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Abstract. We consider the Jack–Laurent symmetric functions for special values
of parameters p0 = n + k−1m, where k is not rational and m and n are natural numbers.
In general, the coefficients of such functions may have poles at these values of p0. The
action of the corresponding algebra of quantum Calogero–Moser integrals D(k, p0) on
the space of Laurent symmetric functions defines the decomposition into generalised
eigenspaces. We construct a basis in each generalised eigenspace as certain linear
combinations of the Jack–Laurent symmetric functions, which are regular at p0 =
n + k−1m, and describe the action of D(k, p0) in these eigenspaces.

2010 Mathematics Subject Classification. 05E05, 81R12.

1. Introduction. The Jack symmetric functions P(k)
λ can be considered as one-

parameter generalisation of Schur symmetric functions [5, 6] and play an important role
in many areas of mathematics and theoretical physics. They can be also defined as the
eigenfunctions of an infinite-dimensional version of the Calogero–Moser–Sutherland
(CMS) operators [2].

In paper [7], we introduced and studied a Laurent version of Jack symmetric
functions – Jack–Laurent symmetric functions P(k,p0)

α as certain elements of �± labelled
by bipartitions α = (λ,μ), which are pairs of the usual partitions λ and μ. Here, �± is
freely generated by pa with a ∈ � \ {0} being both positive and negative. The variable
p0 plays a special role and is considered as an additional parameter. The usual Jack
symmetric functions P(k)

λ are particular cases of P(k,p0)
α corresponding to empty second

partition μ. The simplest example of Jack–Laurent symmetric function corresponding
to two one-box Young diagrams is given by

P(k,p0)
1,1 = p1p−1 − p0

1 + k − kp0
.

https://doi.org/10.1017/S0017089515000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000361


600 A. N. SERGEEV AND A. P. VESELOV

We proved the existence of P(k,p0)
α for all k /∈ � and p0 �= n + k−1m, m, n ∈ �>0 (see

Theorem 4.1 in [7]). The coefficients of P(k,p0)
α as functions of p0 are rational and may

have poles at p0 = n + k−1m with natural m, n, so the corresponding Jack–Laurent
symmetric function may not exist (as one can see in the example above). This is
related to the fact that the spectrum of the algebra of the corresponding quantum
CMS integrals D(k, p0) is not simple, which leads to the decomposition of �± into
generalised eigenspaces.

In this paper, we fix a non-rational value of k and study the analytic properties
of Jack–Laurent symmetric functions as functions of p0 at the special values p0 =
n + k−1m. The main result is the construction of a basis in each generalised eigenspace
of D(k, p0) as certain linear combinations of the Jack–Laurent symmetric functions,
which are regular at p0 = n + k−1m.

The structure of the paper is as follows. In the next section, we introduce the
equivalence relation on the set of bipartitions induced by the action of the algebra
D(k, p0) and study it in detail. In particular, we show that each equivalence class E
consists of 2r elements, which can be explicitly described in terms of geometry of the
corresponding Young diagrams (see Figure 1 below).

In the third section, we construct the linear combinations of Jack–Laurent
symmetric functions

Q(k,p0)
α =

∑
β∈E, β⊂α

aβα(k, p0)P(k,p0)
β ,

which are regular at p0 = n + k−1m and give a basis in the corresponding generalised
eigenspace. Here, E is the equivalence class of bipartition α and aβα(k, p0) are some
rational functions of p0 with poles at p0 = n + k−1m of known order (see Theorem 3.6
below). As a corollary, we describe the order of the pole of P(k,p0)

α at p0 = n + k−1m in
terms of the geometry of the corresponding bipartition α. We are using the technique
similar to the translation functors in the representation theory [1, 8] and based on the
Pieri formula for Jack–Laurent symmetric functions derived in [7].

In the last section, we describe the action of the algebra D(k, p0) with p0 = n +
k−1m in each generalised eigenspace VE . More precisely, we show that provided k is
non-algebraic the image of D(k, p0) in End VE is isomorphic to the tensor product of r
copies of dual numbers Ar = �[ε]⊗r, ε2 = 0 and the corresponding action of Ar in VE

is the regular representation of Ar.

