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Abstract. The tensor center of a group G is the set of elements a in G such
that a ⊗ g = 1⊗ for all g in G. It is a characteristic subgroup of G contained in its
center. We introduce tensor analogues of various other subgroups of a group such as
centralizers and 2-Engel elements and investigate their embedding in the group as well
as interrelationships between those subgroups.
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1. Introduction. The nonabelian tensor square of a group is a special case of the
nonabelian tensor product which has its origins in algebraic K-theory as well as in
homotopy theory. It is defined as follows.

DEFINITION 1.1. For a group G, the nonabelian tensor square G ⊗ G is generated
by the symbols g ⊗ h, g, h ∈ G, subject to the relations

gg′ ⊗ h = (gg′ ⊗g h)(g ⊗ h), (1.1.1)

g ⊗ hh′ = (g ⊗ h)(hg ⊗h h′), (1.1.2)

for all g, g′, h, h′ ∈ G, where hg = hgh−1 denotes the conjugate of g by h.

Everyone agrees that some ideas leading to this concept can already be found
in Whitehead’s work [15]; e.g. the universal quadratic function �. The nonabelian
tensor square appears in essence but not in name in the work of Keith Dennis and is
based on ideas of C. Miller [14]. Independently, Lue in [12] defines nonabelian tensor
products in the setting of nilpotent groups, extending earlier work by Ganea [7]. As an
outgrowth of their involvement with generalized Van Kampen theorems, Brown and
Loday in [3] and [4] introduce nonabelian tensor products, establish their topological
significance and start the investigation of these products as group theoretical objects.
In [2] this work is continued with focus on nonabelian tensor squares. In the wake
of [2], many papers have appeared, mainly concerned with the explicit computation
of nonabelian tensor squares. For an overview of these results we refer to [9]. For
further details on the subject we refer the interested reader to the following web site:

http://www.bangor.ac.uk/∼mas010/nonabtens.html
The topic of this paper is the investigation of subgroups of a group defined via

its nonabelian tensor square, modeled after the tensor center Z⊗(G) of a group G,
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introduced by Ellis [6] as the set of all a ∈ G with a ⊗ x = 1⊗, for all x ∈ G, with 1⊗
being the identity of G ⊗ G. The starting point of our investigations is the following
generalization of the tensor center.

DEFINITION 1.2. For a group G and a non-empty subset X we define the tensor
annihilator of X in G to be the set

C⊗(X) = {a ∈ G | a ⊗ x = 1⊗ ∀x ∈ X}.
The tensor annihilator is an analogue of the centralizer of a subset X of elements

in a group G; i.e. CG(X) = {a ∈ G | [a, x] = 1 ∀x ∈ X}, where [g, h] = ghg−1h−1, the
commutator of g, h ∈ G. As we shall see in the third section, results analogous to those
for centralizers in a group will hold for tensor annihilators. In [6], it was shown that
Z⊗(G) is a characteristic subgroup of G contained in Z(G), the center of G. This result
is a corollary to our results on tensor annihilators, since Z⊗(G) = C⊗(X) for X = G.

An alternative characterization of the center of a group as the margin of the
commutator word gives rise to an analogue in the setting of nonabelian tensor products.
Margins were introduced by P. Hall in [8]. Let ϕ(x1, . . . , xn) be a word in the variables
x1, . . . , xn. The i-th partial margin, 1 ≤ i ≤ n, of ϕ in a group G is the set of all a ∈ G
with ϕ(g1, . . . , agi, . . . , gn) = ϕ(g1, . . . , gi, . . . , gn) for all g1, . . . , gn ∈ G, denoted by
ϕ∗

i (G). The margin ϕ∗(G) of the word ϕ is defined as the intersection of the partial
margins ϕ∗

i (G), i = 1, . . . , n. Margins and partial margins are characteristic subgroups
of the group.

We have γ ∗
1 (G) = {a ∈ G | [ag, h] = [g, h] ∀g, h ∈ G}, where γ (x, y) = [x, y] is the

commutator word and it can be easily seen that γ ∗
1 (G) = γ ∗

2 (G) = γ ∗(G) = Z(G). In
[10], a local version of a margin was introduced for various 2-variable commutator
words ϕ(x, y) as the set of all a such that ϕ(ax, g) = ϕ(x, g), for fixed g and all x ∈ G;
the properties of these sets and the interrelationship between them and the respective
margins were investigated. It is natural to ask whether there are tensor analogues
for margins and its localized version, in particular for the commutator word γ (x, y) =
[x, y]. This is the topic of our investigations in Section 4 of this paper, where we consider
the set of all a ∈ G such that ax ⊗ y = x ⊗ y, for all x, y ∈ G and all b ∈ G such that
xb ⊗ g = x ⊗ g, for fixed g and all x ∈ G, respectively. As we shall find out, the tensor
analogues share many properties with the original group concepts.

