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COMPUTATIONAL ASPECTS OF CLASSIFYING SINGULARITIES
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Abstract

A Maple package which performs the symbolic algebra central to
problems in local singularity theory is described. This is a gener-
alisation of previous projects, which dealt only with problems in
elementary catastrophe theory. Applications to specific problems are
described, and a survey given of the powerful technigues from sin-
gularity theory that are used by the package. A description of the
underlying algorithm is given, and some of the more important com-
putational aspects discussed. The package, user manual and instal-
lation instructions are available in the appendices to this article.

1. Introduction

Calculations that arise in local singularity theory lend themselves naturally to symboli
algebra methods. In this article we describe a package which deals with problems in clas
fication and unfolding theory for the standard equivalence relations encountered in sing
larity theory. The package, call@ttansversal, consists of a collection of procedures
which run under the symbolic algebra systhftaple [7].

We refer to the survey article of Wall [25] and the book of Martinet [17] for a compre-
hensive discussion of the singularity theory used in this article. The more recent advanc
in determinacy and classification theory are discussed in the articles by Bruce, Kirk, c
Plessis and Wall4, 6]. The techniques developed in these provide a very efficient, wide:
ranging classification scheme involving algebraic calculations which may be reduced
finite-dimensional symbolic problems. However, the calculations can become very inte
sive and repetitive, which is where the need for a specialist computer package arises.

The applications we have in mind require the calculation of certain ‘tangent spaces’ in
jet-space. This calculation involves the manipulation of truncated polynomial vectors ar
is therefore really just a problem in linear algebra that can be handled by a computer. F
example, in classification problems the calculation can be reduced to the enumeration
the orbits of the jet-group. In this situation we are considering Lie groups acting on smoo
manifolds and have powerful techniques suchviagher’'s lemmag25, Lemma 1.1] and
complete transversalgl] at our disposal. (In fact, we are dealing with algebraic groups
overR or C acting algebraically on an affine space and stronger results can be establish
Although of theoretical importance, we will not need such results in our present appl
cations.) It turns out that all of the information that we require can be obtained from
calculation of the tangent spaces to the orbits of the jet-group in the jet-space. Calculatic
in unfolding theory can be reduced to similar symbolic manipulations. We do not have
Lie group action in this case (we only have the notion of ‘extended equivalence’ at th
germ level) but unfolding theory allows us to work with the associated ‘extended tange!
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Computational aspects of classifying singularities

spaces’. Once we have concluded that a given germ is finitely determined (using the abc
methods) we may perform unfolding calculations in a suitable jet-space. At the jet level, tf
calculation of these ‘extended tangent spaces’ involves identical symbolic manipulatiol
to those required in classification calculations.

The ‘tangent spaces’ are given by the action of a space of vector fiedds given germ
or jet. For example, if. is the Lie algebra of a jet-group then the tangent space to the orbi
through the jetf is given by the natural action of the Lie algebra and is denoted by.
We will use ‘tangent space’ as a general term to refer to such sgacgs(even though
they are not necessarily tangent to some submanifold). The terminology is used at both'
jet and the germ levels. (This notation was established in the more recent4yéilag a
preferred alternative to the ad-hoc notatiog- f used previously.) The main feature of our
package is its ability to calculate and manipulate the spaegs Our aim was to produce a
package capable of performing the calculations over a wide range of equivalence relatio
In particular, it must apply to the cases whérea subgroup ofK defining the equivalence
relation, is one of the standard Mather groups.L, 4, C or X [25]; or, more generally,
one of Damon’s geometric subgrou® for which a set of generators of the Lie algebra
L§ can be written down explicitly.

Let us consider one of the important research areas in singularity theory, namely t
case ofA-equivalence. Not only is this a natural generalisationfeequivalence, but
it has significant applications in geometry and related areas such as computer vision. |
example, in such applications one often wants to consider the simultaneous contact betw
a submanifold and a whole family of model submanifolds, typically families of lines, planes
circles, spheres, and so forth. In these situations we must workAvigquivalence rather
than contact() equivalence, the difference essentially being that contact between neart
fibres of the map is preserved undérequivalence, wheregk -equivalence relates only to
the contact class associated to one fibre. For a recent survey of geometrical application:
singularity theory we refer to the article of Bru& and the extensive bibliography therein.
A real obstruction in obtainingt-classifications is the size of the computations involved in
all but the simplest of examples. One only has to refer to the existing papers dealing wi
A-classification to see this, for example, those of Mond, du Plessis and RI€g260[23].
For such applications any useful package must be able to caldulajein a given jet-
space for a given jef whereL = LA (for applications of Mather’s lemma, calculation
of A-invariants, moduli detection), = L1 with the possible inclusion of a nilpotent
part (for determinacy and complete transversal calculations in classification problems); a
L = LA, (for unfolding calculations). The package achieves all of these requirement
and we cite its success it-classifications as its single most important application. For
example, the aforementioned results of Mond and Rieger were all reproduced in a mattel
hours usingrransversal. Recent applications of Transversal [5,12,13,14,15,26]
represent some of the most extensive classifications carried out to date. The package
been extended to deal with weighted homogeneous filtrations, multigerms and cases wt
the equivalencg derives from a set of liftable or lowerable vector fields (the latter providing
new results in the theory of caustics and envelopes). The package and all its variants
described, together with detailed examples and discussions of the underlying algorithr
in the Transversal User Manual [16].

The remainder of this article is organised as follows. In Secispecific applications
of our package to singularity theory are described and the mathematical background
viewed. We give an overview of the package in SecBoithis begins with a brief survey
of previous applications of computer techniques to singularity theory. We then describe t
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basic functionality of our package and the underlying algorithm. Some of the more technic
aspects of the algorithm are discussed separately in the final part of this section. Finally,
Sectiord we give several examples involvimgg-classification and discuss how the package
deals with the calculations.

Appendix Aincludes a README file which gives detailed installation instructions for
the package, and a comprehensive user mat6al4ppendix Bprovides a link that allows
one to download the package itself, in a version that runs uddgile V, Releases 1-4.
Appendix Cprovides the link to thélaple V, Relase 5, version. Since the package is a
(somewhat large) collection Maple procedures (stored in text format) it should run under
all versions ofMaple (for example, Unix, PC, Mac). In addition, the Unix version comes
with a simple shell script which installs the package &4aple library (setting up paths,
and so on), thus making matters easier.

2. Applications to singularity theory

We discuss how our package may be used to solve problems in singularity theory ar
for completeness, review the mathematical techniques which are required. Seatiibn
describe how one actually implements these techniques in the package.

The notation used throughout this article is standard, based on (some of) that develoy
in [17,25]. In addition, we adopt the more systematic notation used, i) and clarify the
following. The theory applies over both the real and complex numbersi-avitl denote
eitherR or C. (In addition, the classifications in these cases hardly differ. Minor simplifi-
cations occur in th€ case due to the collapsing of orbits, most commonly resulting in the
removal of at- sign in the normal form.) The local ring of differentiable/analytic function-
germs~", 0 — Fis denoted b, and its maximal ideal by,,. The corresponding module
of map-germ$", 0 — F? is denote (n, p); those with zero target are therefore given by
M, &(n, p). We define the standakdh jet-space* (n, p) to beM,, & (n, p)/ MEFLE(n, p).

This is identified with the space pftuples of polynomials in indeterminates ovét which
vanish at O F", truncated to degrele a germf being identified with its Taylor expan-
sion to degreé. Unless otherwise stated, will denote a subgroup of the contact group
K, usually one of the standard Mather groups.L, +, C or X, but in principle one of
Damon’s geometric subgroups. We gt be the normal subgroup gf consisting of those
germs whosgé-jet is equal to that of the identity. The standatd jet-groupJ*§, is defined

to be the quotient groug/ 4. This is a Lie group and acts on the affine spdée:, p).
We will abbreviate the term ‘complete transversal’ to ‘CT’ from now on.

2.1. Classification theory: complete transversals and determinacy

In classification theory we seek to list orbits of finitely determined gefrasm,, &€ (n, p)
under the action of the group choosing suitable normal forms as representatives. Classi
fication is done inductively at the jet-level, classifying in turn@lh 1)-jets with a given
k-jet until determined jets result (or pre-selected upper bounds on moduli or codimensic
are reached). The method of ‘complete transversals’ provides an efficient means of carryi
out this procedure. We recall some of the main results frorg][4,

The groupg is said to bget-closedif for eachr > 1, J"§ is a closed subgroup of X .

