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Abstract

Hyperthermia (i.e. heating of tumor tissue to 40-43°C) is used in clinical oncology to enhance
the therapeutic effect of chemotherapy and radiotherapy. Many tumor sites are heated either
by a single RF or MW antenna positioned on the tumor location, or by a phased array
positioned around the patient. Superficial tumors are generally heated with MW antennas
(434-2450 MHz) and deep-seated tumors with RF antennas (70-150 MHz). These devices
cover the major, more common tumor sites, but more rare locations require more dedicated
applicators. We discuss dedicated RF systems aiming for heating semi-deep-seated tumors in
the leg, breast, and upper thorax. Clinical results show that adequate heating is possible with
these systems, with achieved temperatures in the therapeutic range.

Introduction

Clinical hyperthermia, heating a tumor to 40-45°C for 1h, is a cancer treatment applied in com-
bination with chemotherapy and/or radiotherapy, with the aim to enhance the effectiveness of the
latter two therapies [1, 2]. Clinical results are very good, and adding hyperthermia typically yields
an increase in tumor response on the order of 15-20% [3, 4]. Realizing a sufficiently high tumor
temperature is important as treatment outcome is correlated with the achieved tumor temperature
[5-8]. Hyperthermia is tumor-selective if given sequentially, shortly before or after radiotherapy. In
that case normal tissue temperatures of 40-45°C are well tolerated and do not lead to an increase in
radiotherapy- or chemotherapy-related side-effects in the surrounding normal tissue. Temperatures
exceeding 45°C should be avoided as these can lead to pain and normal tissue damage [9].

Superficial malignancies, such as chest wall recurrences of breast cancer or melanoma,
extend less than 4 cm from the skin surface [10] and are generally treated with MW antennas
placed onto the lesion. The 915 MHz antennas of the BSD-500 system [11-13] and the 434
MHz microstrip applicators of the ALBA-4000 system [14-19] are the applicators used in
the present clinically available superficial systems. Deep-seated malignancies, such as cervix,
prostate, bladder, and rectum tumors, are usually heated with a phased array of RF antennas,
organized in one or multiple rings around the pelvis of the patient [20, 21]. Clinical
locoregional devices include the AMC-4 system [22], AMC-8 system [23], ALBA-4D system
[24], and BSD-2000 series [25, 26], which all operate at frequencies between 70 and 150
MHz. These phased array systems provide spatial steering of the energy deposition [21, 23],
which proved instrumental in achieving good and therapeutic temperatures and good
clinical results in a range of tumor sites including rectum, bladder, cervix, and soft-tissue
sarcoma [27-31].

However, not all tumor sites can be optimally heated with the commercially available
devices listed in the previous paragraph. This paper reports on the development of three
novel dedicated RF-based hyperthermia systems capable of delivering hyperthermia to three
different challenging semi-deep-seated tumor sites: the leg, the breast, and the upper thorax
(Fig. 1). Each system design is described, including clinical tumor temperature measurement
methods, followed by examples of the actual clinical application.

Methods

All systems are intended for deep/semi-deep-seated tumors, extending more than 4 cm from
the skin surface. Therefore, we use the 70 MHz waveguides designed for the AMC-4, AMC-8,
and ALBA-4D systems used at our department, as these have a 50% larger penetration depth
than 434 MHz antennas [32]. The water-filled waveguides have a length of 12 cm (%4A), aper-
tures of 34 x 21 cm, 34 x 15 cm, or 34 x 8.5 cm, and effective penetration depths of 3.5, 3.1, and
2.7 cm, respectively (Fig. 1(d)) [33]. The effective penetration depth is the depth at which spe-
cific absorption rate (SAR) is 50% of the value at 1 cm depth, as defined in the European
Society of Hyperthermia (ESHO) Quality Assurance (QA) guidelines [10, 34].

The 70 MHz generator system of the AMC-8 system shown in Fig. 2 is used [23]. This is an
eight channel DDS-based phase and amplitude controlled RF generator system with a phase
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Fig. 1. The three dedicated systems presented in this paper. (a) Double-waveguide set-up for leg tumors with open water bolus. (b) Single-waveguide set-up with
open water bolus for deep-seated breast tumors. (c) Double-waveguide set-up for tumors in the upper thorax, which uses three different aperture sizes. (d)
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Fig. 2. The eight channel DDS phase and amplitude controlled 70 MHz generator system used for all three systems shown in Fig. 1. Each channel has a tuner and

500 W maximum output power [23].

accuracy of 3° and an output power accuracy of 10 W (SSB
Electronic, Iserlohn, Germany). A double-slug tuner is placed
between the 70 MHz power amplifier and the antenna. This
tuner is used for tuning of each channel. The solid state amplifiers
used (Restek, Rome, Italy) provide 500 W maximum output
power for each channel.

