ON AN ELEMENTARY PROBLEM IN NUMBER THEORY

Paul Ends
 (received October 26, 1957)

A question which Chalk and L. Moser asked me several years ago led me to the following problem: Let $0<x \leq y$. Estimate the smallest $f(x)$ so that there should exist integers u and v satisfying

$$
\begin{equation*}
0 \leq u, v<f(x), \text { and }(x+u, y+v)=1 \tag{1}
\end{equation*}
$$

I am going to prove that for every $\epsilon>0$ there exist arbitrarily large values of x satisfying

$$
\begin{equation*}
f(x)>(1-\epsilon)(\log x / \log \log x)^{1 / 2} \tag{2}
\end{equation*}
$$

but that for a certain $c>0$ and all x

$$
\begin{equation*}
f(x)<c \log x / \log \log x \tag{3}
\end{equation*}
$$

A sharp estimation of $f(x)$ seems to be a difficult problem. It is clear that $f(p)=2$ for all primes p. I can prove that $f(x) \rightarrow \infty$ and $f(x) / \log \log x \rightarrow 0$ if we neglect a sequence of integers of density 0 , but I will not give the proof here.

First we prove (2). Let $p_{1}<p_{2}<\ldots . .$. be the sequence of consecutive primes. Let $k>0$ be an arbstray integer. Put (l $\leq i \leq k$)
and

$$
\begin{aligned}
& A_{1}=\Pi p_{j}, \quad(i-1) k<j \leq i k \\
& B_{1}=\Pi p_{j}, \quad j \equiv 1(\bmod k), 0<j \leq k^{2} \\
& \prod_{i=1}^{i=k} A_{1}= \prod_{i=1}^{i=k} B_{i}=\prod_{j=1}^{j=k^{2}} p_{j}, \\
&\left(A_{1_{1}}, A_{1_{2}}\right)=\left(B_{1_{1}}, B_{1_{2}}\right)=1,\left(A_{1_{1}}, B_{i_{2}}\right) \neq 1 .
\end{aligned}
$$

Clearly

Thus the system of congruences ($1 \leq 1 \leq k$)
Can. Math. Bull., vol. 1, no 1, Jan. 1958

$$
\begin{array}{ll}
x+1-1 \equiv 0\left(\bmod A_{i}\right), & 0<x<\prod_{j=1}^{k^{2}} p_{j} ; \\
y+1-1 \equiv 0\left(\bmod B_{i}\right), & \prod_{j=1}^{k^{2}} p_{j}<y \leq 2 \prod_{j=1}^{k^{2}} p_{j}
\end{array}
$$

has a unique solution in integers x and y. Clearly, if $0 \leq i_{1}, i_{2}<k$, then

$$
\left(x+i_{1}, y+i_{2}\right)=p_{\left(i_{1}-1\right) k+i_{2}}>1
$$

Thus $f(x) 2 k$. From the prime number theorem we have $p_{n}=(1+0(1)) n \log n$. Thus

$$
x<\prod_{k}^{k^{2}} p_{j}<\exp \left(2(1+\varepsilon) k^{2} \log k\right) ;
$$

hence (2) follows*.
To prove (3) let n be such that for all $0 \leq u, v<n$, $(x+u, y+v)>1$. We first remark that if $p \leq n$, then the number of pairs $0 \leq u, v<n$, for which $(x+u, y+v) \equiv 0(\bmod p), 1 s$ less than

$$
(n / p+1)^{2} \leq n^{2} / p^{2}+3 n / p
$$

Thus the number of pairs $0 \leq u, v<n$, for which $(x+u, y+v)$ has a prime factor not exceeding n,is less than

$$
\begin{aligned}
& n^{2} \sum_{p=2}^{\infty} 1 / p^{2}+3 n \sum_{p \leqslant n} 1 / p \\
= & (1+0(1)) n^{2} \sum_{p=2}^{\infty} 1 / p^{2}<3 n^{2} / 4
\end{aligned}
$$

for sufficiently large n.

$$
\left(\sum_{2}^{\infty} 1 / p^{2}<1 / 4+\sum_{k=2}^{\infty} 1 / k(k+1)=3 / 4\right) .
$$