If g is jet-closed it follows tha¥* (L§) C L(J*4) forall s. In many cases we have equality.

If a jet-closed grougy satisfies/*(LG) = L(J*§) for all s then we call itfibrant. We find
thatR, £, 4, C and.X are all jet-closed and fibrant. Further examples are given via the
following concept. Let# be a subgroup of; then# is said to bestrongly closedn § if
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Hs = G for somes (equivalentlyg, c #), andJ*# is closed inJ*4. Now, a strongly
closed subgrougt of a jet-closed grouy is itself jet-closed. If, in additiong is fibrant
then so is#.

The map

LJYK) = gl(n,F) @ gl(p,F) — gl(n + p, F)

(M,Nm(’g’ ]‘3,)

wheregl(n, F) denotes the Lie algebra of the general linear grGup(n, F), is a faithful
representation of the Lie algebfaJ1.x) on F**+7. Suppose thak (J/14) acts nilpotently

on F"*7 under this representation. This happens if the source and target pants &)

are spanned bwgtrictly upper (or lower) triangular matrices, for example. Generally the
requirement is equivalent td'g being unipotent. In this situation the following sum is
finite (see [6]) and we may define thépotent filtrationof M, € (n, p),

My s(§) =Y (L) - (M,En. p) + M€, p).

izs

forintegers- > 1 ands > 0. Observe that this is finer than the standard filtration by degree
Forr = 0 we defineMp o($) to be M, € (n, p) for consistency. The associatéd s)-
jet-space/"*(n, p) is then defined to ba(,, & (n, p)/ M, (). This is a refinement of the
standard jet-spac (n, p) = M, &(n, p)/ M. 1E(n, p). Thus,J"O(n, p) is J"1(n, p),

and as increased”* (n, p) contains more of the homogeneous terms of degyrastil for
some finites = k, where we find that/"-*- (n, p) is the whole ofJ" (n, p) (k. exists due

to nilpotency). Provided that we work with these refined jet-spaces, we have the followin
complete transversal result.

Theorem 2.1. [4, Theorem 2.9]et g be a fibrant subgroup ofC such thatZ(J14) acts
nilpotently onF"*7. Let f be a smooth gerr®*, 0 — F”,0 and letT be a subspace of
M5 () with

Mr,s(g’) cT+ Lg’ ! f + Mi‘,s+l(9>)-

Then any gerng : F*',0 — F”,0withg — f € M, (%) is g-equivalent to a germ of the
form f +r+ ¢ withr € T andgp € M, ;11(9).

This is really just a question in the standard jet-sp&oe:, p), provided that we order
the homogeneous terms of degreas dictated by, (). The latter can be achieved by
using a system of weights, see SecttoB. The spaces and f + T are both referred to as a
complete transvers4CT). One of the main features of the package is to calculate a basis fc
T, takingL = J"(L$). In practice, this is a process which has to be carried out numerou
times and, as the classification proceeds, soon becomes computationally infeasible with
the help of a computer.

Example 2.2. An example should clarify the discussion above. Consider the classificatio
of map-germs2, 0 — F2, 0 under-equivalence. Letx, y) denote coordinates in the
source, andu, v) those in the target. Recall that; denotes the subgroup @f consisting

of those germs whose 1-jet is the identity, and defirte be the unipotent subgroup &f
having nilpotent Lie algebra

L=LA1 & F{xd/0y} & F{vd/ou}.
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Table 1: Generators for the homogeneous pait'd{4).

(r, s) Homogeneous part  Weight

(1,0 {0}

11 {(0, )} 1
1,2 {(3,0), (0, x)} 2
(1,3)0r (2,00 {(x,0)} 3
(2,1) {(0, y9)} 2
(2,2 {(»2,0), (0, xy)} 3
(2.3) {(xy, 0), (0, x?)} 4
(2,4 0r (3,00 {(x20) 5

This acts on a gernff = (f1, f2) by
L. f =M3f/ox,0f/dy) + f*(MB){e1, ea} + F{xdf/dy, foe1),

wheree ande, are the canonical basis vector§th Each(r, s)-jet-space is justarefinement
of the standard-jet-space and a convenient way to describe these spaces is to list tl
‘homogeneous’ generators for each of the spafeq2, 2); see Tablel. The ‘weight’
column demonstrates the use of weights to partition the monomial vectors intortheir
levels as described in Sectién3; herea = (2,1) andB = (—1,0). This example is
discussed further in Sectigh

Example 2.3. The above results incorporate the notiosiwbng equivalence. For example,
two germs are defined to [srongly A-equivalentif they are41-equivalent; that is, the
diffeomorphism defining the equivalence has linear part the identity. Here we cag take
to be the unipotent groughi. Thus, M, (§) = M. 1&(n, p) for all s > 0 and the CT
theorem applies to the standard jet-spagé@:, p). Given a germf : F*,0 — FP,0,
suppose thar is a vector subspace of the space of homogeneous jets of degréesuch
that

ML, p) € T 4 LAy - f + MEF28(n, p).

Then every gernF with F — f € M*T1€(n, p) is A1-equivalent to a germ of the form
fH+t+owitht € T andp € ME+2€(n, p). Thatis, if j*F = j* f thenj* 1 F is JxT1A;-
equivalent to a jet of the fornit+1 £ 4 ¢, for somer € T. This provides am-classification
procedure with respect to familiar polynomial degree. However, in many classificatior
we need to use larger unipotent subgroups tharo obtain an efficient4-classification
procedure, at least during the early stages of the classification. We therefore have to clas
in finer steps, using the refined jet-spadés(n, p), as in Example.2.

We now turn to the determinacy question. Algebraic criteria which characterise deternr
nacy were found in [6]. These results also provide excellent determinacy estimates for
in practical situations. A version of the results suited to our needs is as follows. We she
restrict ourselves here to the case whgrie one of the standard Mather groups, to avoid
the extra technicalities, though the determinacy results do apply to a larger class of grou
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Theorem 2.4. [6, Theorem 2.1} et 4 be one ofR, £, A, C or X and let# be a strongly
closed subgroup of, such thatL(J1#) acts nilpotently orF"*7. Then a smooth germ
f:F",0— FP, 0isk-#-determined if and only if

MHrem, pyc LH - f.

Although the results are stated in terms of germs, they may be reduced to questic
involving jets. We will show that establishing the degree of determinacy of a germ is
special case of calculating CTs. When the tangent spac¢ is a module oveg, (for
example, wherg = R, C or X) this follows from a simple application dflakayama’s
lemmasee [17, p. 131] an®p, p. 489]. We find that the germ#sg-determined if, when
considered as &jet, the CT of degreé + 1 is empty. For the remaining cases of interest,
whereL - f is a module oveg, via f*, we apply a result of du Plessi§,[Lemma 2.6].
Probably the most important and informative application is wi§ete 4, so we take this
as an example. Applying du Plessis’ result to the above determinacy theorem gives t
following theorem.

Theorem 2.5. Using the notation of Theoregh4, f is k- F#-determined if and only if
M, p) C LI - f + MTHH(Mp)E(n, p) + MPT2E(n, p).

Thus, f is k-A-determined if the successive transversals from delgreel to degree
2k 4+ 1 are empty. (Of course, the termsﬂt{f*lf*(Mp)é’(n, p) can be used to reduce the
upper limit from Z + 1. This is extremely important in applications, but the revised upper
limit that one obtains depends on the particular g¢rin

The spaces - f used in determinacy calculations are precisely those used in CT calculz
tions. We therefore obtain a very efficient classification process: if the determinacy criteric
fails due to a non-empty transversal we simply continue the classification, the transver:
providing us with a list of (possible) new branches in the classification tree.

Example 2.6. We reconsider Examples2 and2.3. For the former we takéf in Theo-
rems2.4and2.5to be the unipotent groug defined in Example.2. For strong deter-
minacy considered in Exampk3 we take# to be A1. As a further example, consider
R-determinacy of function-germs. The condition for strong determinacy is given by takin
J¢ to beR1, and can be rewritten in the familiar form found in texts on elementary catas
trophe theory, such as that by Poston and Stewdrtp. 134 and p. 159], as follows. The
germf is k-R1-determined if and only if

MFYC LRy - f = M2(3f/0x1, ..., 0f/0xy).