Two systems presented in this paper use the principle of a
phased antenna array and phase steering. This principle is also
applied for instance in the AMC4 and ALBA4D phased array sys-
tems for pelvic and abdominal tumors, which both use a ring of
four waveguides positioned around the patient as shown in Fig. 3
[22, 24]. The four waveguides operate in the TE10 mode and are
positioned in such a way that the dominant E-field component E,
of each antenna is parallel to the longitudinal axis of the body.
Thus, the E,(i) contributions of each waveguide i add up, which
allows to realize a central E-field focus at the tumor, with a local
power deposition expressed as SAR in W/kg proportional to the
square of the total E-field:

4
SAR ~ E* ~ Y EX(i) (1)

i=1
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Phase steering of the four waveguides is utilized to position the
E-field focus onto the desired tumor target location [22, 24].
Similar phase steering principles are applied in the two double-
waveguide dedicated systems for the leg and upper thorax
described in this paper. The optimal phase difference between
the two waveguides yielding best focalization onto the tumor is
established by performing a AT test. This involves measuring at
the start of each clinical treatment the temperature rise AT in
the tumor after 60s of power on, and comparing the resulting
AT for three different phase settings, e.g. —40° 0°, and +40°.
The phase setting yielding the best temperature increase in the
tumor will be selected [35].

A water bolus is positioned between the antennas and the
patient to ensure that the electromagnetic energy emitted by
the antennas is coupled effectively into the patient, and to provide
either warming or cooling of the skin to ensure that the entire
tumor is heated to the therapeutic temperature range. This
water bolus is either a plastic bag containing distilled water
(system 1C is an example) or an open tank with tap water or dis-
tilled water (as used for systems 1A and 1B). The open tank is
used to optimize energy coupling to irregularly shaped body
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Fig. 3. Principle of phased array systems. (a) Four antenna ALBA4D system. (b) A central E-field focus can be realized by superposition of the E,(i) of antennas 1

through 4 parallel to the longitudinal axis of the patient body in the ALBA4D system.
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radiotherapy twice a week, once a week hyperthermia

surfaces. Distilled water has the advantage of negligible power loss
in the water bolus, ensuring optimal energy transfer to the tumor.

Tumor and skin temperature measurements are performed
using multi-sensor copper constantan thermocouple probes
(ELLA-CS, Hradec Kréalové, Czech Republic) placed in catheters
inserted in the tumor. An in-house developed 196 channel therm-
ometry system is used to measure undisturbed tumor tempera-
tures during brief power-off intervals. Tumor temperatures
during treatment are reported as 710, T50, and T90, i.e. the tem-
perature at least achieved in 10, 50, and 90% of the tumor during
the 1 h steady state period of the treatment. Invasive normal tissue
temperature measurements are clinically nearly impossible for
ethical reasons. Incidence of normal tissue hot spots is therefore
generally monitored by responding to patient complaints, which
occur when a pain threshold of 45°C is exceeded [9].

All treatments in this paper combined hyperthermia with radio-
therapy, typically in a hypo-fractionated schedule of 8 x4 Gy as
shown in Fig. 4, with radiotherapy given twice a week and once
a week the radiotherapy fraction was followed by 1h of
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is performed, ~1 h after the radiotherapy fraction.

hyperthermia with a time interval of 1h or less between the two
treatments to achieve maximum thermal sensitization of the effect-
iveness of radiotherapy by the addition of hyperthermia [36].

Hyperthermia of a leg

The leg system consisted of two opposing waveguides with an
aperture of 34 x 21 cm placed on either side of the leg immersed
in an open, temperature-controlled water bolus. The open water
bolus serves to optimize coupling of energy into the leg without
inducing local hot spots in the skin (Figs 1(a) and 5). The wave-
guides operate in the TE10 mode and are placed with the long
side in the axial direction of the leg to cover a ~35cm section
of the leg. The dominant E-field component E, is thus perpen-
dicular to the longitudinal axis of the leg (Figs 1(a) and 5).
Phase steering of the two waveguides is utilized to move the
E-field focus onto the tumor target location. The water bolus tem-
perature is set to fairly high values (~40°C) as the tumors in the
leg generally already start quite close to the skin surface; low water
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Fig. 5. System 1A: antenna set-up and skin tempera-
tures during hyperthermia treatment of melanoma
lesions on a leg, power switched on at t=6 and
t=16 min.
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Fig. 6. System 1B: location of lateral (/) and cranio-caudal (c-c) invasive thermometry probes during hyperthermia. Right: position of the breast in the open water

bolus.

temperatures would lower the tumor temperature near the skin.
More technical details can be found in [37].