The question arises whether there exist tensor analogues for other commu-
tator words such as normed commutators of weight n; namely γ (x1, . . . , xn) =
[x1, . . . , xn], where [x1, . . . , xn−1, xn] = [[x1, . . . , xn−1], xn], and the n-Engel word
εn(x, y) = [x, ny] where [x, ny] = [[x, n−1y], y] and [x, 1y] = [x, y]. For normed com-
mutators of weight n we have

Zn(G) = {a ∈ G | [a, g2, . . . , gn] = 1 ∀ g2, . . . , gn ∈ G},
the n-th center of the group G, which is characteristic in G. It can be easily seen that

Z⊗
n (G) = {a ∈ G | [a, g2, . . . , gn−1] ⊗ gn = 1⊗ ∀ g2, . . . , gn ∈ G}

is a characteristic subgroup of G contained in Zn(G) and it will therefore be called the
n-th tensor center of G.

In contrast to the n-th center, the set of right n-Engel elements of a group G,

Rn(G) = {a ∈ G | [a, ng] = 1 ∀g ∈ G},
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is not necessarily a subgroup for n ≥ 3; (see [13]). In [11], however, it was shown
that R2(G) = {a ∈ G | [a, g, g] = 1 ∀a ∈ G} is a characteristic subgroup of G. Tensor
analogues of Rn(G) can be easily defined as

R⊗
n (G) = {a ∈ G | [a, n−1g] ⊗ g = 1⊗ ∀ g ∈ G}.

In the last section of this paper we shall show that R⊗
2 (G) is a characteristic subgroup of

G, containing Z(G) and contained in R2(G). We conclude this section with an example
of a group W in which the containments Z⊗(W ) < Z(W ) < R⊗

2 (W ) < R2(W ) are all
proper.

2. Basic results. This section contains basic results on nonabelian tensor squares,
as can be found in [2], and some lemmas to be used throughout the rest of the paper.
We start with the familiar commutator expansion formulas when left action is used,
whose similarities to the defining relations of the nonabelian tensor square do not come
as a surprise since the properties of G ⊗ G are related to the biderivation property of
commutators.

LEMMA 2.1. Let G be a group and g, g′, h, h′ ∈ G with [g, h] = ghg−1h−1, the
commutator of g and h. Then

[gg′, h] = [gg′, gh][g, h], (2.1.1)

[g, hh′] = [g, h][hg, hh′]. (2.1.2)

In our last section we discuss the tensor analogue of right 2-Engel elements. The
following formulae which hold for these elements are of importance in this context.

PROPOSITION 2.2. [11] Let G be a group and R2(G) = {a ∈ G | [a, g, g] = 1 ∀g ∈ G}.
Then the following hold for a, b ∈ R2(G) and g, h ∈ G:

[[a, g], [h, g]] = 1; (2.2.1)

[a, g, h, h] = 1; (2.2.2)

[a, g, h][a, h, g] = 1; (2.2.3)

[a, g, a] = 1; (2.2.4)

[[a, g], [a, h]] = 1. (2.2.5)

Proof. The first four identities follow immediately from [11] and (2.2.5) is a
consequence of the fact that the normal closure of a ∈ R2(G) is abelian, as shown
in [11]. �

The group G acts on G ⊗ G by g(u ⊗ v) = gu ⊗ gv, for g, u, v ∈ G. With this
observation, the following result is a consequence of Definition 1.1. For the interested
reader we mention that a key ingredient of the proof of this proposition is expansion
of gh ⊗ g′h′ in two ways, a widely used technique in commutator calculus.