This provides a practical criterion foR-determinacy.

2.2. Working with jet-groups: Mather’s lemma and the detection of moduli

The method of CTs gives a complete set of representatives fofthkg-orbits over a
givenk-jet f. This set is given as an affine space/ifitl(n, p) through f and we wish
to reduce it further, preferably to a finite set of representatives. This can often be achiev
using ‘scaling’ coordinate changes in the source and target, a simple problem involvir
linear algebra. However, in cases where moduli are present, scaling is not possible, ¢
we need a criterion to detect such moduli. Alternatively, the family given by the affine
space may bé&-trivial, collapsing to give one normal forny,. The spacd. used in CT
calculations is generally smaller than the tangent space to the whole bfowgw it is not

https://doi.org/10.1112/51461157000000280 Published online by C@dbdge University Press


https://doi.org/10.1112/S1461157000000280

Computational aspects of classifying singularities

surprising that a CT may contain redundant terms. (In general we cannat takiee the
whole of L§.)

In cases where further simplification is necessary we have to work with the whole grot
g, and a result specifically intended to deal with such questioMaiber’'s lemmg25,
Lemma 1.1]. We state it in our special case of interest, where a jet-gfbgipacts on
Jk(n, p).

Lemma 2.7. Let X be a connected submanifold #f (n, p). ThenX is contained in a
single orbit of /%4 if and only if

(i) for each jetx € X, the tangent spacg, X c T, (J*4 - x), and
(i) dim T, (J*g - x) is constant for all € X.

The tangent space to the orbit througls given by the action of the Lie algebra thus,
T (JkG - x) = L(J*g) - x. The two conditions of Mather's lemma are extremely difficult to
check using hand calculations but are easily dealt with by our package, faking(J*4).
Verifying the inclusion condition (i) requires little computational overhead once a basis fo
the tangent space has been calculated. Note that the jet passed to the package con
arbitrary parameters and represents a whole affine spat&(in p). Our algorithm will
provide a set of exceptional values where the dimension of the tangent space may droy
the inclusion condition (i) fails. These exceptional values are stored for examination by tt
user after the algorithm has terminated; see Se&i8n

Arelated issue is the detection of moduli. The CT process may produce an entire fami
of jets which are all distinct up tg-equivalence. To prove that moduli are indeed present
we use the following straightforward criterion.

Lemma 2.8. Let W be a smooth constructible subset of the jet-spate:, p) and for
w € W define

d(w) = dim ((Tw(J"g, cw) + T W)/ To(J*G - w)).

Then, given an integer > 1, if the sef w € W : d(w) < r — 1} is a constructible subset
of W of smaller dimension, then every geyhwith j* f € W is of g-modalityr or greater.

Again, this is an extremely difficult condition to check using hand calculations. It may
be verified easily by our package, takihg= L(J*§).

2.3. Unfolding theory

LetF : F' x F*,0 — F? x F*, 0 defined by(x, u) — (f(x,u), u) be an unfolding
of fo € M, &, p). We recall the following fundamental result from unfolding theory.
(The case wherg is one of the standard Mather groups is discussed inZ5]; for the
generalisation to geometric subgroupsrofsee [9].)

Theorem 2.9. F is g-versal if and only if
LG - fo+F{F1, ..., ) = €@, p),
where the initial speedg; € &€(n, p) of F are defined by
F;(x) = 8f/du;(x,0), for i=1,...,s.
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Corollary 2.10. If g1, ..., gs € &(n, p) form anF-spanning set for the normal space to
LG - foin E(n, p) thenF (x,u) = (f(x) + >_i_; uigi(x), u) is a versal unfolding off,
whereu = (uq, ..., us).

Thus, to calculate a versal unfolding fif we need to determine thg. As stated, this is
a problem at the germ level. However fif is k-G-determined then by the characterisation
of determinacy given in [6] (see [6, Theorem 1.9] foa standard Mather group, and [6,
Theorems 4.5 and 4.6] for more general subgrous pive have M+1&(n, p) C LG fo.
But the latter is a subset @fg, - fo and it therefore suffices to calculate the normal space
to LG, - foin J*(n, p). This is a simple application of the package, taking= J*(L§,).
(Note that in practical situations one usually establighdsterminacy offp by applying a
determinacy result such as Theor@m. In this case the above inclusigtf 1€ (n, p)
LG - fo follows directly from the determinacy criterion anyway.)

3. Package overview

3.1. Survey of existing computer packages

We begin this section by describing several existing computer packages which are aim
at singularity theory. The packages related most closely to ours a@NREACTpackage
developed by Cowell and Wrigh8]; the OCRMirogram written by Olsen, Carter and
Rockwood (published in the book by Poston and Stewvzdr, [and corrected and enhanced
by Millington [18]); and theTGf program written by Ratcliffe and referred to i27]. The
first two deal with the case of function-germs ungeequivalence (an area which is often
called ‘elementary catastrophe theory’). The program developed by Ratcliffe is notable
that it performs similar calculations fransversal ~ and was written, independently, at
about the same time th@tansversal  was written. The original version was restricted
to A-equivalence of map-germs from surfaces to 3-space and was used successt@lly in [
Both TGf andOCRMuffered from being written in a non-symbolic language (respectively,
Pascal andaversion oALGOL). The final version giGf (1994) was rewritten iMaple
and the restriction to map-germs from surfaces to 3-space was lifted. All three prograr
are no longer being developed. The major improvemérdassversal  makes on these
packages include an extensive broadening of the types of problems considered (for exam
a greater variety of equivalence relations; extensions to multigerms and lowerable fielc
together with the implementation of the latest classification technigués [lts success in
several important projects (cited in the introduction) is an indication of these claims.

We should add that thE ATFACTpackage performs a lot more than determinacy and
unfolding calculations. It contains a ‘recognition’ algorithm which identifies if a given
function-germ belongs to one of those on Arnold’s list of low-modality singularitigs [
and a ‘reduction’ algorithm which solves the ‘mapping-problem’ for unfoldirg]s The
‘recognition’ algorithm calculates the Boardman symbol of the singularity (using Grébne
basis methods) and uses the fact that this identifies the low-modality singularities. O
needs to know Arnold’s classification in advance to exploit such observations, which
why it is necessary to obtain similar classifications of map-germs under the other imports
equivalence relations (in particular, tieand X cases). On a similar theme, we note the
‘recognition’ program of Tari24]. This implements a version of Arnold’s ‘determinator’
algorithm [1] usingMaple.

Other packages aimed at singularity theory incl8degular andMacaulay [11,2],
though the latter deals more with applications in algebraic geometry. Both represent €
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tensive ongoing projects. Each has its own kernel, which is purpose-written to explc
techniques from computational commutative algebra, and its own user-interface and pi
gramming language. They have numerous applications in singularity theory, algebraic ¢
ometry and commutative algebra, but are not suited to the specialist area of classificati
problems discussed in this article, especially in the casé-ofassification.

3.2. Basic functionality and underlying algorithm

The main principle behind the algorithm is to treat the spdceg as vector subspaces
of the jet-space. Once a basis has been found, we can answer all of the questions raise
the theory. For example, given some subgrgugf X, whose action defines the required
equivalence relation, the package can:

(i) calculate complete transversals;

(ii) check determinacy criteria;
(iii) calculate tangent spaces;
(iv) calculate codimension and versal unfoldings;
(v) check the hypotheses of Mather’s lemma;
(vi) detect the presence of moduli.

Note that all of these calculations may be reduced to finite-dimensional problems with
some jet-space. Cases (i), (v) and (vi) deal implicitly with calculations in a jet-space. Fc
(i) we appeal to results such as Nakayama'’s lemma or The@rén®rovided that the germ
in question is finitely determined, calculations (iii) and (iv) may also be performed in ar
appropriate jet-space (for example, one of degree equal to the order of determinacy); ¢
Section2.3.

