreover, the

multiplicative bijections M : C→ R, M : C→ [0,∞), M : R→ [0,∞), M : R→ C,
M : [0,∞)→ C and M : [0,∞)→ R do not exist (since M̃(a)=−1 if and only if
a =−1 and M(a) ∈ {i,−i} if and only if a ∈ {−i, i}). Hence f (X)= M( f (X)) ∈
{C, R, [0,∞)} and continuity of M implies continuity of M | f (X). In the case when
f (X)= M( f (X)) ∈ {R, [0,∞)} either

M(y)= |y|c sgn y for y ∈ R

or
M(y)= yc for y ∈ [0,∞)

with a certain c > 0 (see for example [16, Theorem 13.1.6]). If M : C→ C, then we
put H = M . Hence conditions (iii) and (iv) hold.

If f and M are given by condition (i) or (ii) of this theorem, then it is easy to check
that f and M satisfy (1.2). So consider the case when f and M are given by (iii)
or (iv). Then (M ◦ f )(x)= g(x)+ 1 for each x ∈ X and hence M ◦ f satisfies (1.3).
Thus, by multiplicativity of M | f (X),

M( f (x + M( f (x))y))= M( f (x))M( f (y))= M( f (x) f (y)) for x, y ∈ X.
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Consequently, according to injectivity of M | f (X), the functions f and M fulfill (1.2),
which completes the proof. 2

COROLLARY 4.3. Assume (H) and let f : X→K with M :K→K satisfy (1.2). If
f is M-measurable (that is, f −1(U ) ∈M for every open subset U of X) and M is
continuous on K, then M ◦ f is continuous or F ∈ I .

PROOF. Assume that M ◦ f 6= const and, for an indirect proof, suppose that F 6∈ I .
Since F = f −1(K\{0}), we have that F ∈M. Take

B(c) :=

{
b ∈K : |b − c|<

∣∣∣∣c2
∣∣∣∣} for c ∈K.

Then there exists a sequence (cm)m∈N ⊂K such that

K\{0} ⊂
⋃

m∈N
B(cm).

Hence
F ⊂

⋃
m∈N

f −1(B(cm))

and thus there exists an m ∈ N such that the set D = f −1(B(cm)) ∈M\I and
| f (D)| ⊂ (0, 2|cm |). Moreover, if f (X)\{0} ⊂ S, then int(S\ f (D)) 6= ∅ (otherwise
we would have S ⊂ B(cm)) for an m ∈ N, which contradicts {−1, 1} 6⊂ B(cm). Now,
to end the proof it suffices to apply Theorem 4.1. 2

REMARK 4.4. Let f : X→K and M = idK satisfy the assumptions of Theorem 4.1.
Define a binary operation ? : X2

→ X by x ? y := x + f (x)y. Then it is easy to check
that (X, ?) is a semigroup if and only if f satisfies the Goła̧b–Schinzel equation (1.3).
Consequently, in view of Theorem 4.1, (X, ?) is a semigroup if and only if f is given
by

f (x)= g(x)+ 1 for x ∈ X

or
f (x)=max{0, g(x)+ 1} for x ∈ X.
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