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This paper proposes a Radio Frequency Identification (RFID)/ in-vehicle sensors fusion strat-
egy for vehicle positioning in completely Global Positioning System (GPS)-denied environ-
ments such as tunnels. The strategy employs a two-step approach, namely, the calculation
of the distances between the RFID tags and the reader, and then the global fusion estimation
of vehicle position. First, a Least Square Support Vector Machine (LSSVM) algorithm is
developed to obtain distance. Next a novel Federated Unscented Kalman Filter (FUKF) is
designed to realise the global fusion. The decentralised federated filter is adopted to
combine the data from RFID and in-vehicle sensors, and the UKF is employed to design a
local filter since it has better ability to deal with a nonlinear problem than an Extended
Kalman Filter (EKF). Due to the optimised layout of RFID tags and the application of
the decentralised filter, the number of tags is reduced. Finally, the feasibility and effectiveness
of the proposed strategy are evaluated through experiments.
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1. INTRODUCTION. With the rapid development of transportation, more and
more road tunnels have been constructed. Tunnels often play a role in reducing
traffic jams, shortening driving distances and allowing faster journeys. However,
tunnels bring challenges in vehicle navigation and positioning.
For vehicle positioning, the Global Positioning System (GPS) is currently the most

widely used technology (Skog and Handel, 2009). However, GPS suffers from perform-
ance degradation in GPS-denied environments such as tunnels due to the signal block-
age. To overcome this problem, the common solution is that GPS is integrated with an
Inertial Navigation System (INS) or Dead Reckoning (DR) system (Toledo-Moreo
et al., 2007; Zhang and Xu, 2012; Tzoreff and Bobrovsky, 2012). Both INS and DR
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contain inertial sensors. For automotive applications, only low-cost inertial sensors
based on Micro Electromechanical Systems (MEMS) technology are affordable.
Due to the presence of noise in the MEMS-based sensors measurements and the inte-
gration process, the INS and DR solutions drift over time. This drift can cause rapid
positioning performance degradation during GPS outages (Bhatt et al., 2014), espe-
cially in GPS-denied environments such as long tunnels. Other sensors, such as
vehicle motion sensors, cameras and radar are used to compensate for errors
(Schleicher et al., 2010; Li and Zhang, 2010; Jo et al., 2012). These sensors can partial-
ly correct the accumulated errors, but the compensation effect is poor when GPS is in a
long-time failure. The main reason is the lack of the position observation to correct the
error.
As an alternative, there has been rapid development of wireless location technolo-

gies (Liu et al., 2007; Zhou and Shi, 2009; Curran et al., 2011; Kaemarungsi and
Krishnamurthy, 2012) in recent years, such as Wireless Local Area Networks
(WLAN), Bluetooth, Ultra Wide Band (UWB) and Radio Frequency Identification
(RFID). Among them, RFID has attracted wide attention due to its advantages of
non-touch, low-cost and high accuracy (Zhou and Shi, 2009; Ting et al., 2011; Park
and Lee, 2013), especially in the field of indoor positioning. RFID-based indoor posi-
tioning technology typically employs the Received Signal Strength (RSS), Time Of
Arrival (TOA), Time Difference Of Arrival (TDOA) or Angle Of Arrival (AOA) to
compute the object’s location. The RSS-based location algorithms are the most
widely used for indoor positioning because the algorithms are simple and need no add-
itional hardware.
RFID-based technology has also been studied for outdoor applications (Boccadoro

et al., 2010). Chon et al. (2004) applied RFID technology to the vehicle positioning
field for the first time, and the feasibility of RFID-based vehicle positioning at high
speed was preliminarily verified. Zhang et al. (2011) used Active RFID Positioning
(ARP) technology to achieve vehicle positioning. Cheng et al. (2012) employed
passive RFID tags for vehicle navigation. Lee et al. (2012) used RFID to improve
GPS accuracy in GPS-denied environments. In these methods, only the RFID infor-
mation is used. Therefore, the positioning accuracy and the output frequency are
not high enough to meet the performance requirements for many applications. In add-
ition, these methods can only provide position information and cannot provide speed
or attitude information that is also important to location-related services. Because of
the similarity between tunnel and indoor environments, RFID technology can be con-
sidered as a possible solution to achieve vehicle positioning in tunnels. However, the
disadvantages of an RFID-based positioning algorithm as discussed above, i.e., low
accuracy, low output frequency and the lack of speed or attitude information, still
exist in tunnel positioning.
For vehicle positioning, DR is a widely used technology in GPS-denied environ-

ments that uses driving direction and speed to reckon the position of the vehicle.
The commonly used sensors include electronic compass, wheel speed sensor, and
other in-vehicle sensors. DR has the advantage that it is totally self-contained.
However, for numerical integration processing, this method suffers from serious accu-
mulative integration errors, and these large errors are strongly time correlated and can
cause rapid performance degradation due to the lack of position observations.
To combine the advantages of RFID and DR methods to achieve accurate and re-

liable positioning performance in tunnels, the multi-sensor fusion method provides a
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viable solution. Due to the complementary natures of these two types of sensors, the
RFID can be fused with several in-vehicle DR sensors to realise positioning in com-
pletely GPS-denied areas. In other words, RFID can provide the position observation
to correct the accumulative integration errors of DR, and DR can provide speed and
attitude information of the vehicle to improve the positioning accuracy and output fre-
quency of RFID. However, to the author’s knowledge, there has been little recent and
relevant research on the topic of fusion positioning specialised for vehicles in tunnels
by using RFID and in-vehicle sensors.
Several information fusion algorithms have been proposed in the field of vehicle

navigation by using GPS and DR, such as Extended Kalman Filter (EKF) (Toledo-
Moreo et al., 2007; Skog and Handel, 2009), Unscented Kalman Kilter (UKF)
(Jung et al., 2014) and Particle Filter (PF)(Georgy et al., 2010), which can provide a
way to propose a suitable algorithm for RFID/DR fusion. Among the existing algo-
rithms, Federated Unscented Kalman Filter (FUKF) is a novel and effective algorithm
to achieve GPS/DR fusion positioning (Xu et al., 2009; Zhang et al., 2007). Due to the
ability to deal with nonlinear problems and a fault tolerance ability, the FUKF is
employed to achieve RFID/DR fusion in this paper.
This paper proposes a vehicle positioning strategy based on the fusion of

RFID and in-vehicle sensors in completely GPS-denied environments such as
tunnels. This strategy employs a two-step approach, namely, the calculation of the dis-
tances between the RFID tags and the reader based on RSS, and then the global fusion
estimation of vehicle position. The algorithms for both distance estimation and global
fusion are developed to obtain higher performance. The main contributions of this
paper can be summarised as follows:

(1) A Least Square Support Vector Machine (LSSVM)-based algorithm is devel-
oped to estimate the distances based on RSS. Compared to other estimation
methods such as propagation models, the proposed algorithm has many advan-
tages, such as high precision, high generalisation ability and strong adaptability
for different environments, which can significantly improve the performance of
subsequent global fusion.