For (i) and (ii) we would typically perform the calculations using some unipotent sub.
group ofg; for (v) and (vi) we work withg and set. = L(J*4), and similarly for (iii) and
(iv), except that the ‘extended tangent space: J*(Lg.) may be required instead. Anim-
portant consideration therefore is how the user should specify the variety of different typ
of spaced. which are needed in such calculations. The approach we adopt is to decompc
L into the direct sum of two components: ‘source’ and ‘target’. The source component
defined to be arg,,-module generated by a set of user-specified vector fields. The targe
component is more rigid, being limited to the and C types of equivalence at present.
Several global ‘setup’ variables are used to specify features such as the ‘type’ of equi\
lence, the generating set of ‘source’ vector fields, the powers to which the maximal idee
are to be raised in the defining equation fgrand extra ‘nilpotent’ terms. These details
are discussed further below under the section ‘Initialisation Step’; see also the Transver
User Manual [16, Chapter 4, Section 4.2]. The scheme clearly has its limitations. Howeve
a reasonable compromise is reached, in that virtually every case which comes up in apj
cations is covered and, from a practical viewpoint, it is straightforward for the user to appl
the setup procedure.

Assuming that the formalities of how the user actually specifies the dphewe been
dealt with, it is a simple matter to calculate a spanning seLfer reducing this to a basis
is the major computational problem. Elements of the jet-space correspond to truncat
polynomial vectors over the field of real or complex numbers. By extracting monomis
coefficients we can treat jets as familiar coordinate vectors and reduce the spanning se
a basis using Gaussian elimination. A major concern with this approach is the size of tl
matrices involved. However, these matrices are highly sparse and, as numerous exam
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demonstrate, can be reduced relatively quickly. In addition, there are several features of
problem which we may exploit to reduce the computational overhead at the eliminatic
stage. It is wasteful to extract coefficient vectors (which are generally of a high dimensiol
and create a matrix. Instead, we apply the elimination directly to the polynomial vector:
manipulating them as symbolic expressions. This technique will be ¢atleded Gaussian
elimination. The symmetry present in the ‘target’ tangent spaces (for example Lyqoes

C) is exploited at the elimination stage also. We will discuss these and other technical isst
in Section3.3.

Our concerns regarding large coefficient matrices were also noté@&jingnd Grébner
basis methods were used in the underlying algorithi@ATFACT. Although successful,
this approach cannot generaliseAecalculations because the algebraic structure of the
A-tangent space is that of a mixed module. That one has to treat-thegent space as
a vector space and work with the associated large matrices appears to be an unavoid:
problem. The utility of our approach is ultimately measured by its success in dealing wit
important problems.

The stages of the algorithm are summarised below.

Initialisation step. Firstly, L is specified as one of five broad ‘types’, which we will
denote byR, £, C, A and.X. The required ‘type’ is set by a global variable, which may
take the string constant values R, L, C, A and K. For ‘tyge’ L is defined to act on a
given jetf by

Lf=M}t'll<‘§lf77‘§éf>a

where the exponemt is given by a user-defined integer variable andtrere user-defined
vector fields. Thé; are defined via a procedure which talfeas a parameter and returns the
vectorss; - f; the procedure is pointed to by another global variable and is called at run-time
Several procedures are provided: the standaghse, wheré; = 9/9dx;, is covered, as are
cases wheré. is the space of vector fields tangent to a discriminant variety. Thus, ‘type
R, with & = 9/dx; andry = 0, 1 and 2, defines the tangent spaée®,, LR and LR1,
respectively. For ‘type:£, L is defined to act by

L ' f = f*(‘M;z){els ce ep}a

where ther; are the canonical basis vectorghifi andr, is a user-defined integer variable.
For ‘type’ € the action is defined by

L f = M2 (Mp)Em. p).

As one would expect, for ‘typest and.X, L- f is defined as the sum of the spaces defined
by ‘types’ R, £ andR, C, respectively.

This approach allows one to define a wide range of tangent spaees! covers virtually
everything which arises in practice. For complete transversal and determinacy techniqt
we often work with a unipotent subgroup & and the corresponding nilpotent tangent
spaceL is given by the sum of a ‘standard’ tangent space and a linear space spanned b
set of ‘extra’ vectors. For example, in the case the spack is given by the sum of. A1
and a space spanned by ‘extra’ vectors belongingAo\ L.1; see f, 6]. Further global
variables specify these ‘extra’ vectors, and the package can be used in such situations.

Having initialised the calculation, we now call the appropriate functions in the package
The first three stages of the algorithm form the major part of the calculation, and ai
performed by one function which takes a jeand jet-space degréeas parameters.
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Step 1. For the given jetf, jet-space degreke and tangent spack, calculateL - f in
J¥(n, p). Specifically, calculate a spanning set for f as a vector subspace &f (n, p).

The algorithm constructs this set using the definitiooff given above for each ‘type’,
and essentially follows the same procedure as that used if one were doing the calculation
hand. For example, in a standaRiclassification, using the complete transversal method
with L = LR; say, we calculatd. - f = m,?(af/axl, ..., 0f/9x,) by first obtaining

the vectors which generafe- f as ang,-module,{df/dx;}. These are multiplied by all
monomials of degree 2 and higher in the source variables until we obtain jets whose init
degree is greater than the jet-space degr@@e spacd* (n, p) is identified with the space

of p-tuples of polynomials im indeterminates ove¥, truncated to degrele The spanning

set is therefore given as a set of such polynomial vectors.

Step 2. The spanning set calculated in Step 1 is reduced to echelon form using Gaussi
elimination. By ordering the monomial vectors . . . x,/'e; € J*(n, p), eachjetin/*(n, p)
corresponds to a coordinate vector offevia extraction of coefficients. The spanning set
obtained in Step 1 then corresponds to the matrix whose rows consists of these coeffici
vectors. Reducing this matrix using Gaussian elimination gives a canonical basis for tl
tangent space. We actually use the technique of indexed Gaussian elimination, mentiot
above and discussed in Secti®s3.

Step 3. AbasisC for the complementary (normal) space to the tangent space is calculate
That is, the independent set obtained in Step 2 is extended to one of full rakkinp) by

the addition of monomial vectors. In the, andA cases (for example) this gives the terms
required in a versal unfolding and the corresponding codimension (for determined jets).
the A1 complete transversal case (for example) the monomial jet&(m, p) are ordered

so that those of degréecorrespond to the latter columns of the matrix. The monomial
vectors inC of degreét will then form a basis for a complete transversal. This process car
be generalised to deal with complete transversal calculations using a unipotent sypgrou
and corresponding nilpotent filtration; see SectBad.

Step 4. Calculating a basis for the tangent space is the main computational overhead
the algorithm. During this procedure all by-products of the reduction process which ma
be of further use (such as the bases for the tangent and normal spaces, invariants suc
the dimension and codimension of these spaces) are stored as global variables for ac
by other routines. Step 4 deals with output and manipulation of these results. A number
procedures are associated with Step 4 and perform functions such as displaying the ba
displaying a basis for a complete transversal, and testing whether a given set of vect
is independent to the tangent space (such questions arise in checking the hypothese
Mather's Lemma and in moduli detection). The computational overhead of such procedur
is negligible compared to that involved in Steps 1 — 3.

3.3. Technical and computational considerations

We will now describe some of the more important computational issues behind th
algorithm. Further details on the actual program code and a presentation of parts of t
algorithm in the form of pseudo code were given 15]. In addition, we remark that the
Maple source code is fully documented.
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3.3.1. Symbolic pivots: fraction-free Gaussian elimination
Writing the package in a symbolic language suctiMaple allows great flexibility. One
notable advantage is that parameters (such as moduli) may be present in the jets we w
with, thus allowing us to perform calculations for whole families. The matrix created in
Step 2 will contain polynomial entries, and we must take this into account during th
Gaussian elimination routine. We choose numeric pivotal elements (in this context meani
‘constant polynomials’) where possible, but when we are forced to choose a non-const:
polynomial pivotal elementodivision is performed on the chosen row to reduce the pivot to
unity. Division is still performed (working in the field of rational functions) when using the
pivot to reduce the rest of the column to zero. This is in contrast to standard ‘fraction-fre
Gaussian elimination [10, p. 82] where the pivot and the term it is to eliminate are multiplie
up, and no division occurs at all. Our method provides a valid elimination algorithm fo
jets involving parameters without the inconvenience of standard fraction-free eliminatio
where the matrix entries rapidly blow-up into large expressions. The elimination only breal
down for certain values of the parameters for which a pivot vanishes, but the conditior
determining this are retained. The list of all non-numeric pivots is stored for global acce:
after the algorithm terminates, and may be examined by a procedure associated with Ste
The non-numeric pivots will, in general, be rational functions in the parameters, th
vanishing of their numerators defining a finite set of proper algebraic varieties within th
parameter space. The elimination applies to members of the family corresponding to valt
of the parameters not lying on these varieties, and the algorithm therefore determines
generic behaviour by default. To investigate the exceptional behaviour we must inspe
each of the non-numeric pivots in turn, obtaining conditions on the parameters for whic
the elimination breaks down. In many cases (at least those with one or two parameters)
solutions can be determined explicitly using one ofltegple factor or solver procedures,
the solutions being substituted back into the family and the calculation repeated. Tt
process detects phenomena such as exceptional values in modular families, or cases w
applications of Mather’s lemma break down thus obstructing triviality within the family but
providing a finite list of normal forms.