PROPOSITION 2.3. [2, Proposition 3]. The following relations hold for all g, g′, h,

h′ ∈ G:
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g(g−1 ⊗ h) = (g ⊗ h)−1 = h(g ⊗ h−1), (2.3.1)

(g ⊗ h)(g′ ⊗ h′)(g ⊗ h)−1 = [g,h](g′ ⊗ h′), (2.3.2)

[g, h] ⊗ h′ = (g ⊗ h) h′
(g ⊗ h)−1, (2.3.3)

g′ ⊗ [g, h] = g′
(g ⊗ h)(g ⊗ h)−1, (2.3.4)

[g ⊗ h, g′ ⊗ h′] = [g, h] ⊗ [g′, h′]. (2.3.5)

The next result is the key to the striking analogies between the tensor annihilator
and the centralizer of a subset X in a group G.

PROPOSITION 2.4. [2, Proposition 2]. Let G be a group and G′ = 〈[g, h] | g, h ∈ G〉
its commutator subgroup. Then there exists a homomorphism κ : G ⊗ G → G′ such that
κ(g ⊗ h) = [g, h]. Furthermore, ker κ, denoted by J2(G), is a central subgroup of G ⊗ G
and G acts trivially on J2(G).

PROPOSITION 2.5. [2, Proposition 11]. Let U, V be groups. Then

(U × V ) ⊗ (U × V ) ∼= (U ⊗ U) × (V ⊗ V ) × (Uab ⊗� Vab) × (Vab ⊗� Uab),

where Uab and Vab are the abelianizations of U and V, respectively, and ⊗� denotes the
abelian tensor over �.

PROPOSITION 2.6. [2, Proposition 9] Given a central extension 1 → A → K→π
G → 1, then there is an exact sequence (A ⊗ K) × (K ⊗ A) →ι K ⊗ K −→π⊗π G ⊗ G → 1
in which Im ι is central.

For groups of class two the tensor expansion formulas reduce to the following.

LEMMA 2.7. [1] Let G be a group of class 2 and a, b, c, d, e ∈ G. Then

[a, b][c, d] ⊗ e = ([a, b] ⊗ e)([c, d] ⊗ e), (2.7.1)

[a, b] ⊗ cd = ([a, b] ⊗ c)([a, b] ⊗ d). (2.7.2)

3. Tensor annihilators. We start with the main result of this section, a theorem
which details the properties of the tensor annihilator of a set X . It is the exact analogue
of the theorem which holds for the centralizer of a subset X of a group G. Just replacing
C⊗(X) by CG(X) gives the familiar result for groups. Similarly, as we defined an action
of the group G on its tensor square G ⊗ G, we can define an action of Aut(G), the
automorphism group of G, on G ⊗ G as follows. For α ∈ Aut(G), let α(g ⊗ h) = αg ⊗ αh
for g, h ∈ G.

THEOREM 3.1. Let G be a group and X a non-empty subset of G. Then

C⊗(X) = {a ∈ G | a ⊗ x = 1⊗ ∀x ∈ X},

the tensor annihilator of X in G, is a subgroup of G contained in CG(X). If X is a normal
subset or a characteristic subset of G, then C⊗(X) is a normal or characteristic subgroup,
respectively.
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Proof. Let a ∈ C⊗(X). Then, by Proposition 2.4, κ(a ⊗ x) = [a, x] = 1, for all
x ∈ X . Hence C⊗(X) is contained in CG(X). For 1G, the identity of G, we have 1G ⊗ x =
1⊗ for all x ∈ X . Hence C⊗(X) 
= ∅. Now let a, b ∈ C⊗(X). Then, by (1.1.1) and (2.3.1),
we have ab−1 ⊗ x = a(b−1 ⊗ x)(a ⊗ x) = ab−1

(b ⊗ x)−1(a ⊗ x) = 1⊗ for all x ∈ X ; hence
ab−1 ∈ C⊗(X). We conclude that C⊗(X) is a subgroup of G.

Now let X be a characteristic subset of G; i.e. αx ∈ X , for all α ∈ Aut(G) and all
x ∈ X . Then, for a ∈ C⊗(X), we have αa ⊗ x = α(a ⊗ α−1

x) = 1⊗, for all x ∈ X and all
α ∈ Aut(G). It follows that C⊗(X) is a characteristic subgroup of G. The proof that
C⊗(X) � G if X is a normal subset of G is similar and therefore omitted. �

As is customary, we write C⊗(g) instead of C⊗({g}) if X = {g}, and call C⊗(g) the
tensor centralizer of g in G. Observe that, contrary to the group centralizer, the element
g is not necessarily contained in C⊗(g). The following proposition is now immediate.