(2) Since the fusion of the RFID and in-vehicle sensors has seldom been discussed
in related literature, this paper presents an in-depth study to derive our fusion
algorithm. First, a RFID-based positioning method utilising EKF is developed
(RFID-EKF), which only uses the RFID and aims to validate the feasibility of a
RFID-based positioning algorithm for vehicles in tunnels. Then low cost in-
vehicle sensors are introduced to fuse with RFID to achieve fusion positioning
(abbreviated as Fusion-EKF), and the improved vehicle motion model is devel-
oped and adopted to establish an EKF state model. Finally, our global fusion
algorithm is proposed on the basis of Fusion-EKF to lower its costs.

(3) A novel Federated Unscented Kalman Filter (FUKF) is designed to realise the
global fusion. To overcome the disadvantage of RFID-based positioning algo-
rithms, low cost in-vehicle sensors, such as electronic compass and wheel speed
sensors, are introduced to fuse with RFID. In this algorithm, the obvious advan-
tage is that due to the application of a decentralized federated filter, the layout of
tags can be optimised to significantly reduce the number of tags and thus lower
the costs. In the actual implementation of local filtering of the federated filter,
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the UKF algorithm is developed to replace the EKF since it has better ability to
deal with a nonlinear problem than EKF.

The remainder of the paper is organised as follows. Section 2 gives an overview of the
structure of the proposed strategy. The distance estimation algorithm is given in
Section 3. The RFID-EKF and Fusion-EKF algorithm are discussed in Section 4.
Section 5 presents the FUKF algorithm for global fusion. Experimental results are
provided in Sections 6. The paper is concluded in Section 7.

2. PROPOSED STRATEGY FOR VEHICLE POSITIONING. The proposed
strategy is shown in Figure 1. Figure 1 is mainly composed of three parts, i.e.,
multi-sensor module, LSSVM-based distance estimation algorithm, and FUKF for
global fusion.
The multi-sensor module includes such sensors as MEMS-based inertial sensors,

wheel speed sensors, electronic compass and the low-cost active RFID hardware
devices (a reader and a number of tags). The low-cost active RFID hardware
devices are characterised by low price and low output frequency. The MEMS-based
inertial sensors used here only include two orthogonal accelerometers and a yaw
gyro, rather than a full INS which would be expensive.
The LSSVM algorithm is developed to estimate the distance information between

RFID reader and tags, i.e., r1, r2 …rN, based on RSS. The LSSVM has been verified
to be effective and robust for modelling the systems with nonlinearity, parametric and
modelling uncertainties. Rather than the propagation model method that is the main
approach for distance estimation in indoor positioning based on RSS, the LSSVM
can achieve better performance in real world applications since the accuracy of the
propagation model may be influenced by the environment.

Figure 1. Proposed fusion strategy.
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The FUKF is proposed to realise global fusion. The improved vehicle motion model
is adopted to establish the state equation. With an optimised layout of tags, the number
of tags is reduced for lower costs. Thefederatedfilter isdesignedtoensuretheaccuracyand
reliabilityofpositioning in thecondition that fewer tagsareneeded. In theactual implemen-
tationof local filteringof the federated filter,EKFis themost commonlyusedalgorithmfor
nonlinear systems. However, EKF ismainly suitable for mild nonlinear systems. The first-
order local linearization procedure of EKF introduces approximation errors and even
causes divergence of the filter. To overcome these problems a UKF is developed to
replace EKF in the design of the local filter. The main advantage of UKF is that it does
not use any linearization for calculating the state prediction covariance. Consequently, it
has more accurate covariance and Kalman gain estimates, and this leads to more exact
fusion results. Since the actual vehicle motions are arbitrary nonlinear processes, UKF is
more suitable than EKF that has better ability to deal with nonlinear problems. In the
FUKF module of Figure 1, Z1 and Z2 are the observation vectors from RFID and in-
vehicle sensors, respectively; X̂ g and Pg represent the fused state and its variance; X̂ j and

Pj (j = 1,2) represent the state estimation and variance of the j-th local filter; X̂m and Pm

represent the state estimation and variance of the master filter.
To demonstrate the derivation process of our global fusion algorithm, Figure 2

shows the relationships of RFID-EKF, Fusion-EKF and FUKF algorithms.
It can be seen in Figure 2 that RFID-EKF only uses RFID to estimate the vehicle

position. The data from low-cost in-vehicle sensors is added to aid the RFID in
Fusion-EKF. Therefore, the positioning results of Fusion-EKF have higher accuracy
and output frequency due to the in-vehicle sensors.
On the basis of RFID-EKF, the FUKF is developed to reduce the number of tags.

FUKF also combines the data from RFID and in-vehicle sensors. However, due to the
optimised layout of tags and the application of the federated filter, FUKF needs fewer
RFID tags than Fusion-EKF to reduce the costs for practical application. The feder-
ated filter is designed to tolerate and isolate the faulty RSS information or even non-
existence of RFID information.
The specific implementation of these algorithms and the comparison of each will be

discussed in a later section.