Hyperthermia of an intact breast

This set-up uses an open water bolus into which the breast is hang-
ing to ensure optimal coupling of energy into the breast without
inducing local hot spots in the skin. Heating is achieved using a sin-
gle waveguide with an aperture of 34 x 21 cm placed at the bottom
of a temperature-controlled water bath (Fig. 1(b)). The waveguide
aperture orientation is with its long side in the axial direction of
the patient. To avoid unwanted field deposition in the non-tumor
breast, the skin of that breast is covered with a water-tight cloth to
prevent any SAR deposition in the healthy breast.

The water temperature is in the higher temperature range
(~40-43°C) as the skin of the breast is part of the tumor target
volume. Thermocouple temperature probes are placed onto the
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skin and invasively in the tumor (Fig. 6). Prior to treatment
both tap water and distilled water have been tested. Tap water
leads to significant absorption in the water bolus, and requires
relatively high power to ensure sufficient SAR in the tumor. We
did choose tap water for hygiene, as distilled water required con-
tinuous recirculation of water. For details see [38].

Hyperthermia of semi-deep-seated tumors in the thorax

This system consists of two waveguides operating in the TE10
mode; these are placed to the ventral and dorsal side of the thorax.
The set-up shown in Fig. 1(c) has a dominant E-field component
along the longitudinal axis of the body, similar to the orientation
in the four waveguide phased array used for heating pelvic and
abdominal tumors (Fig. 3). The two waveguide system allows
both waveguides to rotate to accommodate the optimal position
in view of the actual anatomical location (Fig. 7). Phase steering
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Fig. 7. System 1C: placement and rotation of the ventral 70 MHz waveguide on the thorax. Blue arrows indicate dominant E-field direction for different antenna

directions.

is utilized to move the E-field focus onto the tumor target loca-
tion. The dorsal waveguide is always the largest size with an aper-
ture of 21 x 34 cm, the ventral waveguide is selected based on the
exact anatomical site. Locations close to the head generally require
the use of the smaller-sized waveguide models to ensure sufficient
distance to the head of the patient. Thermocouple temperature
probes are placed invasively in the tumor (Fig. 11). The water
bolus temperature can range between room temperature (~21°C)
and 43°C and can be set separately for each waveguide. This tem-
perature is selected based on the tumor location. More details can
be found in [33].

Results
Hyperthermia of a leg

Figure 5 shows patient set-up and temperature results for a patient
with multiple large melanoma on his leg. The patient is treated in
sitting position with the leg immersed in the double-waveguide
hyperthermia system. All treatment sessions were performed
with both waveguides operating at the same amplitude and with
a 0° phase difference. High power (400 W) in combination with
a low water temperature of 39.5°C resulted in better median tem-
peratures exceeding 40°C, than high water temperature (42°C)
and low power (200 W). The treatment was tolerated with no
hot-spot-related pain complaints. At 7 weeks after treatment,
the sizes of the largest tumor volume had decreased significantly
and necrotic regions in the tumor were observed (Fig. 8).
Therefore, local tumor control was achieved, but unfortunately
the disease progressed outside the leg.

Hyperthermia of an intact breast

A series of six consecutive breast cancer patients were treated with
the single 70 MHz waveguide breast applicator, with each patient
receiving a total of 4 weekly sessions. Figure 6 shows a computer-
ized tomography (CT) image with the tumor location for one of
our patients, along with an image of the breast immersed in the
open water bolus during treatment. The water temperature was
~42°C and power was relatively high due to the use of tap
water, and ranged between 300 W in the first patient and 925
W in the last patient. Treatment was well tolerated by all patients,
no pain complaints due to SAR-related hot spots occurred, not
even at 925 W. This can probably be attributed to the use of the
open water bolus, combined with the effective heat removal by
the high blood flow in the superficial vessels in the skin of the
breast, which is greatly enhanced in response to the hyperthermic
conditions.
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3rd week
of treatment

after treatment

Fig. 8. System 1A: regression and necrotization of melanoma on the lower leg 7
weeks after the last hyperthermia session, as compared to the status in the third
week of treatment.