3.3.2. Exploiting sparsity: indexed Gaussian elimination
Working with a matrix of coefficient vectors in Step 2 is wasteful on memory and CPL
time. By the very nature of the algorithm, the data is created as a set of polynomial vectc
(truncated to the prescribed degigeThis is a very efficient data structure to work with.
Storage of the sparse data (the non-zero coefficients) is optimised, as is its manipulati
The idea is to work with the set of polynomial vectors and manipulate these directly usir
symbolic techniques; thus a coefficient matrix is never created. We use a set of indexi
tables which, for a given row and colunih ;) of the would-be coefficient matrix, index
the appropriate coefficient of thiéh polynomial vector in our spanning set. The colugnn
therefore indexes two pieces of information: the component of the vector and a monom
term in the resulting polynomial. During elimination, coefficients are looked-up from this
set of polynomial vectors using the indexing tables and, for all intents and purposes, could
thought of as matrix entries. However, the row-reduction operations performed in Gaussi
elimination are now achieved by direct polynomial addition — a vefigieht process in
Maple, which uses the internal kernel functions.

We had to completely rewrite the Gaussian elimination routine fouMbiple in order
to incorporate both the above method and the type of fraction-free elimination describe
in the previous section. The resulting elimination algorithm proved, on average, to be tw
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to three times faster, using three to four times less memory than methods that extract
explicit matrix of coefficients and apply the standdeple library routines.

3.3.3. Exploiting symmetry in the target
The £ and € ‘type’ tangent spaces exhibit a large degree of symmetry. Their respectiv
action on a given gernf is given by,

f*(:/\/(;,z){el,...,ep} and M2 ¥ (Mp)E(n, p).

IntheL£ case we create a spanning set for the iqféaijf) as a vector subspace ff(n, 1)

and reduce this to echelon form using (indexed) Gaussian elimination. & tzese we

do the same for the idealt,’ff*(Mp). We then produce a spanning set for the falbr €
tangent space by stacking togetipecopies of the resulting ‘matrix’. The important point
is that we can do this in such a manner as to create a spanning set for the full tangent sp
which isalreadyin echelon form and therefore requires no further elimination. This is cleal
if the matrices were stacked together to form a diagonal block matrix, but this corresponds
a specific ordering of the monomial vectorsjifi(n, p). The monomial orderings required

in certain problems, such as complete transversal calculations, do not give rise to st
a simple diagonal block matrix, but the principle still applies and we indeed find that th
matrix formed by stacking is automatically in echelon form. The reduction in computatione
overhead is clear.

Finally, in a problem dealing witht-equivalence orK-equivalence, this basis for the
target tangent space is adjoined with a spanning set for the source tangent space and th
sulting ‘matrix’ reduced to echelon form. Represent these as matrices of coefficient vecto
M1 andM>, respectively. The full tangent space matrix, formed by adjoining these,

My
< M >

is reduced to echelon form. Howeved; is already in echelon form and a full-blown
Gaussian elimination is replaced by the following algorithm. Keep the current row an
column pointer in the matri#/;. If the corresponding entry is a pivot then reduce as usual;
only the column inM> needs to be reduced to zero, as the columMinwill already be
zero. Otherwise, (if the entry iffy is zero) try and find a pivot id/5. If this is possible,
again only the column iM2 needs to be reduced. However, if we need toMsédo obtain
a pivot then we do naswapthe rows ofM; and M as in standard Gaussian elimination,
but ratherinsertthe row of M» into M1, thus preserving the fact thaf; is echelon. This is
the basic idea at least. In the code it is more efficient to create a separate matrix that stc
the final result: when a pivot is found the corresponding row is added to this ‘result matrix
thus eliminating the need to insert a row Mb into M3 (moving all the remaining rows
of M1 down). In addition, the process is carried out using the indexing tables referred
above, not coefficient matrices.

We remark that the presence of target tangent spaces and a target dimension greater
1 make the computational overhead at the elimination stagsiderablygreater inA- and
J-'type’ calculations, compared t®-‘type’ calculations. This exploitation of symmetry
means that many significant calculations remain feasible.

3.3.4. Normal spaces, complete transversals and nilpotent filtrations
Itis an easy matter to extend the basisforf to one of full rank in/*(n, p), thus providing
a basi<C for the normal space. If the basis fbr f is given in coordinate form by the rows

https://doi.org/10.1112/51461157000000280 Published online by CadtBdge University Press


https://doi.org/10.1112/S1461157000000280

Computational aspects of classifying singularities

of the echelon matria; ;) with pivotal elementay ;,, az;,, . .. , ar;, (S0 these are non-zero
elementsand X j1 < jo < --- < j, < g = dimJ¥(n, p), wherer = dimL - f), then
the canonical vectors

{ex, ..., €, ... € ... €, ... ¢4}

(where¢; denotes the exclusion ef from this set of vectors) form the bagis Of course,

we calculateC as the set of monomial vectors which correspond to these coordinate vecto
e;. The algorithm to derivel from (g;;) also takes the opportunity to pick off all of the
non-numeric pivots (discussed above) and store them for global access.

Calculating complete transversals requires a little more subtlety. Provided that the colur
corresponding to the monomial jets of degkesppear as a block at the end of the column,
the above procedure will provide a basis for a dedgremmplete transversal associated
with the standard filtration by degree (see Exan#p®). This basis simply consists of those
elementsirC of degreé. For this to work for the general complete transversal The@dm
we must order the degréemonomial jets according to the nilpotent filtration, starting with
those of degreék, 1), then those of degrég, 2), and so on. In most situations that arise in
practice, this can be achieved via a system of weights. In what folows(a1, ..., o)
andg = (B1, ..., Bp) will denote the source and target weights respectively. We recall the
following; see §, Section 2.3] for a full discussion on weighted filtrations. The monomial
vectorxk . x,’i”e, is assigned a weighityoe1 + - - - + ko, — Bi. The §,-submodule of
M8 (n, p) generated by such monomial vectors of weight is denotedF"ﬁé“(n D).

We consider the case af-classification, though the method extends to other subgroup:
of X. Let(xy, ..., x,) denote coordinates qi”, 0) and(yz, . .., y,) those on(F”, 0). Let
g be a subgroup of such that.(/14) acts nilpotently o +7. For ‘large enouglg.’ (we
make this precise below) we can assign source and target weights such that the patrtitiol
the monomial vectors of (standard) degke@a their weight corresponds to their partition
into the(k, s)-jet-levels using the nilpotent filtration. The following proposition was proved
in [4].

Proposition 3.1. Suppose thal.g contains the following vectors and assign source and
target weights according to the case in question.

Vectors Weight
Xxij0/0xiy1 € LR or a=(n,...,2,1)
Xi+10/0x; € LR a=(01,2,...,n)
yjd/dyjqre LL or B=(0,-1,...,—p+1)
Yj+10/0y; € LL B=(p+1,...,-1,0

fori=1,...,n—1andj=1,...,p—1.Then

Y (LG - (MEEM, p)) + MITHEn, p) =
izs

(F"+‘8(n p) N MEEm, p)) + MELE(n, p).

So for fixedk, the My (($) filtration can be replaced by the weighted filtration mod-
ulo MA*T1E(n, p); that is, the filtration on the right-hand side of the above expression. Ir
particular, the homogeneous monomial vectors of de@tee) (to be precise, those that
span the space given by the imageMf ;_1(4) in the jet-space/** (n, p)) are just the
homogeneous monomial vectors of (standard) degreieh weightk + s — 1.
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The vectors referred to in Propositi@nl are the ‘extra’ vectors present inA \ LAj.
For classification purposes one would prefer to use some unipotent grsugh that the
nilpotent Lie algebrd.§ C LA contains as many of these ‘extra’ vectors as possible. There
are four natural cases to consider:

L§ =LA ® F{x;0/9x;} @ F{yd/dy}

forall i < j (or alternatively al > j) and similarly fork and/. Such cases are used in
practical applications (such as the examples in Sedtjpand Propositio.1 applies.