3. LSSVM FOR DISTANCE ESTIMATION. It seems that the first challenge for
the positioning strategy is how to mathematically model the relationship between RSS

Figure 2. The relationships of RFID-EKF, Fusion-EKF and FUKF.
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and distance. Theoretically, in unobstructed free space, Friis transmission equation
(Zhou and Shi, 2009) can be applied. However, in real world applications, this
model becomes less useful. For example, RFID signals in tunnels usually exhibit multi-
path propagation due to the effect from obstructing structures such as walls. For this
reason, this paper proposes a LSSVM-based algorithm to model the relationship
between RSS and distance.
LSSVM is a powerful tool to model nonlinear functions and can be trained offline

utilising the experiment data collected in a specific environment (Dong and Luo,
2013). Compared to other modelling methods such as Artificial Neural Networks
(ANN), LSSVM has a higher generalisation ability to accommodate the requirement
of different application environments.
It has been found that there is a nonlinear correlation between RSS and

distance. Although modelling this correlation is difficult, it is possible to build
correlation with the designed LSSVM after adequate training. In this paper, the
input of LSSVM is RSS, and the output is the distance between the RFID reader
and tag. The training data is collected through experiments in different situations.
The training process is completely offline, and the trained LSSVM model is used to
estimate the distance online. To ensure the effectiveness of LSSVM, the same group
of tags and reader is selected in the training stage and online estimation stage.
Meanwhile, a large mount of data in different situations is collected to guarantee
the training is rich.
Take a training set xk; ykf gNk¼1, where xk is input RSS vector, yk is output distance

vector. xk; yk ∈ R1, R1 is the one-dimensional vector space. In feature space, the
LSSVM model takes the form:

f ðxÞ ¼ ωTφðxÞ þ b ð1Þ

where ω ∈ Rnh is an adjustable weight vector; the nonlinear mapping φð:Þ : R1 ! Rnh

maps the input data into a higher dimensional feature space; b is the scalar threshold.
The optimisation problem is

min Jðω; b; eÞ ¼ 1
2
ωTωþ 1

2
γ
XN
k¼1

e2k ð2Þ

Due to the equality constraints:

yk ¼ ωTφðxkÞ þ bþ ek; k ¼ 1; � � � ;N ð3Þ

where ek is the error variable and γ≥ 0 is a regularisation constant. To solve the opti-
misation problem, the Lagrangian function is introduced:

LLS�SVM ¼ 1
2
ωTωþ 1

2
γ
XN
k¼1

e2k �
XN
k¼1

αk ωTφðXkÞ þ bþ ek � yk
� � ð4Þ
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Where αk are the Lagrange multipliers, according to Karush Kuhn Tucker (KKT) op-
timization conditions that are illustrated in Equation (5):

∂LLS�SVM

∂ω
¼ 0 ! ω ¼

XN
k¼1

αkφðxkÞ

∂LLS�SVM

∂b
¼ 0 !

XN
k¼1

αk ¼ 0

∂LLS�SVM

∂ek
¼ 0 ! αk ¼ γek; k ¼ 1; � � � ;N

∂LLS�SVM

∂αk
¼ 0 ! ωTφðxkÞ þ bþ ek � yk ¼ 0; k ¼ 1; � � � ;N

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð5Þ

Eliminating ω and ek will yield a linear system instead of a quadratic programming
problem:

0 1TN
1N Ωþ IN=γ

� �
b
α

� �
¼ 0

Y

� �
ð6Þ

where Y ¼ y1; � � � ; yN½ �T ; 1N ¼ 1; � � � ; 1½ �T and α ¼ α1; � � � ; αN½ �T . IN is a N×N iden-
tity matrix. Ω is the kernel matrix defined by

Ωij ¼ φðxiÞTφðxjÞ ¼ Kðxi; xjÞ; i; j ¼ 1; � � � ;N ð7Þ
The Radial Basis Function (RBF) has been used here as the kernel function K(·,·),
which is given by

Kðx; xkÞ ¼ exp � x� xkk k22
2σ2

( )
; k ¼ 1; � � � ;N ð8Þ

where x� xkk k22 is the squared Euclidean distance between the two feature vectors; σ is
the width of RBF.
Further, the result of the LS-SVM model for function estimation becomes

f ðxÞ ¼
XN
k¼1

αkKðx; xkÞ þ b ð9Þ

where αk and b are the solutions to Equation (6). The design values of γ and σ can be
determined during the training of LS-SVM.
After offline training, Equation (9) can be used to estimate the distance between tag

and reader based on measured RSS online.

4. RFID-EKFAND Fusion-EKF. The second step of the proposed strategy is to
estimate the vehicle position based on the distances. In this paper, the global fusion al-
gorithm for positioning is derived by RFID-EKF and Fusion-EKF. To illustrate the
advantages of our global fusion algorithm, RFID-EKF and Fusion-EKF algorithm
are designed in this section, and will be compared with FUKF in Section 6.

4.1. System Setup. The RFID-EKF and Fusion-EKF algorithm have the same
layout style of RFID tags and reader. The active RFID reader is installed on the

851RFID/ IN-VEHICLE SENSORS-INTEGRATED POSITIONINGNO. 4

https://doi.org/10.1017/S0373463315000946 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000946


top of the vehicle, and the active RFID tags are placed on both sidewalls of the tunnel,
as shown in Figure 3. On each side, the tags are placed at regular intervals that are set
according to the characteristics of the reader and tags to ensure at least four tags can be
detected by reader at any moment, i.e., the interval is 6 m in this paper. The exact pos-
ition of each tag can be determined beforehand, and the position of the reader can be
considered as the position of the vehicle.