2. Equivalence relation. We start with the following result from our paper [7]
about the quantum CMS integrals at infinity.

Let us assume at the beginning that k is not rational and p0 �= n + k−1m, m, n ∈
�>0 and consider the corresponding Jack–Laurent symmetric function P(k,p0)

α indexed
by bipartition α = (λ,μ) (see [7] for the precise definition). We will use the standard
representation of the partitions as Young diagrams [6].

THEOREM 2.1 ([7]). There exist quantum CMS integrals B(r) : �± → �±

polynomially depending on p0 such that

B(r)P(k,p0)
α = br(α, k, p0)P(k,p0)

α , (1)

https://doi.org/10.1017/S0017089515000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000361


JACK–LAURENT SYMMETRIC FUNCTIONS FOR SPECIAL PARAMETERS 601

where

br(α, k, p0) =
(∑

x∈λ

c(x, 0)r−1 + (−1)r
∑
x∈μ

c(x, 1 + k − kp0)r−1

)
(2)

and the content c(x, a) of the box x = (ij) is defined by

c(x, a) = (j − 1) + k(i − 1) + a.

The algebra of CMS integrals D(k, p0) is generated by these operators.
Let us introduce the following equivalence relation E on bipartitions, depending

on parameters k, p0. We say that α = (λ,μ) is E-equivalent to α̃ = (λ̃, μ̃) if and only if
for all r ≥ 1 we have

br(α, k, p0) = br(α̃, k, p0),

or, more explicitly, ∑
x∈λ

c(x, 0)r−1 + (−1)r
∑
y∈μ

c(y, 1 + k − kp0)r−1 (3)

=
∑
x∈λ̃

c(x, 0)r−1 + (−1)r
∑
y∈μ̃

c(y, 1 + k − kp0)r−1.

If parameters k, p0 are non-special, then this equivalence relation is trivial. More
precisely, we have the following result [7].

PROPOSITION 2.2. If k is not rational and p0 �= n + k−1m, m, n ∈ �>0, then α is
E-equivalent to α̃ if and only if α = α̃.

Proof. If (3) is true for all r ≥ 1, then the sequences

(c(x, 0),−c(y, 1 + k − kp0))x∈λ,y∈μ̃, (c(x, 0),−c(y, 1 + k − kp0))x∈λ̃,y∈μ

coincide up to a permutation. Therefore, we have for every x ∈ λ two possibilities:
c(x, 0) = c(x̃, 0) for some x̃ ∈ λ̃, or c(x, 0) = −c(ỹ, 1 + k − kp0) for some ỹ ∈ μ. In the
first case, we have for x = (ij), x̃ = (ĩj̃) the relation j − j̃ + k(i − ĩ) = 0, so j = j̃, i = ĩ
since k is not rational.

In the second case, we have for ỹ = (ĩj̃) that

kp0 = j + j̃ − 1 + k(i + ĩ − 1), (4)

which contradicts to our assumption, since both j + j̃ − 1 and i + ĩ − 1 are positive
integers. �

Consider now the case of special values of parameters when

p0 = n + k−1m

for some n, m ∈ �>0, still assuming that k is not rational. Denote by π (n, m)
the rectangular Young diagram of size n × m and the corresponding bipartition
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π = (π (n, m), π (n, m)). Define the central symmetry transformation θ acting on
(ij) ∈ π (n, m) by

θ (ij) = (n − i + 1, m − j + 1).

Inclusion of the Young diagrams induces the following partial order on bipartitions.
We say that α ⊂ α̃ if and only if λ ⊂ λ̃ and μ ⊂ μ̃, where the Young diagrams are
understood as the subsets of the plane. We will use the same convention for all set-
theoretical operations for bipartitions.