4. Examples and comments

We will demonstrate the utility of our package via several examples. Only the resull
are described; a detailed tutorial on how to use the package to perform such calculatio
giving a summary of user input and corresponding computer output, is described in tl
Transversal User Manual [16].

Firstly, we concentrate on th&-classification of corank-1 map-gerrfé, 0 — F2,0
having 4-codimension less than or equal to 6 (‘codimension’ refers to that of a stratur
when moduli feature). Such germs represent the (corank 1) singularities which occur
versal 4-parameter families and have geometrical applications in areas such as compi
vision, representing the profiles (apparent contours) of smooth surfaces. The classificat
is due to Rieger, though the cases of lower codimension should rightly be accredited
several people, beginning with Whitney; see [23].

The A-classification of map-germis®, 0 — F*, 0 found in [14] represents the most
extensive application of our package to date. A complete classification of the corank
simples, and those aft-codimension less than or equal to 7 (equivalently, for the non-
stables.-codimensiong 4), is given, and we describe some of these results below. The
motivation for this work was to provide more examples for the topological study-fafite
map-germs. Mond’ss-classification of map-germs from surfaces to 3-space proved to b
valuable in developing much of this theory. However, more examples were needed to
generalisations and conjectures of the theory, and map-dgetris— F*, 0 were the clear
candidates.

Finally, we discuss the performance of our package. We will concentrate on some of
more computationally demanding calculations, labelling these C1,.C2C5 as they are
encountered in the examples.

4.1. A-classification of map-gern&, 0 — F2, 0

We cannot describe all of the classification in this small section; rather, we will concer
trate on the more difficult branches, beginning with the 2¢jet0). The results apply to
both the real and complex cases, apart from a few minor differences which are describ
as necessary. (From now aerandb will denote real or complex numbers, and be used as
parameters for the affine spaces given by the complete transversal theorem. We will recy
this notation from case to case to save space.) All determinacy and CT calculations will u
the unipotent subgrou of 4 defined in Exampl@.2.

A (3,1)-CT for(x, 0) is (x, ay®). Apply scaling coordinate changes to reduce this family
to the two casegr, y3) and(x, 0), depending on whethers 0 ora = 0. Inthe first case the
only non-empty highe¢3, s)-CT is at the(3, 3) level; this gives the familyx, y2 + ax2y)
which again reduces to two cases via scaling. Returning t@3hb-jet (x, 0), a (3,2)-
CTis (x, axy?) and scaling reduces this to the two cagesry?) and(x, 0). For the first
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of these all of the highe(3, s)-CTs are found to be empty, while in the second case the
only non-empty CT is thé3, 3)-CT giving (x, ax?y). After further scaling we arrive at the
complete list of 3-jets ovefx, 0), namely

&3 +a%y), 00 yY, uod), (%), (x,0).

A simple computer calculation shows that these ha¥g-codimension 3, 4, 4, 5 and 6,
respectively. (These codimension calculations are very quick and easy using our compt
package. They provide useful invariants which automatically distinguish ntasytypes

and help one to recognise thetype of a given map-germ by following the appropriate
branches up the classification tree.) We remark that the above classification of 3-jets 0
(x, 0) may be obtained via other methods, but this generally requires many ad-hoc tec
niques. The above example demonstrates the practicality of our classification techniqu
which apply in the same straightforward manner in different situations.

We continue the classification, taking the 3-jet x?y) as our example. Using similar
arguments to those given, we find th&tial)-CT reduces to give the two cagesx2y+y*)
and(x, x2y). For the first, the highe@, s)-CTs are empty, while for the second ti#e 2)-

CT reduces to give the two cases x2y + xy%) and(x, x2y). The complete list of 4-jets
over(x, x2y) is therefore

X%y + 9%, X%y ), (a2,

having J*4-codimension 5, 6 and 7, respectively.

The only non-empty 5-CT fogx, x2y + y*) produces the familyx, x2y + y* + ay®).
With a little linear algebra one can show that scaling coordinate changes may reduce |
above family to the three orbits, x2y + y* + y%) and(x, x2y + y*). However, it is far
more straightforward to apply Mather’'s lemma using the computer. A very quick calculatio
with f, = (x, x%y + y* + ay®) verifies that(0, y®) € L(J%4) - f, andL(J%4) - f, has
codimension 5 inV°(2, 2) provided thatz # 0. (That is, the matrix reduction required the
use of a symbolic pivotal element haviagas a factor and this was noted by the package;
see SectioB3.3.) Repeating the calculation f@r= 0 we find that the codimension increases
to 6 (and the inclusion condition fails). Thus, by Mather’s lemma, we obtain the three orbi
listed above and note that the first two hak®4-codimension 5, the latter 6. The sign
appears due to the ‘connectedness’ condition in Mather’'s lemma. Of course dhier
does not feature, and the first two orbits ateequivalent. Distinguishing the- orbits
overR is a problem. One usually hopes to find invariants that will do this, but generally
such questions cannot be answered using the techniques discussed here. Continuing
classification, we find that in all cases the CTs of degree 6 to degree 9 are empty. Tl
implies thatM5€(2,2) ¢ L§ - f + M2€(2, 2) where f denotes any of the above jets.
Sincef*(M2)€(2,2) D :Mg&(z, 2) Theoren®.5shows that these jets are all 5-determined.
We will discuss the computational aspects of 1862, 2) calculation for(x, x2y + y*+y®)
(that is, the verification that the largest degree CT is empty), and denote this calculation
C1 for future reference.

We return to the 4-jetx, x2y + xy3). A5-CTis f, = (x, x%y + xy3 + ay®). Scaling
coordinate changes cannot simplify this family but this doeprmtethata is a modulus.
For this we apply Lemma.8, and computer calculation verifies tii@ty®) ¢ L(J%A)- f,
for all a. In addition, the computer shows that any representative of the stratum forme
by this unimodular family hag®4-codimension 7. (Although we are working up #
codimension 6, the stratum as a whole has codimension 6.) Continuing, a 6/¢7 is
(x, x2y 4+ xy2 + ay® + by®). We apply Mather’s lemma to try and simplify this family.
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Computer calculation shows thé, y8) € L(J%4) - f, , the orbit having codimension 7,
for all a and forb # 0. Forb = 0 (and alla) the codimension jumps to 8. We therefore
obtain the two orbits

O, x2y +xy3 +ay® +98), (o, x%y 4+ xy3 +ay®),

a representative of these unimodular families hauifigs-codimension 7 and 8, respec-
tively. The latter exceeds the codimension bounds, so we just consider the former. (Nc
that in the real case, the former contains gf term, but this can be reduced-+ey® using

a simple coordinate change.)

AT7-CTis f,p = (x,x°%y 4+ xy3 + ay® + y8 + by’) (for all a excepta = 3/2 where
the CT is empty). Computer calculation shows that the vectyrs®) and(0, y’) span an
independent set th(J ' A) - Sa.b fOr generic(a, b), so by Lemma2.8 f, ;, is abimodular
family. A generic representative of this family ha@é.4-codimension 8. By ‘generic’ we
mean that(a, b)) does not lie on a finite set of proper algebraic varietie§4n These
varieties can be determined by computer; in this case they are given by simple conditio
such as: = 3/2 (where the family simplifies as shown already by the CT calculation) or
(a, b) = (9/5,—4/3) where theJ ' A-codimension of the jet jumps to 9. A full analysis of
the exceptional values of the moduli requires extra investigation but is fairly straightforwar
using the computer. Note that any non-generic strata will be of too high a codimension.

Continuing, we find that the 8-CT is empty for genefic b); the exceptional condi-
tions includea = 0 (where another modulus appears) and we assume: tiat0 from
now on. Further calculations show that all CTs from degree 8 to degree 12 are empty f
generic(a, b). Thus,M%&(Z, 2) C LG fup + M%38(2, 2), and sincen # 0 we have
1l (M2)E(2,2) D M%&(Z, 2) so by Theoren2.5 f, , is 7-determined for generi@, b).