PROPOSITION 3.2. Let G be a group and X a non-empty subset of G. Then

C⊗(X) =
⋂
x∈X

C⊗(x) = C⊗(〈X〉).

Proof. The first part of our claim follows from the definition of C⊗(X). For the
second part observe that obviously C⊗(〈X〉) ⊆ C⊗(X). Now consider a ∈ C⊗(X) and
u ∈ 〈X〉, where u is a word in X ∪ X−1. It follows by (1.1.2), (2.2.1), and induction on
the length of the word u that a ⊗ u = 1⊗. We conclude that C⊗(X) ⊆ C⊗(〈X〉). �

The result by Ellis in [6] and the tensor analogue of the fact that the center of
the group is the intersection of all centralizers is now an immediate consequence of
Theorem 3.1 and Proposition 3.2.

COROLLARY 3.3. Let G be a group. Then the tensor center Z⊗(G) is a characteristic
subgroup of G contained in the center of G. Furthermore, Z⊗(G) = ⋂

g∈G
C⊗(g).

For use in the next section, we state here another immediate corollary of
Theorem 3.1 and Proposition 3.2.

COROLLARY 3.4. Let G be a group and Gg = 〈xg | x ∈ G〉, the normal closure of g in G.
Then C⊗(Gg) is a normal subgroup of G contained in CG(Gg) and C⊗(Gg) = ⋂

x∈G
C⊗(xg).

4. Tensors and margins. In this section we explore a tensor analogue of P. Hall’s
margins in the case of the commutator word [8]. Our investigations are guided by
the Model Proposition stated in [10]. To make our notions more precise, we give the
following definitions using left action.

DEFINITION 4.1. Let G be a group and g ∈ G. Then

∗E(G, g) = {a ∈ G | [xa, g] = [x, g] ∀x ∈ G}, (4.1.1)

E∗(G, g) = {a ∈ G | [ax, g] = [x, g] ∀x ∈ G}. (4.1.2)

(Note that in this context, the left and right asterisks denote absorption to the left
and right, respectively, whereas for right action as used in [10], left and right asterisks
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denote absorption from the left and right, respectively.) In [10], it was shown that
∗E(G, g) and E∗(G, g) are subgroups and

⋂
g∈G

E∗(G, g) = ⋂
g∈G

∗E(G, g) = Z(G).

We are now ready to formulate the proposition from [10] of which we shall prove
a tensor analogue.

Model Proposition. [10] Let G be a group, g ∈ G, and Gg the normal closure of g
in G. Then

(i) ∗E(G, g) = CG(g),
(ii) E∗(G, g) = ⋂

x∈G
CG(xg) = CG(Gg),

(iii) E∗(G, g) � G and E∗(G, g) ⊆ ∗E(G, g).
We shall now define the tensor analogues of ∗E(G, g) and E∗(G, g).

DEFINITION 4.2. Let G be a group and g ∈ G. Then

⊗E(G, g) = {a ∈ G | xa ⊗ g = x ⊗ g ∀x ∈ G}, (4.2.1)

E⊗(G, g) = {a ∈ G | ax ⊗ g = x ⊗ g ∀x ∈ G}. (4.2.2)

With these definitions we can now state and prove the tensor analogue of the
Model Proposition.

THEOREM 4.3. Let G be a group, g ∈ G, and Gg the normal closure of g in G. Then
⊗E(G, g) and E⊗(G, g) are subgroups of G. Also we have

⊗E(G, g) = C⊗(g), (4.3.1)

E⊗(G, g) = C⊗(Gg), (4.3.2)

E⊗(G, g) � G and E⊗(G, g) ⊆ ⊗E(G, g). (4.3.3)

Proof. The fact that ⊗E(G, g) and E⊗(G, g) are subgroups follows immediately from
(4.3.1) and (4.3.2) as well as Theorem 3.1 for X = {g} and Corollary 3.4, respectively. To
prove (4.3.1) we observe that by (1.1.1) we have xa ⊗ g = x(a ⊗ g)(x ⊗ g) for a, g, x ∈ G.
By (4.2.1) and Definition 1.2, it follows that a ∈ ⊗E(G, g) if and only if a ∈ C⊗(g). Thus
(4.3.1) follows.