4.2. RFID-EKF. The RFID-EKF algorithm only uses RFID to estimate the
vehicle position. For indoor location, the most widely used method is the so-called
multi-lateration method. However, the values of calculation distance usually have a
large error due to phenomena such as fading, absorption and multipath of propaga-
tion and even the failure of tags, which may cause a large positioning error. To solve
the problem discussed above, a RFID-EKF algorithm is designed.
Assuming that RSSs of N tags can be measured by the reader at the time k,

the distances between reader and tags, r1(k), r2(k)…rN(k), can be calculated by
Equation (9).
The discretised state equation and measurement equation can be written as

XRFID kð Þ ¼ ARFIDXRFID k�1ð ÞþWRFID k�1ð Þ
ZRFID kð Þ ¼ hRFID XRFID kð Þð ÞþVRFID kð Þ ð10Þ

where k refers to the discrete-time step; XRFID kð Þ¼ pe kð Þ pn kð Þ½ �0 is the state vector;
the state transition matrix ARFID¼ 1 0

0 1

� �
; WRFID and VRFID are the system and

measurement noise vectors, and their covariance matrices are QRFID and RRFID, re-
spectively; ZRFID ¼ r1 kð Þ r2 kð Þ ::: rN kð Þ½ �0 is the observation vector and hRFID

Figure 3. The layout style of RFID tags for RFID-EKF and Fusion-EKF.
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is the corresponding observation function and can be described by:

hRFID kð Þ ¼
h11 kð Þ
:::

h1N kð Þ

2
64

3
75; h1i kð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe kð Þ � xi kð Þð Þ2 þ pn kð Þ � yi kð Þð Þ2

q
þnri i ¼ 1; 2:::;Nð Þ

pe(k) and pn(k) represent the east and north coordinates of the vehicle CoG (Centre of
gravity) in the global positioning frame, respectively. (xi, yi) are the known coordinates
of the i-th tag. nri denotes the corresponding observation noise vector.
The EKF process consists of the following two phases:

Time update:

X̂RFIDðk; k � 1Þ ¼ ARFIDX̂RFIDðk � 1Þ ð11Þ
PRFIDðk; k � 1Þ ¼ ARFIDðk; k � 1ÞPRFIDðk � 1ÞA0

RFIDðk; k � 1Þ
þQRFIDðk � 1Þ ð12Þ

Measurement update:

KRFIDðkÞ ¼ PRFIDðk; k � 1Þ �H 0
1ðkÞ

� HRFIDðkÞPRFIDðk; k � 1ÞH 0
RFIDðkÞ þ RRFIDðkÞ½ ��1 ð13Þ

X̂RFIDðkÞ ¼ X̂RFIDðk; k � 1Þ þ KRFIDðkÞ
× ZRFIDðkÞ � hRFID X̂RFIDðk; k � 1Þ

� �h i
ð14Þ

PRFIDðkÞ ¼ I � KRFIDðkÞ �HRFIDðkÞ½ �PRFIDðk; k � 1Þ ð15Þ
where I is an identity matrix, HRFID are the Jacobian matrices of the measurement
function hRFID �ð Þ with respect to XRFID:

HRFID kð Þ ¼
pe k; k � 1ð Þ � x1 kð Þð Þ=D1 kð Þ pn k; k � 1ð Þ � y1 kð Þð Þ=D1 kð Þ

::: :::
pe k; k � 1ð Þ � xN kð Þð Þ=DN kð Þ pe k; k � 1ð Þ � yN kð Þð Þ=DN kð Þ

2
4

3
5;

Di kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe k; k � 1ð Þ � xi kð Þð Þ2þ pn k; k � 1ð Þ � yi kð Þð Þ2

q
i ¼ 1; 2; :::;Nð Þ:

Since only the RFID is employed to achieve vehicle positioning, this algorithm can
only provide the position information, and the positioning accuracy and the output
frequency are not high enough, i.e., the output frequency is always less than 1 Hz.

4.3. Fusion-EKF. To overcome the disadvantages of RFID-EKF, the Fusion-
EKF algorithm is developed to correct the positioning errors and improve the
output frequency. The difference between Fusion-EKF and RFID-EKF is that some
in-vehicle sensors are introduced to fuse with the RFID information in Fusion-
EKF. To describe the vehicle motion in a tunnel, the improved vehicle motion
model is established. The state vector is

XFusion kð Þ¼ pe kð Þ pn kð Þ ve kð Þ vn kð Þ ψ kð Þ½ �0

where ve(k) and vn(k) are the east and north velocity. ψ(k) is the yaw angle. To represent
two typical vehicle movements, i.e., the straight line and curvilinear motions, the
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longitudinal acceleration ax, the lateral accelerations ay and the yaw rate ωz are intro-
duced as system input vectors in the vehicle motion model. The improved vehicle
motion model equation is shown as follows:

XFusion k;k� 1ð Þ ¼ f Fusion X 2 k� 1ð Þ;UFusion kð Þð Þ

¼

pe k� 1ð Þþ ve k� 1ð ÞT þ 1
2

ax cosψ k� 1ð Þ� ay sinψ k� 1ð Þ	 

T2

ve k� 1ð Þþ ax cosψ k� 1ð Þ� ay sinψ k� 1ð Þ	 

T

pn k� 1ð Þþ vn k� 1ð ÞT þ 1
2

ax sinψ k� 1ð Þþ ay cosψ k� 1ð Þ	 

T2

vn k� 1ð Þþ ax sinψ k� 1ð Þþ ay cosψ k� 1ð Þ	 

T

ψ k� 1ð Þþωz

2
6666666664

3
7777777775

ð16Þ
where f Fusion �ð Þ denotes the process function of the improved vehicle motion model.
T is the sampling interval. UFusion ¼ ax ay ωz½ �0 is the input vector.
The observation equation can be established as:

ZFusion ¼ hFusion XFusion kð Þ½ �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe kð Þ � x1 kð Þð Þ2þ pn kð Þ � y1 kð Þð Þ2

q
þnr1

:::ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe kð Þ � xN kð Þð Þ2þ pn kð Þ � yN kð Þð Þ2

q
þnrN

ve kð Þ cosψ kð Þ þ vn kð Þ sinψ kð Þ þ nv
ψ kð Þ þ nψ

2
66666664

3
77777775

ð17Þ

where ZFusion ¼ r1 ::: rN vwheel ψcompass

	 
0
is the observation vector and hFusion

is the corresponding observation function. vwheel is the longitudinal linear velocity in
the vehicle body frame which measured by the wheel speed sensors; ψcompass is the
observed yaw angle. nv and nψ denote the corresponding observation noise vector.
Then the execution of EKF can be divided into time update stage and measurement

update stage as Equations (11)-(15). Compared to RFID-EKF, the output frequency
of the Fusion-EKF algorithm is increased to 10 Hz from the value 1 Hz of RFID-
EKF. Meanwhile, the fusion algorithm can provide the speed and attitude information
which RFID was unable to provide.