We will discuss the computational aspects of #Hé(2, 2) calculation forf, , later, and
denote this calculation by C2.

Returning to the final 4-jetx, xy), we note that its codimension exceeds the bounds,
thus completing this branch of the classification. Although a simple example, our main ai
in discussing this classification is to demonstrate how a tedious calculation may be carri
out very quickly usingrransversal. The above results can be achieved within a matter
of minutes, and provide independent verification of Rieger’s results. Far more complicats
classifications can be achieved usifigansversal, but the style of the approach is
identical to that just described, as we will now demonstrate.

4.2. A-classification of map-gernfs®, 0 — F4,0

We will only discuss a few specific calculations; for a concise summary of the classifi
cation see [14].

Let (x, y, z) denote coordinates in the source, dnd, 12, us, us) those in the target.
Let ¢ be the unipotent subgroup @ having nilpotent Lie algebra

LA & F{xd/0y,xd/0z,yd/0z} & F{u;d/0u; for i> j}.

This group will be used in all of the CT and determinacy calculations. Consider the jet
spaces/"*(3,4) induced by the nilpotent filtration. The monomial vectors of (standard)
degree- are partitioned into theiir, s)-levels as described in Secti@Busing the weights
a=(3,2,1)andB = (-3,-2, —1,0).

As our first example we considér, y, yz, xz), which occurs as one of the five corank-1
2-jets. A(3,1)-CTis(x, y, yz, xz +az3) and applying scaling coordinate changes reduces
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this family to the two caseér, y, yz, xz + z°) and(x, y, yz, xz). In both cases the only
higher non-empty3, 5)-CT isthe(3, 2)-CT, and we obtainthe 3-jets, v, yz+az®, xz+z°)
and(x, y, yz + az>, xz). In the first case it is tempting to scateto 0 or 1. However, the
resulting 3-jets have the sanié.4-codimension; indeed, the codimension is found to be
constant for all, suggesting that the family ig-trivial. A simple application of Mather’s
lemma shows that this is so. We therefore have the one normal fetm; yz, xz + z3).
Returning to the second jét, y, yz + az®, xz), here we apply scaling coordinate changes
and reduce this to the 3-jets, v, yz + z°, xz) (equivalent tax, y, yz, xz + z°) obtained
earlier) andx, y, yz, xz). The complete list of 3-jets ovék, y, yz, xz) is therefore

(X, 9, 2, X2+ 2%, (x,y,yz.x2),

havingJ3:4-codimension 4 and 6, respectively. As an instructive example we consider th
same calculation using, instead, the grotp In this case a 3-CT ovek, y, yz, xz) IS

2

(x,y,yz+ alz3 +azxz®,xz + a3z3 + a4x12 + a5yz2) for a; € F.

Of course, one may reduce these to the two cases above, but this would involve a lot
(ad-hoc) work. To classify the 3-jets over, y, yz, xz) without the use of techniques such
as CTs would be a very unenviable task!

Continuing the classification over the first of the above 3-jets gives the gerigsyz +
7, xz+73), k-determinedfok > 4, k notamultiple of 3. (Note that this is not the complete
classification of all jets over this 3-jet. Further branching occurs at the 6-level and 7-leve
This is an important example in theoretical singularity theory, in that the 3-jet gives rise t
a series but is not a stem.) We take the determinacy calculations of the first two members
this series as our example. Using TheoBand noting thay ™ (M3)&(3,4) D M§8(3, 4)
in both cases, we establish 4-determinacyifes 4 by showing that the CTs from degree
5to degree 7 are empty. Similarly, 5-determinacy is established£ob by showing that
the CTs from degree 6 to degree 8 are empty. We will denotd ki@, 4) calculation for
k = 4 by C3, and the’®(3, 4) calculation fork = 5 by C4.

As our final example we consider the second of the above 3-jets. Classification over t
jet becomes complicated; a lot of branching occurs, with the highest branch that we mt
consider arising at the 9-jet-level in the form of the trimodular fanailyy, yz + xz2 +
az®+ 2"+ b8+ 2% xz+2%). (A generic representative of this family hascodimension
10, the whole stratum having codimension 7.) We can establish 9-determinacy of this fam
using Theoren?.5if we can show that the CTs of degree 10 to degree 13 are all empty
This calculation represents one of the most intensive determinacy calculations carried c
and will be discussed next, denoted by C5.

4.3. Comments

The ultimate test for our program is its ability to solve classification problems sucl
as those described above, whether these involve simple calculations which may be dc
by hand, or intensive calculations which eventually require the use of a computer in sor
capacity anyway. The majority of the calculations described above were dealt with in secon
using our package. Eventhough many calculations may be performed by hand, our compt
package still acts as a valuable tool, giving quick answers to the repetitive and tedio
calculations one faces in this area of singularity theory. We will now discuss some of tt
more computationally demanding problems. We state these results only as an indicatior
how the package performs on the sort of machines commonly available at the present tir
they are not intended as benchmarks for such calculations.
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Table 2: CPU time (hours/mins/secs) and matrix dimensions for calculations.

Calc 486 PEN IPX SPC ULT Matrix Dim
C1 31s 12s 20s 09s 03s 87,110
C2 02mO06s 52s 01m32s 41s 15s 153,182
C3 08m59s 03m32s 06mMO02s 02m55s 59s 321,480
C4 17m06s 06m43s 11m35s 05m40s 01m56s 447,660
C5 — — — 06h34m01s 02h29m39s 1572,2240

Calculations C1 and C2 were described in Sectoh calculations C3, C4 and C5
in Section4.2. The calculations were carried out on the following machines. We give th
symbol used to identify the machine, followed by its specification (machine name, process
type, processor speed, total RAM):

486 (PC, 486DX, 50 MHz, 8 MB);

PEN (PC, Pentium, 75MHz, 16 MB);

IPX (Sun IPX workstation, Sparc, 40 MHz, 32 MB);

SPC(Sun SPARCcenter 2000, Sparc (x18), 50 MHz, 276 MB);
ULT (Sun Ultra 2, Sparc (x2), 168 MHz, 256 MB).

The calculations were done using a standdaple V Release 3 ‘terminal session’ (as
opposed to an X11 or Windows interface) running under DOS 6.2 (PCs) and SunOS &
(Sun workstations).

Table2 shows the CPU time and coefficient matrix dimensions (for theAuthngent
space) for each of the calculations. The matrix dimensions give an indication of the cor
plexity of the problem, and how this increases witly and the jet-space degrieeA natural
theoretical measure of the complexity is given by the dimension of the jet-gfaeep).

This is the column dimension of the coefficient matrix, and can be shown to p({t{é‘l)
Thus, although linear i, this grows rapidly withe andk. The need for techniques to
reduce the computational overhead, as discussed in S&cHpis clear.

As calculations become more intensive they are best carried out on larger Unix machir
(such as ‘SPC’) where more resources are available. However, most of the calculatic
performed to date did not require such hardware. All of the above machines handled t
calculations C1 — C4 within an acceptable time (the amount of real time required beir
little more than the stated CPU time, though this may not be the case on heavily load
multiuser systems). The calculation C5 was attempted on a powerful Silicon Graphi
Challenge machine but failed, and represents a limit to our package. The problem is d
to the high modality of the family and the complexity of the equations, which determine
the exceptional values of the moduli. These equations are unlikely to be of use even if t
calculation is completed. We therefore attempt to show that the family is finitely determine
for generida, b, ¢). If we find that for a fixed value of the moduli the CTs of degree 10to 13
are all empty then the corresponding germ is 9-determined. Since finite-determinacy is
open condition, we can conclude that the family is finitely determined for generic values ¢
(a, b, ¢). In addition, should we need to consider a specific example in applications, then v
have a member of the family whose exact determinacy degree (9) is known. The calculati
using fixed moduli is computationalliar less intensive. Based on previous calculations,
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we avoid values of the moduli which may be exceptional and try a suitable choice. (Afte
all, if the family is generically determined then we are quite likely to choose correctly!) The
cas€(a, b, ¢) = (5, 3, 4) is found to be 9-determined. Calculation C5 in Tablepresents
the 713(3, 4) calculation for these values of the moduli; it was carried out only on the two
large Unix machines.