To prove (4.3.2), we observe that by (1.1.1) and (2.3.1) we have

x−1
(a ⊗ xg) = x−1(ax) ⊗ g = x−1

((ax ⊗ g)(x ⊗ g)−1).

Thus a ⊗ xg = 1⊗ if and only if ax ⊗ g = x ⊗ g. We conclude that E⊗(G, g) = C⊗(Gg).
By Corollary 3.4 together with (4.3.2), we have E⊗(G, g) � G, and C⊗(Gg) ≤ C⊗(g)

together with (4.3.1) and (4.3.2) implies that E⊗(G, g) ⊆ ⊗E(G, g), proving (4.3.3.) �
The following analogue of Proposition 1.2 in [10] is now an immediate consequence

of Theorem 4.3 and Corollaries 3.3 and 3.4.

COROLLARY 4.4. Let G be a group. Then Z⊗(G) = ⋂
g∈G

E⊗(G, g) = ⋂
g∈G

⊗E(G, g).

5. The tensor analogue of right 2-Engel elements. In this section we shall show
that R⊗

2 (G) = {a ∈ G | [a, g] ⊗ g = 1⊗∀g ∈ G} is a characteristic subgroup of G. This
is the tensor analogue of the fact that the set of right 2-Engel elements, i.e. R2(G) =
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{a ∈ G | [[a, g], g] = 1 ∀g ∈ G}, is a characteristic subgroup of G, as shown in [11]. We
start with a few lemmas.

LEMMA 5.1. Let G be a group and a ∈ R⊗
2 (G), g, h ∈ G. Then

(a ⊗ g)−1 = a ⊗ g−1, (5.1.1)

([a, h] ⊗ g)([a, g] ⊗ h) = 1⊗. (5.1.2)

Proof. To show (5.1.1) we observe that [a, g] ⊗ g = 1⊗ implies g(a ⊗ g) = a ⊗ g by
(2.3.3). By (2.3.1), this yields a ⊗ g = g−1

(a ⊗ g) = g−1
(g(a ⊗ g−1)−1) = (a ⊗ g−1)−1. We

conclude that (5.1.1) holds.
To show (5.1.2), we observe that by (5.1.1) we have a ⊗ gh = (a ⊗ (gh)−1)−1.

Expanding both sides by (1.1.2) and observing (5.1.1) we arrive at (a ⊗ g) · g(a ⊗ h) =
h−1

(a ⊗ g)(a ⊗ h), or equivalently, after rearranging and inverting, we obtain

((a ⊗ h) · g(a ⊗ h)−1)−1 = (a ⊗ g−1) · h−1
(a ⊗ g−1)−1.

By (2.3.3) it follows that

([a, h] ⊗ g)−1 = [a, g−1] ⊗ h−1. (5.1.3)

Using (2.3.1), we obtain for the right side of the above that

[a, g−1] ⊗ h−1 = [a,g]([a, g] ⊗ h−1)−1.

Substituting this into (5.1.3) yields after inversion

([a, h] ⊗ g) · [a,g]([a, g] ⊗ h−1)−1 = 1⊗.

Conjugating the above by [g, a], using (2.2.1) and (2.3.1) yields

([a, h] ⊗ g)(h[a, g] ⊗ h) = 1⊗.

After substituting h−1 for h into the above we arrive at

([a, h]−1 ⊗ g)(h−1
[a, g] ⊗ h−1) = 1⊗.

Using (2.3.1), conjugating with [h, a], observing (2.2.1) and inversion lead to

([a, g] ⊗ h)([a, h] ⊗ g) = 1⊗,

the desired result. �
LEMMA 5.2. Let a ∈ R⊗

2 (G) and g, h ∈ G. Then g[a, h] ⊗ h = 1⊗.

Proof. Expanding 1⊗ = [a, gh] ⊗ gh by (2.1.2) and (1.1.2), we arrive at

1⊗ = ([a, g] · g[a, h] ⊗ g) · g([a, g] · g[a, h] ⊗ h).

Further expansion using (1.1.1) leads to

1⊗ = [[a,g](g[a, h] ⊗ g) · g([a,g](g[a, h] ⊗ h) · ([a, g] ⊗ h)).
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Observing that [a, g] acts trivially on the first factor and conjugating by g−1, we obtain

1⊗ = ([a, h] ⊗ g) · [a,g](g[a, h] ⊗ h) · ([a, g] ⊗ h). (5.2.1)

Note that κ(g[a, h] ⊗ h) = [g[a, h], h] = [g, [a, h], h] = 1, by (2.2.2) and (2.2.3). Thus
g[a, h] ⊗ h ∈ kerκ and [a, g] acts trivially on it. Hence (5.2.1) reduces to

1⊗ = ([a, h] ⊗ g) · (g[a, h] ⊗ h) · ([a, g] ⊗ h).