5. GLOBAL FUSION ALGORITHM BASED ON FUKF. Although the
Fusion-EKF algorithm can achieve better positioning performance than RFID-
EKF, the costs of Fusion-EKF are high due to the high density layout of tags. To
reduce the costs of Fusion-EKF with very little sacrifice of accuracy is the major
goal of our fusion algorithm. On the basis of Fusion-EKF, the FUKF is proposed
to reduce the number of tags. Compared to Fusion-EKF, a significant advantage of
FUKF is that the tags can be placed at long distance intervals rather than covering
the whole tunnel, due to the optimised layout of tags.
In practice, there are two aspects that should be considered: (1) different sensors

have different sampling rates. The sampling rate of the RFID is always lower than
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that of in-vehicle sensors. (2) RFID fails to provide reliable positioning information if
there is no RSS signal. Considering these two aspects, it is more suitable to adopt a
decentralized filtering algorithm, therefore, the decentralized federated filter is
designed to realise global fusion. The UKF algorithm is developed to design the
local filter. For the vehicle, UKF has the following advantages over the commonly-
used EKF: (1) UKF eliminates the calculation of Jacobian matrices in EKF and
makes the estimation procedure easier; (2) it increases the estimation accuracy by con-
sidering at least the second order Taylor expansion to satisfy the nonlinear character-
istics in the process of vehicle operation; (3) Strong robustness on the changes of the
actual vehicle system parameters, and lower sensitivity to system noise, measurement
noise and the initial statistical properties.

5.1. The optimised layout of tags. For Fusion-EKF, four tags are placed in a
region. Each side has two tags and the interval between the two tags is 6 m. Then
another four tags in accordance with this layout are placed at every 30 m interval,
as shown in Figure 4.
From Figure 4, the DR method is used to estimate the vehicle’s position, and the

RFID data is used to compensate for the accumulated errors when the vehicle is
close to the tags and can receive the RSS signal.

5.2. System Model. To avoid the shortages in the central data fusion, a distributed
data fusion model based on federated UKF is adopted to achieve global fusion for
vehicle positioning. The systemmodel can be seen in Figure 1. The federated filter is com-
posed of one master filter and two local filters. In Figure 1, the state estimation of one
local filter is independent of the other. X̂ g and Pg represent the fused state and its vari-

ance. X̂ j and Pj (j= 1,2) represent the state estimation and its variance of the j-th local

filter. X̂m and Pm represent the state estimation and its variance of the master filter.
In Figure 1, RFID and DR in-vehicle sensors estimate the position of the vehicle

with its own UKF local filter. The position of the vehicle is fused in the master
filter according to the state estimation results of every UKF local filter. The model
of Figure 1 has much lower computation complexity and better system fault tolerance.

Figure 4. The optimised layout style of RFID tags for FUKF.
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When no RSS signal exists, the positioning results of the RFID-based local filter are
always inaccurate or even faulty. However, the faults can hardly influence the final pre-
cision of the fused position due to the distributed fusion model. Therefore, the distrib-
uted data fusion model shown in Figure 1 is more suitable to be used in the proposed
positioning strategy which needs fewer tags.

5.3. UKF local filter. The UKF filter chooses a set of sigma sample points to
compute the mean and covariance of the state distribution. Assuming that the state
estimation vector of the UKF local filter is X kð Þ¼ pe kð Þ pn kð Þ ve kð Þ vn kð Þ ψ kð Þ½ �0,
the discretized state equation and measurement equation can be written as:

X kð Þ¼ f X k�1ð Þ;U kð Þð ÞþW k�1ð Þ
Zj kð Þ¼ hj X kð Þð ÞþVj kð Þ i¼ 1;2

ð18Þ

where W is the system noise vector. Vj is the measurement noise vectors of j-th local
filters. Q and R are the covariance matrices of W and V. U ¼ ax ay ωz½ �0 is the
input vector. f �ð Þ denotes the nonlinear system functions and can be described by
improved vehicle motion model as Equation (16). Zj is the observation vectors of j-th
local filter and hj is the corresponding observation function.

Z1 ¼ r1 ::: rN½ �0

h1 X kð Þ½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe kð Þ�x1 kð Þð Þ2þ pn kð Þ�y1 kð Þð Þ2

q
þnr1

:::ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe kð Þ�xN kð Þð Þ2þ pn kð Þ�yN kð Þð Þ2

q
þnrN

2
664

3
775 ð19Þ

Z2 ¼ vwheel ψcompass

	 
0
h2 X kð Þ½ � ¼ ve kð Þcosψ kð Þþ vn kð Þsinψ kð Þþnv

ψ kð Þþnψ

� �
ð20Þ

For the j-th local filter, the UKF consists of the following steps:

(1) Set the initial values for state mean X̂ 0 and error covariance P0.
(2) Compute the 2nx+ 1 sigma sampling points χi and their weighted coefficientWi.

χ0 ¼ �X ;Wm
0 ¼ κ= nx þ κð Þ;Wc

0 ¼ κ= nx þ κð Þ þ 1� α2 þ β
� �

i ¼ 0 ð21Þ

χi ¼ �X þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ κð ÞPx

p� �
i
;Wm

i ¼ Wc
i ¼ 1=2 nx þ κð Þ i ¼ 1; :::; nx ð22Þ

χi ¼ �X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ κð ÞPx

p� �
i
;Wm

i ¼ Wc
i ¼ 1=2 nx þ κð Þ

i ¼ nx þ 1; :::; 2nx
ð23Þ

where �X and Px are the mean vector and the covariance matrix of the nx-dimen-
sional distribution. κ is a scaling parameter, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx þ κð ÞPx

p� �
i represents the

i-th row of the matrix square root. α determines the spread of the sigma points
around �X . β is used to incorporate prior knowledge of the distribution of �X.
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(3) Compute the predicted state mean and the predicted covariance as:

χxi k; k � 1ð Þ ¼ f χi kð Þ;U kð Þ� � ð24Þ

X k; k � 1ð Þ ¼
X2nx
i¼0

Wm
i χ

x
i k; k � 1ð Þ ¼

X2nx
i¼0

Wm
i f χxi k � 1ð Þ� � ð25Þ

P k; k � 1ð Þ ¼
X2nx
i¼0

Wc
i χxi k; k � 1ð Þ � �X k; k � 1ð Þ	 


χxi k; k � 1ð Þ � �X k; k � 1ð Þ	 
0þQ k � 1ð Þ
ð26Þ

Zi kð Þ ¼ h χi
� �

i ¼ 0; :::; 2nx ð27Þ

�Z ¼
X2nx
i¼0

Wm
i Zi kð Þ ð28Þ

(4) Update the state mean and covariance as

PZZ ¼
X2nx
i¼0

Wc
i Zi kð Þ � �Z
	 


Zi kð Þ � �Z
	 
0þR kð Þ ð29Þ

PXZ ¼
X2nx
i¼0

Wc
i χi k; k � 1ð Þ � �X k; k � 1ð Þ	 
X2nx

i¼0

Wc
i χi k; k � 1ð Þ � �X k; k � 1ð Þ	 
0

ð30Þ
K kð Þ ¼ PXZP�1

ZZ ð31Þ
X kð Þ ¼ X k; k � 1ð Þ þ K kð Þ Z kð Þ � �Z½ � ð32Þ
P kð Þ ¼ P k; k � 1ð Þ þ K kð ÞPZZ kð ÞK 0 kð Þ ð33Þ

5.4. Data Fusion in the Master Filter. In the federated UKF filter, the process in-
formation Q−1(k) and P−1(k) are distributed between the local filters and the master
filter as follows:

Qj kð Þ ¼ βj
�1Q kð Þ

j ¼ 1; 2;m
Pj kð Þ ¼ βj

�1P kð Þ
ð34Þ

where m represents the master filter, βj is the information distribution coefficient and
satisfies

X2
j¼1

βj þ βm ¼ 1 ð35Þ

In this paper, βm= 0. For β1 and β2, a simple determining rule is that when the number
of measured tags is less than 4, β1 = 0·05, β2 = 0·95, else β1 = 0·8, β2 = 0·2.
Finally, all of the vehicle position estimations in every UKF local filter are fused

in the master filter. The fused state estimation and the covariance matrix can be
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expressed as:

Pg kð Þ ¼
X2;m
j¼1

P�1
j kð Þ

" #�1

ð36Þ

X̂ g kð Þ ¼ Pg kð Þ
X2;m
j¼1

P�1
j X̂ j ð37Þ

6. EXPERIMENTALRESULTS. To validate and evaluate the performance of the
proposed positioning algorithm, experiments were conducted on a Buick Sail SRV
vehicle. It was equipped with RFID hardware devices sampled at 1 Hz, Crossbow
MEMS-based IMU-440 inertial sensors sampled at 100 Hz as well as wheel speed
sensors sampled at 100 Hz and an electronic compass sampled at 10 Hz. The sensor
accuracies (1σ) are 0·1 m/s2 for the accelerometers and 0·20/s for the yaw rate sensor.
Moreover, an accurate Differential GPS (DGPS) NovAtel L1L2/RT2 was used as a
reference for performance evaluation.

6.1. Modelling of the relationship between RSS and distance. In the experiment,
the RFID hardware devices, as shown in Figure 5, included one NWR-01 RFID
reader with an antenna, and a number of NWI-01 active RFID tags (the operating fre-
quency band is 417·05∼435·9 MHz). The output frequency of RFID hardware devices
is 1 Hz. The RSS range of a tag is normalised to 0–255, and the maximum measured
distance of tag is 9 m. However, many experiments show that the RSS signal will de-
teriorate when the RFID tags are placed beyond 6 m from the reader, ergo the effective
transmission distance of the RSS signal is 6 m. Therefore to ensure the reliability of the
RSS signal the interval between tags is 6 m in this paper.
In different situations such as in the laboratory, the outdoor test site and a tunnel, we fit

the curve that shows the relationship of RSS with distance between the reader and the
active tag using LSSVM. The RSSs are collected at different distances between the tag
and the reader. In the 0–1·5 m range, the collecting gap is 0·1 m, and in 1·5–9 m range,
the collecting gap is 0·25 m. There are four tags at each collecting location, and the col-
lecting time is five minutes. The average value of RSS is considered as the true RSS
value of this location. For comparison, the propagationmodel-based algorithmutilising
Friis transmission equation is also investigated. The fitting results of the relationship
between RSS and distance in the outdoor test site is shown in Figure 6. The distance es-
timation errors in the tunnel are shown in Figure 7. In Figure 7, the distance estimation

Figure 5. RFID hardware devices.
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errors are compared in different values ofRSS.Themean andStandardDeviation (STD)
of the RSS fitting errors in different situations are shown in Table 1.
It can be seen in Figures 6 and 7 and Table 1 that the LSSVM achieves better per-

formance than the propagation model, which can provide the more accurate distance
information and improve the performance of the subsequent positioning algorithm.
Especially in the tunnel, due to environmental effects such as multipath propagation,
the estimation performance of the propagation model degrades significantly. The
LSSVM achieves clearly better performance since the LSSVM is capable of learning
in specific environments and has strong adaptability for different environments.

6.2. Experimental design. Because of experimental condition limitations, the
simulated tunnels were set in outdoor open space so that the reference trajectory

Figure 6. The fitting results of the relationship in outdoor test site.