The invasive tumor temperatures measured during the 1h
steady-state period of treatment averaged over all six patients
and all four sessions per patient were T90 = 39.9°C, T50 = 41.2°
C, and T10 =42.3°C (Fig. 9).

An example of typical temperature profiles during treatment
shows that the skin temperature is fairly uniform at ~42.5°C,
and fairly high and uniform invasive tumor temperatures between
41.5 and 42°C are achieved at maximum depth in the central tar-
get zone (Fig. 10).

Hyperthermia of semi-deep-seated tumors in the thorax

Figure 11 shows a CT with the tumor site and temperature probe
for one of our first patients with a supraclavicular tumor in the
upper thorax, along with an image of the placement of the 70
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Fig. 9. System 1B: average tumor temperatures T10, 1
T50, and T90 for six breast cancer patients.

MHz waveguide at the ventral side. The dorsal waveguide embed-
ded in the table top is not visible. Both waveguides had an aper-
ture size of 21 x 34 cm. The treatment series started with two
sessions using only the ventral waveguide, followed by two ses-
sions during which both waveguides were used. Output power
was set at 100 and 250 W for the ventral and dorsal waveguides,
respectively, this was based on patient tolerance for output power
for each waveguide. The temperature in the water bolus was ~30°
C for both waveguides to cool the skin moderately, and the result-
ing median tumor temperature 750 was ~39°C in the first ses-
sions using one waveguide, increasing to ~44°C in the later
sessions using both waveguides. Even the lower tumor tempera-
ture T90 exceeded 41°C in the last two sessions, indicating the
entire tumor had reached therapeutic temperature levels (Fig. 12).

We presently treat 20-25 patients per year with this device.
Patient tolerance varies, sometimes pain complaints occur due
to unwanted hot spots close to bony structures. These are nor-
mally resolved by rotating the two waveguides to another angle
to avoid the dominant E, field component to point straight into
bony structures, or by altering the power balance between dorsal
and ventral waveguides to alleviate the pain complaint. More
eccentric locations can pose issues with excessive water accumula-
tion in the section of the water bag of the ventral waveguide
extending outside the body. This can usually be resolved by modi-
fying the shape of the water bag.

Conclusion

Clinical experience with heating of deep-seated pelvic tumors
using phased array systems of RF antennas is based on large
patient series around the globe starting already in the 1980s.
We have demonstrated in this paper that the basic principles of
this technology can be used to treat also more challenging deep-
seated and semi-deep-seated tumor locations elsewhere in the
body, presenting three dedicated systems for the intact breast,
the upper thorax, and the limbs. We should also mention the
development of dedicated phased array systems by other research
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patient

(°c)

x (cm)

Fig. 10. System 1B: temperature profile measured with the skin probe (T;,) and the
lateral invasive probe (T, asive) during treatment of the patient shown in Fig. 6. The
inset shows location of tumor target and probes in the CT image of Fig. 6, including
x-values for start and end of probe.

groups, using 140 MHz antennas for breast lesions [39], and 434
MH?z antennas for head and neck tumors [40, 41]. The relatively
low frequency of 70 MHz we have been using has as potential dis-
advantage that the focal volume is relatively large, but also a major
advantage that the penetration depth is better than at higher fre-
quencies. This resulted in adequate therapeutic temperatures in
most of our patients, a good achievement in view of the fact
that all presented systems used just one or two waveguides to
achieve heating at depth. Another favorable feature is the stable
phase control, which can also be partly be attributed to the use
of robust waveguide technology. Arrays of other types of antennas
can display crosstalk between antennas, this form of mutual inter-
action can cause unwanted and large phase shifts which can result
in suboptimal focalization of the tumor target region [42, 43].
The tumor temperatures we achieved are in fact in a similar
therapeutic range as the temperatures achieved in pelvic tumors
using phased array systems with larger numbers of antennas.
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Fig. 12. System 1C: applied power and tumor temperature during treatment of the deep-seated supraclavicular tumor shown in Fig. 8. Sessions 1 + 2: ventral wave-

guide is used, sessions 3 +4: both ventral and dorsal waveguides are used.

This is very important in view of the strong dose-effect relation-
ship found for many tumors, e.g. as found in a recent review for
recurrent breast cancer treated mainly with 434 MHz applicators
[8] and for cervical tumors treated with phased array systems of
RF antennas in Rotterdam [6, 7] and in Amsterdam [36].

The next step is to promote more wide clinical use of these
solutions for challenging locations. This will require convincing
manufacturers to include these solutions as an add-on with
their phased array systems for deep-seated pelvic tumors.
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