Finally, by using (5.1.2), the equation above reduces to 1⊗ = g[a, h] ⊗ h, the desired
result. �

Now we are in a position to prove the main result of this section.

THEOREM 5.3. Let G be a group and R⊗
2 (G) = {a ∈ G | [a, g] ⊗ g = 1⊗ ∀g ∈ G}.

Then R⊗
2 (G) is a characteristic subgroup of G containing Z(G) and being contained in

R2(G).

Proof. The containments and the fact that R⊗
2 (G) is a characteristic set are both

obvious. It remains to be shown that R⊗
2 (G) is closed under inverses and products.

If a ∈ R⊗
2 (G), then, by (2.2.4), (2.3.1), and the fact that R⊗

2 (G) ⊆ R2(G), we obtain

[a−1, g] ⊗ g = [a, g]−1 ⊗ g = ([a, g] ⊗ g)−1 = 1⊗.

Hence a−1 ∈ R⊗
2 (G). Now let a, b ∈ R⊗

2 (G) and g ∈ G. Then, by expansion using (2.1.1)
and (1.1.1), we arrive at [ab, g] ⊗ g = a[b, g] ⊗ g. It follows that [ab, g] ⊗ g = 1⊗ by
Lemma 5.2. Thus ab ∈ R⊗

2 (G), the desired result. �
We conclude this paper with an example of a group in which R⊗

2 is properly
contained in the set of right 2-Engel elements and the center is properly contained in
R⊗

2 .

EXAMPLE 5.4. Let W = G/N, where G = 〈x1, y1, z1, x2, y2, z2〉 = U × V, with
〈x1, y1, z1〉 = U and 〈x2, y2, z2〉 = V, where U ∼= V ∼= H3 = F3/γ3(F3), the free group
of class two and rank 3. Furthermore, let N = 〈[x1, y1][y2, x2], [x1, z1][z2, x2]〉, a central
subgroup of G. Then

1 < Z⊗(W ) < Z(W ) < R⊗
2 (W ) < R2(W ) = W,

where the containments indicated are proper.

Proof. Denoting the cosets xiN, yiN and ziN, i = 1, 2, by ai, bi and ci, respectively,
we have W = 〈a1, b1, c1, a2, b2, c2〉. Since W has class 2, it follows that R2(W ) = W
and Z(W ) = 〈[a1, b1], [a1, c1], [b1, c1], [b2, c2]〉.

To compute W ⊗ W , we first determine G ⊗ G and then obtain W ⊗ W as a
suitable quotient of it. Since G ∼= U × V , it follows from Proposition 2.5 that

G ⊗ G = (U ⊗ U) × (V ⊗ V ) × (Uab ⊗� Vab) × (Vab ⊗� Uab).

Denoting by �n the direct product of n copies of the infinite cyclic group �, we
have Uab ∼= Vab ∼= �3. Since the abelian tensor is bilinear, we obtain Uab ⊗� Vab ∼=
Vab ⊗ Uab ∼= �9. By [1], it follows that U ⊗ U ∼= V ⊗ V ∼= H3 ⊗ H3

∼= �17. Hence,
with the above, we arrive at G ⊗ G ∼= (�17)2 × (�9)2 = �52.
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In order to apply Proposition 2.6 in computing W ⊗ W , we determine the kernel
(G ⊗ N) × (N ⊗ G). We observe that with L1 = {x1, y1, z1} and L2 = {x2, y2, z2}, we
have N ⊗ G = 〈[x1, y1][y2, x2] ⊗ g, [x1, z1][z2, x2] ⊗ g | g ∈ L1 ∪ L2〉 and G ⊗ N = 〈g ⊗
[x1, y1][y2, x2], g ⊗ [x1, z1][z2, x2] | g ∈ L1 ∪ L2〉. As [a, b] ⊗ c = (a ⊗ b) · c(a ⊗ b)−1

= (c ⊗ [a, b])−1, by (2.3.3) and (2.3.4), we conclude that G ⊗ N = N ⊗ G. Now, by
(2.3.3) and (2.7.1) and the relations of G, we have