In summary, the package performs well in most situations. The computational comple
ity of the problems increases significantly with the dimensio@sd p and the jet-space
degreek, but remains within practical limits for many problems. The largest obstruction
to calculations appears to come from the presence of moduli. Examples suggest that «
culations for families with 3 or more moduli become infeasible in jet-spaces of degree i
the region of 10 to 20 (depending @nand p). This is an inherent problem caused by
the creation of symbolic expressions during the elimination process which rapidly becon
large, often too large foMaple to handle. When this happeMaple will terminate the
process with an ‘object too large’ error, and throwing more CPU time or memory at suc
problems is unlikely to solve them.
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Appendix A. Additional documentation

This appendix contains a README file (text), which gives detailed installation instruc-
tions for the package, and a comprehensive user manual (PDF). Note that these files
also available within the tar archives that contain the complete package. The material is
to be found at

http://www.Ims.ac.uk/jcm/3/Ims1999-002/appendix-a/.

Appendix B. Transversal 3.1

This appendix contains version 3.1 of the package, provided as a tar archive. It ru
underMaple V Releases 1-4, and is to be found at

http://www.Ims.ac.uk/jcm/3/Ims1999-002/appendix-b/.

Appendix C. Transversal 3.2

This appendix contains version 3.2 of the package, provided as a tar archive. It ru
underMaple V Release 5. Other than the changes required for compatibility with Releas
5, this version provides the same functionality as version 3.1. The package is to be founc

http://www.Ims.ac.uk/jcm/3/Ims1999-002/appendix-c/.

References

1. V.1 ArnoLbD, ‘Critical points of smooth functions and their normal formRiyssian
Math. Survey80 (1975) 1-75.214,214

https://doi.org/10.1112/51461157000000280 Published online by Cat@fdge University Press


http://www.lms.ac.uk/jcm/3/lms1999-002/appendix-a/
http://www.lms.ac.uk/jcm/3/lms1999-002/appendix-b/
http://www.lms.ac.uk/jcm/3/lms1999-002/appendix-c/
https://doi.org/10.1112/S1461157000000280

10.

11.

12.

13.

14.

15.

16.

Computational aspects of classifying singularities

D. Baver andM. STiLLMAN, ‘Macaulay: a system for computation in algebraic geom-
etry and commutative algebra’ (1982-1994). Source and object code available fro
the authors for Unix and Macintosh computénrisp://www.math.uiuc.edu/Macaulay?2.
214

J. W. BRUCE, ‘Generic geometry and dualitygingularities, Lille 1991, London Math.
Soc. Lecture Note Ser. 201 (ed. J.-P. Brasselet, Cambridge University Press, 199
208

J. W. Brucg, N. P. Kirk andA. A. pu PLEssIs, ‘Complete transversals and the classi-
fication of singularities’Nonlinearity10 (1997) 253-275.207,207,208,209, 209,
210,214,216,220,220

J. W. BRUCE, N. P. Kirk andJ. M. WEsT, ‘Classification of map-germs from surfaces
to four-space’, Preprint, University of Liverpool, 199208

J. W. BRUCE, A. A. pu PLgssis andC. T. C. WaLL, ‘Determinacy and unipotency’,
Invent. Math.88 (1987) 521-554.207,208,209,209,210,211,212,212,214,214,
214,214,216

B. W. CHAR, K. O. GEDDES, G. H. GONNET, B. L. LEONG, M. B. MONAGAN andS.
M. WatT, Maple V language reference many8ipringer-Verlag and Waterloo Maple
Publishing, 1991).207

R.G.CoweLL andF.J. WrIGHT, ‘CATFACT: computer algebraic tools for applications
of catastrophe theory’, Proc. EUROCAL '87, European Conference on Compute
Algebra, Leipzig, GDR, 1987, Lecture Notes in Comput. Sci. 378 (ed. J. H. Davenpor
Springer, 1989) 71-80214,214

J. N. Damon, ‘The unfolding and determinacy theorems for subgroupg ehd.X’,
Mem. Amer. Math. So806 (1984). Also irBingularities, Proc. Symp. Pure Math. 40
(part 1) (American Mathematical Society, Providence, RI, 1983) 233-258,213

L. Fox, An introduction to numerical linear algebi&larendon Press, Oxford, 1964).
218

G.-M. GREUEL, G. PrisTER andH. SCHOENEMANN, ‘The SINGULAR project’, De-
partment of Mathematics, University of Kaiserslautern. Latest information available
from http://www.singular.uni-kl.de.214

W. Hawgs, ‘Multi-dimensional motions of the plane and space’, Ph.D. thesis, Univer-
sity of Liverpool, 1994. 208

C. A. Hosss andN. P. Kirk, ‘On the classification and bifurcation of multigerms of
maps from surfaces to 3-spacklath. ScandTo appear.208

K. Houston andN. P. Kirk, ‘On the classification and geometry of corank-1 map-
germs from 3-space to 4-spac&ingularity theory, Proceedings of the European
Singularities Conference in honour of C. T. C. Wall on the occasion of his 60th birthda
(ed. J. W. Bruce and D. M. Q. Mond, Cambridge University Press, 1999) 325-35!
208,221,223

N. P. Kirk, ‘Computational aspects of singularity theory’, Ph.D. thesis, University of
Liverpool, 1993. 208,217

N. P. Kirk, ‘Transversal: a Maple package for singularity theory; user man-
ual, Version 3.1', Preprint, University of Liverpool, 1998. Available with the
Transversalpackage via ftp. (See also Appendix A,Appendix BandAppendix C
above.) 208,209,215,221

https://doi.org/10.1112/51461157000000280 Published online by Caabridge University Press


http://www.math.uiuc.edu/Macaulay2
http://www.singular.uni-kl.de
https://doi.org/10.1112/S1461157000000280

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Computational aspects of classifying singularities

J. MARTINET, Singularities of smooth functions and mabsndon Math. Soc. Lecture
Note Ser. 58 (Cambridge University Press, 19820.7,209,212,213

K. MiLLinGgTON andF. J. WriGHT, ‘Algebraic computations in elementary catastrophe
theory’, Proc. EUROCAL '85, European Conference on Computer Algebra, Linz
Austria, 1985, Lecture Notes in Comput. Sci. 204 (ed. B. F. Caviness, Springer, 198
116-125. 214,216

D. M. Q. Monb, ‘On the classification of germs of maps fré4 toR®, Proc. London
Math. Soc(3) 50 (1985) 333-369208

A. A.pu PLEssIs, ‘On the determinacy of smooth map-gernmeyent. Math58 (1980)
107-160. 208

T. Poston andl. N. STEwarT, Catastrophe theory and its applicatioRitman, 1978).
212,214

D. RATCLIFFE, ‘A classification of map-germ€2, 0 — C3, 0 up to-equivalence’,
Preprint, University of Warwick, 1994214,214

J. H. RIEGER, ‘Families of maps from the plane to the plan&’London Math. Soc.
(2) 36 (1987) 351-369208,221

F. Tari, ‘Recognition of X -singularities of functions’Experiment. Mathl (1992)
225-229.214

C. T. C. WALL, ‘Finite determinacy of smooth map-germBull. London Math. Soc.
13(1981) 481-539207,207,208,209,212,213,213

J. M. WssT, ‘The differential geometry of the crosscap’, Ph.D. thesis, University of
Liverpool, 1995. 208

N. P. Kirk npkirk@hotmail.com  http://www.liv.ac.uk/Maths/

Department of Mathematical Sciences
The University of Liverpool

P.O. Box 147

Liverpool L69 3BX

https://doi.org/10.1112/51461157000000280 Published online by C@t@Bdge University Press


mailto:npkirk@hotmail.com protect kern +.1667em
elax protect kern +.1667em
elax  http://www.liv.ac.uk/Maths/
https://doi.org/10.1112/S1461157000000280

	Introduction
	Applications to singularity theory
	Classification theory: complete transversals and determinacy
	Working with jet-groups: Mather's lemma and the detection of moduli
	Unfolding theory

	Package overview
	Survey of existing computer packages
	Basic functionality and underlying algorithm
	Technical and computational considerations
	Symbolic pivots: fraction-free Gaussian elimination
	Exploiting sparsity: indexed Gaussian elimination
	Exploiting symmetry in the target
	Normal spaces, complete transversals and nilpotent filtrations


	Examples and comments
	A-classification of map-germs F2,0 --> F2,0
	A-classification of map-germs F3,0 --> F4,0
	Comments

	Additional documentation
	Transversal 3.1
	Transversal 3.2