Figure 7. The distance estimation errors in tunnel.
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could be obtained by DGPS. The width of the tunnels is set to 6 m. To cover the dif-
ferent shapes of actual tunnels, the shapes of the tunnels are respectively set to straight
shape and comprehensive shape (contains straight line and curvilinear part), as shown
in Figure 8. In order to be easier to understand, the actual coordinates of start points
are adjusted to the coordinate (0, 0) by adding some offsets, i.e., for the straight shape
tunnel the coordinate (0, 0) indicate the actual coordinate (East: 2822, North: −18060),
and all the coordinates in the figure convert to the actual coordinates needed to add the
offset (2822, −18060). For the comprehensive shape tunnel, the offset is (2830, −18020).
This also applies to the following diagram of trajectories.
In Figure 8, the symbol “*” represents the active RFID tags, and tags are placed on

both sides of the tunnel edge. For RFID-EKF and Fusion-EKF, the gap along the dir-
ection of the tunnel between adjacent tags is 6 m. For FUKF, the number of tags is
obviously reduced, as shown in Figure 9.
During the experiments, all sensor data were collected, and the positioning algo-

rithm was evaluated using the logged data.
6.3. Validation of Positioning Performance
6.3.1. Performance of RFID-EKF. To verify and validate the feasibility of RFID

used for vehicle positioning in a tunnel, the RFID-EKF algorithm discussed above is
first evaluated through experiments. Moreover, to evaluate the effect of RFID-EKF,
the multi-lateration method is also investigated for comparison. The multi-lateration
method is the most widely used method for indoor location. Figure 10 shows the sche-
matic of 2-D localisation using multi-lateration.

Table 1. The Mean and Standard deviation of the RSS fitting errors.

Situation

LSSVM Propagation model

Mean. STD Mean STD

Laboratory 0·97 4·07 1·81 8·19
Outdoor test site 0·75 3·13 −1·55 8·28
Tunnel 1·17 5·52 2·37 10·43

Figure 8. The setting shape of the tunnels.
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From Figure 10, if there are i tags (i> = 3) with known coordinates (xi, yi), and the
distances between the reader with unknown coordinates (x, y) and tags are estimated
to be ri, we can obtain:

r21 ¼ x� x21
� �2þ y� y21

� �2
r22 ¼ x� x22

� �2þ y� y22
� �2

:::

r2i ¼ x� x2i
� �2þ y� y2i

� �2

8>>>><
>>>>:

ð38Þ

By solving this equation group, the coordinates of the reader can be calculated.
The reference and estimated vehicle trajectories in a comprehensive shape tunnel test

are shown in Figure 11, the Euclidean distance errors are shown in Figure12.
From Figures 11 and 12 it can be seen that the performance of RFID-EKF is

clearly improved compared with that of multi-lateration. However, from Figure 12,
we can see that the positioning errors are large when the vehicle is outside the

Figure 9. The tag layout for FUKF.

Figure 10. Schematic of multi-lateration method.
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tunnel (0–6 s and 69–76 s). This is because the reader cannot detect enough tags in
these areas, i.e., the number of tags is less than three. Table 2 shows statistics of
Euclidean distance errors when the vehicle is driving in the tunnel (7–68 s).
From Table 2, we can see that when the vehicle is driving in the tunnel, the Root

Mean Square (RMS) value of the Euclidean distance error of RFID-EKF algorithm
is decreased to 5·07 m, i.e., about 48% accuracy improvement over the multi-lateration
method, and the max value of the Euclidean distance error of RFID-EKFalgorithm is
obviously reduced to 9·27 m from the value 20·18 m of multi-lateration. This perform-
ance can meet the positioning requirement of actual driving situations since the GPS is
available outside the tunnel. The further statistics and analysis of RFID-EKF will be
described in the next section.

Figure 11. The vehicle trajectories.

Figure 12. The Euclidean distance errors.
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However, there are some wild values in Figure 12 that can be attributed to the RSS
measurements being severely contaminated with large temporal variations. The
smoothing and filtering ability of EKF can partly compensate the adverse influence
on the positioning performance. Due to the poor correction effect of EKF, a further
improvement may be to rely on the fusion with the in-vehicle sensors and the more
advanced algorithm.

6.3.2. Straight line driving test. For preliminary validation and evaluation of the
performance of the proposed algorithm, a total of nine straight line driving tests were
carried out. The straight line driving test situations include acceleration, deceleration
and uniform motion under different vehicle speeds. For brevity, only one test is shown
here as an example because similar conclusions can be obtained by other tests. A DR-
based algorithm which only uses the in-vehicle sensors to reckon the vehicle’s position
is also investigated for comparison. The reference and estimated vehicle trajectories in
the experiment are shown in Figure 13. Figure 14 illustrates the Euclidean distance
errors of four algorithms. For four positioning algorithms, i.e., RFID-EKF, Fusion-
EKF, FUKF and DR, Table 3 gives their performances.
From Table 3, it is clear that DR has the worst positioning performance, i.e., both

the maximum and RMS values of its Euclidean distance error are the largest. The
reason is that the DR algorithm will accumulate large errors over time due to
factors such as measurement errors and the characteristics of the integration process.
RFID-EKF can achieve better performance than DR. However, the maximum

value of its Euclidean distance error is large. The reason is that the estimation

Table 2. Statistics of Euclidean distance errors (Unit: m).

Algorithm Max RMS

RFID-EKF 9·27 5·07
Multi-lateration 20·28 9·72

Figure 13. Vehicle trajectories.

863RFID/ IN-VEHICLE SENSORS-INTEGRATED POSITIONINGNO. 4

https://doi.org/10.1017/S0373463315000946 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000946


results of the distances between tags and reader contain a lot of noise, and sometimes
the tags can fail.
Among the four algorithms, the Fusion-EKF achieves the optimal accuracy and re-

liability. For example, the RMS value of Euclidean distance error of Fusion-EKF is
reduced to 2·03 m from the value 4·22 m for RFID-EKF. It can be attributed to the
fact that the in-vehicle sensors provide more accurate and richer vehicle state informa-
tion for fusion positioning, which can remarkably improve the system observability
and enhance the positioning reliability. Meanwhile, its positioning frequency is
increased to 10 Hz from the 1 Hz value of RFID, and velocity information can be pro-
vided. Compared to DR, the RMS value of the Euclidean distance error of Fusion-
EKF has about 66% accuracy improvement; this is because the position observation
by RFID is compensated for the accumulated errors.
For the FUKF, its positioning accuracy is clearly improved compared with that of

RFID-EKF and DR. For instance, the RMS value of Euclidean distance error of
FUKF is decreased to 2·20 m, i.e., about 48% accuracy improvement over RFID-
EKF and 64% accuracy improvement over DR. The positioning performance of
FUKF is approximately the same as that of Fusion-EKF. However, the number of

Figure 14. The Euclidean distance errors.

Table 3. The positioning performance of different algorithms.