[x1, w1][w2, x2] ⊗ g =
{

[x1, w1] ⊗ g for g ∈ L1,

[w2, x2] ⊗ g for g ∈ L2,

where w1 = y1 or z1 and w2 = y2 or z2, respectively. It follows that

N ⊗ G = 〈[x1, y1] ⊗ g, [x2, z2] ⊗ h, [x1, z1] ⊗ g, [x2, z2] ⊗ h | g ∈ L1, h ∈ L2〉.
By [1], the generators of N ⊗ G are independent generators of G ⊗ G and we observe
that (N ⊗ G) × (G ⊗ N) ≤ (U ⊗ U) × (V ⊗ V ). Since N ⊗ G ∼= �12, we conclude that
Proposition 2.6 leads to

W ⊗ W ∼= (G ⊗ G)/Im ι ∼= �52−12 = �40.

We turn now to the computation of Z⊗(W ) and R⊗
2 (W ). Recalling Z(W ) =

〈[a1, b1], [a1, c1], [b1, c1], [b2, c2]〉, we observe that [b1, c1] ⊗ a1 
= 1⊗ and [b2, c2] ⊗ a2 
=
1⊗. We conclude that [b1, c1], [b2, c2] 
∈ Z⊗(W ). We shall show next that [a1, b1] ⊗ g =
[a1, c1] ⊗ g = 1⊗ for all g ∈ A = {a1, b1, c1, a2, b2, c2}. Let g = a1. Then, by (2.7.3) and
the relations of W , it follows that

[a1, b1] ⊗ a1 = [a2, b2] ⊗ a1 = (a2 ⊗ b2) · a1 (a2 ⊗ b2)−1 = 1⊗

and

[a1, c1] ⊗ a1 = [a2, c2] ⊗ a1 = (a2 ⊗ c2) · a1 (a2 ⊗ c2)−1 = 1⊗.

For the other elements in A the result follows in a similar manner. Since
W = 〈a1, b1, c1, a2, b2, c2〉, we conclude Z⊗(W ) = 〈[a1, b1], [a1, c1]〉 which is properly
contained in Z(W ).

Finally, we compute R⊗
2 (W ). Without further reference we shall use the fact that

in all our calculations the commutator and tensor expansions are linear. This comes
from the fact that W has class 2 and thus we can apply Lemma 2.7. Consider [ai, h] ⊗ h
with i = 1, 2 and h ∈ W . By expansion [ai, h] ⊗ h can be expressed as a product of
factors of the form [ai, bi] ⊗ w and [ai, ci] ⊗ w and their inverses, where w ∈ A. By the
relations of W and (2.3.3) it follows that each of these factors equals one. We conclude
that [ai, h] ⊗ h = 1⊗, for all h ∈ W , and hence a1, a2 ∈ R⊗

2 (W ).
We claim now that R⊗

2 (W ) = 〈a1, a2, Z(W )〉. Every w ∈ W can be written as
w = aα1

1 aα2
2 bβ1

1 bβ2
2 cγ1

1 cγ2
2 w′ with integers α1, α2, β1, β2, γ1, γ2 and w′ ∈ W ′. To prove our

claim, it suffices to show that for every w = bβ1
1 bβ2

2 cγ1
1 cγ2

2 , with β1, β2, γ1, γ2 not all zero,
there exists h ∈ W such that [w, h] ⊗ h 
= 1⊗. By expansion we obtain

[w, h] ⊗ h = ([b1, h] ⊗ h)β1 ([b2, h] ⊗ h)β2 ([c1, h] ⊗ h)γ1 ([c2, h] ⊗ h)γ2 .

If β1 
= 0 we choose h = c1 and arrive at [w, h] ⊗ h = ([b1, c1] ⊗ c1)β1 
= 1⊗, since by [1],
we have that [b1, c1] ⊗ c1 is a nontrivial basis element of W ⊗ W . Similarly, choosing
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h = c2, b1 or b2 if β2, γ1 or γ2 are not equal to zero, respectively, leads to [w, h] ⊗ h 
= 1⊗.
We conclude that R⊗

2 (W ) = 〈a1, a2, Z(W )〉. Since W = R2(W ), it follows that R⊗
2 (W )

is a proper subgroup of R2(W ), as claimed. �
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