Thus for at least $n^{2} / 4$ pairs $0 \leq u, v<n$, $(x+u, y+v)$ must have a prime factor greater than n. But if $p>n$ then there is at most one $0 \leq u, v<n$ with $(x+u, y+v) \equiv 0(\bmod p)$. Thus $\prod_{i=0}^{n-1}(x+i)$ must have at least $n^{2} / 4$ distinct prime factors greater than n. Hence ($n<x$)

$$
(2 x)^{n}>\prod_{i=0}^{n}(x+i)>n^{n^{2} / 4} ;
$$

thus $\log 2 x>n / 4 \log n$, or $n<c \log x / \log \log x$, which proves (3). By a slightly more careful computa-
tation it is easy to show that for sufficiently large $x, f(x)<\left(\pi^{2} / 12+\epsilon\right) \log x / \log \log x$, and by a little more sophisticated but still elementary reasoning I can show that $f(x)<(1 / 2+\epsilon) \log x / \log \log x$. Any further improvement of the estimation of $f(x)$ from above or below seems difficult.

It can be remarked that to every x and n there exists a y so that $(x+i, y+1)>1$ for $0 \leq i \leq n$. To see this it suffices to put $y=x+n!$. On the other hand one can show by using Brun's method that there exists a constant c so that, for some $0 \leq i<(\log y)^{c}$, $(x+1, y+1)=1$. To see this observe that every common factor of $x+1$ and $y+i$ must divide $y-x$. Thus if is chosen so that $(x+1, y-x)=1$, then $(x+1, y+1)=1$. Now it follows from Brun's method that there exists a constant c so that, for every $n,(\log n)^{c}$ consecutive integers always contain an integer relatively prime to n . Putting $\mathrm{n}=\mathrm{y}-\mathrm{x}$ we obtain our result.

By similar methods as used in the proof of (3) we can prove the following

THEOREM. Let $g(x)(\log x / \log \log x)^{-1} \rightarrow \infty, 0<x<y$. Then the number of pairs $0 \leq u, v<g(x)$ satisfying $(x+u, y+v)=1$ equals $(1+0(1))\left(6 / \pi^{2}\right) g^{2}(x)$.

To outline the proof of our theorem we split the pairs u, v satisfying

$$
\begin{equation*}
0 \leq u, v<g(x), \quad(x+u, y+v)>1 \tag{4}
\end{equation*}
$$

into three classes. In the first class are those for which ($x+u, y+v$) has a prime factor not exceeding p_{k}, where k tends to infinity sufficiently slowly. In the second class are those for which ($x+u, y+v$) has a prime factor in the interval ($\left.p_{k}, g(x)\right)$, and in the third class are those where all prime factors are
greater than $g(x)$.
As can be easily seen by a simple sieve process, the number of pairs in the first class is

$$
\begin{equation*}
(1+0(1))\left(1-\pi^{2} / 6\right) g^{2}(x) . \tag{5}
\end{equation*}
$$

As in the proof of (3) we show that the number of pairs in the second class is less than

$$
\begin{equation*}
(1+0(1)) g^{2}(x) \sum_{p>p_{k}} 1 / p^{2}=O\left(g^{2}(x)\right) . \tag{6}
\end{equation*}
$$

Denote by t the number of pairs in the third class. As in the proof of (3) we have

$$
\begin{equation*}
(2 x)^{g(x)}>\prod_{i=0}^{g(x)-1}(x+i)>g(x)^{t}, \tag{7}
\end{equation*}
$$

or $t<g(x) \log 2 x / \log g(x)=O\left(g^{2}(x)\right)$
since $g(x)(\log x / \log \log x)^{-1} \rightarrow \infty$. (5), (6) and (7) imply that the number of pairs u and v satisfying (4) is of the form $(1+0(1))\left(\pi^{2} / 6\right)\left(g^{2}(x)\right.$, which proves the theorem.

We can show by methods used in the proof of (2) in our theorem that we cannot have $g(x)$ less than $c(\log x / \log \log x)^{1 / 2}$, i.e., $g(x)(\log x / \log \log x)^{-1 / 2} \rightarrow \infty$ is necessary for the truth of our theorem. An exact estimation of $g(x)$ seems difficult.

University of Toronto

* L. Moser informs me that he independently obtained this result and its generalszation to an m-dimensional lattice.