Algorithm

Statistics of Euclidean
distance errors (Unit: m)

velocity
information

Positioning
frequency
(Unit: Hz)Max RMS

RFID-EKF 7·83 4·22 No 1
Fusion-EKF 2·94 2·03 Yes 10
FUKF 3·41 2·20 Yes 10
DR 7·92 6·04 Yes 10
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tags is reduced to 16 from 42 for Fusion-EKF, and thus the cost is remarkably reduced
with very little sacrifice of accuracy.
The experiment’s results show that the Fusion-EKF and FUKF can achieve better

performance than the RFID-EKF and DR. Due to the in-vehicle sensors, the velocity
and heading angle information can be provided by the algorithms, and the positioning
frequencies of Fusion-EKF and FUKF are increased to 10 Hz from the 1 Hz value of
RFID-EKF.
To achieve balance between positioning accuracy and costs, FUKF is considered to

be the most appropriate algorithm in actual application.
6.3.3. Comprehensive test. For further validaton and evaluation of the perform-

ance of the proposed algorithm, the comprehensive test scenario contains the straight
line situation and the curvilinear situation. In order to cover the different typical
motion patterns of vehicles in a tunnel, i.e., straight line (acceleration or deceleration),
curve, and lane change etc, a total of 21 comprehensive tests have been carried out. The
statistics of the Euclidean distance errors are summarised in Table 4.
From Table 4, it is clear that Fusion-EKFachieves the optimal performance, and the

positioning accuracy of FUKF is approximately the same as that of Fusion-EKF with
fewer costs. As an example, the vehicle trajectories in a test are shown in Figure 15.
FromTable4andFigure 15, similarconclusions canbeobtainedas the straight line test.

Due to the improved vehicle motion model, Fusion-EKF and FUKF can adapt to the
comprehensive shape tunnel containing both a straight line part and curvilinear part.
The experiments results show that the FUKF algorithm can achieve better positioning
performance than the RFID-EKF and DR. Although the positioning accuracy of
FUKF is slightly lower than Fusion-EKF, the cost of FUKF is remarkably reduced
over Fusion-EKF.
The low-cost GPS is the most widely used vehicle positioning sensor with accuracies

of (1σ) of about 3 m for position. From Table 4, we can see that the positioning accur-
acy of FUKF is approximately the same as that of low-cost GPS with higher frequency.
Therefore, the positioning performance of FUKF can meet the requirement of vehicle
positioning in a tunnel when low-cost GPS is unavailable.
To further evaluate the performance of vehicle speed estimation, Figure 16 shows

that the comparison of vehicle speed errors between the raw sensor data measured

Table 4. Statistics of Euclidean Distance Errors in comprehensive test (Unit:m).

Vehicle motion pattern

RFID-EKF Fusion-EKF FUKF DR

Max. RMS Max. RMS Max. RMS Max. RMS

Acceleration in straight line with constant
angular velocity in curve

9·27 4·07 2·91 1·77 2·99 1·91 11·70 6·46

Deceleration in straight line with constant
angular velocity in curve

9·51 4·13 3·03 2·09 3·26 2·47 11·97 6·15

Constant speed in straight line with con-
stant angular velocity in curve

8·63 4·00 2·92 1·74 2·93 2·01 10·62 6·62

Acceleration in straight line and variable
angular velocity in curve

11·01 5·27 3·62 2·82 3·91 2·84 11·76 6·48

Deceleration in straight line with variable
angular velocity in curve

10·78 5·58 4·04 2·97 4·05 3·12 11·49 6·52

Lane change in straight line 11·13 5·63 4·01 3·05 4·42 3·36 11·27 6·14
Lane change in curve 10·89 5·12 3·99 3·12 4·07 3·31 11·78 6·16
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by the wheel speed sensors and the estimation results from the proposed algorithm. The
speedmeasured byDGPSwas used as the true value. It can be seen in Figure 16, through
the filtering process of UKF, that the speed accuracy can be significantly improved over
the measured results of wheel sensors.
In summary, taking into consideration the positioning performance and costs,

FUKF is the most feasible method for practical application due to its low cost and
high accuracy.

7. CONCLUSIONS. To realise accurate positioning for vehicles in a tunnel, this
paper has presented a RFID/ in-vehicle sensors-integrated vehicle positioning strategy.
The strategy employs a two-step approach, namely, the calculation of the distances

Figure 15. The reference and estimated vehicle trajectories in a comprehensive test.

Figure 16. The speed errors of raw sensor data and estimated results.
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between the RFID tags and the reader based on RSS, and then the global fusion esti-
mation of vehicle position.
In the proposed strategy, both a distance estimation algorithm and a global fusion

algorithm have been developed. First, the LSSVM algorithm is developed to obtain
distance between RFID tag and reader based on RSS, which can provide accurate ob-
servation data for the subsequent global fusion. Further, the federated UKFalgorithm
has been proposed to realise the global fusion. To derive the global fusion algorithm,
RFID-EKF and Fusion-EKF algorithm are designed. In the federated UKF algo-
rithm, both positioning performance and costs are taken into consideration. The
decentralised federated filter is adopted to reduce the number of tags, and UKF is
employed to design the local filter due to its better ability to deal with nonlinear pro-
blems than EKF. For the proposed strategy, the effectiveness of both its distance esti-
mation and global fusion algorithms has been comprehensively verified. During GPS
outages in a tunnel, the proposed strategy has shown more obvious advantages and
achieved more accurate and reliable performance compared with other methods.
The proposed vehicle positioning algorithms for use in a tunnel can equally be

adapted to other GPS-denied environments such as urban areas. It should be noted
that the experiments were only conducted in an outdoor environment rather than
real enclosed environments due to the limitation of our experimental conditions. In
enclosed environments, the multipath phenomenon may seriously affect the reliability
of RFID, for example, the RSS measurements are severely contaminated with large
temporal variation. Meanwhile, the low output frequency of RFID and the dynamic
characteristic may affect sensor fusion severely. Future work will focus on these pro-
blems, including how to deal with out-dated information and how to meet the require-
ments of the wide driving-manoeuvre range of vehicle operation in the actual tunnel
environments, and how to fuse other information to further enhance performance.
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