PROPOSITION 2.3. Bipartition α = (λ,μ) is E-equivalent to α̃ = (λ̃, μ̃) if and only if

α \ π = α̃ \ π (5)

and

θ (λ \ λ̃) = μ \ μ̃, θ (λ̃ \ λ) = μ̃ \ μ. (6)

Proof. We will use the notations from the proof of the previous proposition. If α

is equivalent to α̃, then for any x = (ij) ∈ λ \ π (n, m) there is only the first possibility
and therefore x ∈ λ̃ \ π (n, m). Thus, λ \ π (n, m) ⊂ λ̃ \ π (n, m), and by symmetry λ \
π (n, m) = λ̃ \ π (n, m). Similarly, we have μ \ π (n, m) = μ̃ \ π (n, m) and (5).

From (5), it follows that λ \ λ̃ is contained in π (n, m). For x = (ij) ∈ λ \ λ̃ there
exists only second possibility, which means that there exists ỹ = (ĩj̃) ∈ μ such that
j + j̃ − 1 + k(i + ĩ − 1) = kp0 = n + km. Since k is not rational, this implies that

j + j̃ − 1 = n, i + ĩ − 1 = m,

which means that θ (x) ∈ μ \ μ̃. Similarly, we have θ (μ \ μ̃) ⊂ λ \ λ̃. Since θ is an
involution, this implies

θ (λ \ λ̃) = μ \ μ̃.

By symmetry, we have θ (λ̃ \ λ) = μ̃ \ μ.

Conversely, assume that we have the relations (5), (6). We have to show that the
sequences

(c(x, 0),−c(y, 1 + k − kp0))x∈λ,y∈μ̃, (c(x, 0),−c(y, 1 + k − kp0))x∈λ̃,y∈μ

coincide up to a permutation. We have the disjoint unions

λ = (λ \ π (n, m)) ∪ (λ \ λ̃) ∪ (λ ∩ λ̃ ∩ π (n, m)),

μ̃ = (μ̃ \ π (n, m)) ∪ (μ̃ \ μ) ∪ (μ̃ ∩ μ ∩ π (n, m)),

λ̃ = (λ̃ \ π (n, m)) ∪ (λ̃ \ λ) ∪ (λ ∩ λ̃ ∩ π (n, m)),

μ = (μ \ π (n, m)) ∪ (μ \ μ̃) ∪ (μ ∩ μ̃ ∩ π (n, m)).
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Using this, the relations (5), (6) and the identity

c(θ (x), 1 + k − kp0) = (m + kn − kp0) − c(x, 0), x ∈ π (n, m) (7)

we can identify the corresponding contributions in these sequences and have the
result. �

Consider the set Pn,m of bipartitions α ⊂ π = (π (n, m), π (n, m)). For such
partitions, the equivalence relation can be described in the following simple way.
Introduce the involution ω : Pn,m → Pn,m such that for α = (λ,μ)

ω(α) = (λ, π (n, m) \ θ (μ)). (8)

Introduce now another equivalence relation R on bipartitions. We say that α =
(λ,μ) is R-equivalent α̃ = (λ̃, μ̃) if

λ ∩ μ = λ̃ ∩ μ̃, λ ∪ μ = λ̃ ∪ μ̃. (9)

THEOREM 2.4. On the set Pn,m the involution (8) transforms the equivalence relation
E into R.

Proof. Let α = (λ,μ) be E-equivalent to α̃ = (λ̃, μ̃). It is enough to prove that

λ ∪ (π (n, m) \ θ (μ)) = λ̃ ∪ (π (n, m) \ θ (μ̃)) (10)

and

λ ∩ (π (n, m) \ θ (μ)) = λ̃ ∩ (π (n, m) \ θ (μ̃)). (11)

Let us prove (11). Let x ∈ λ ∩ (π (n, m) \ θ (μ)), then x ∈ λ and x /∈ θ (μ).
Assume that x /∈ λ̃, then from (6) it follows that θ (x) ∈ μ and thus x ∈ θ (μ).

Contradiction means that x ∈ λ̃.

Assume now that x /∈ π (n, m) \ θ (μ̃), which means that x ∈ θ (μ̃). Since x /∈ θ (μ),
we have x ∈ θ (μ̃ \ μ). Using the second part of (6), we see that x ∈ λ̃ \ λ and hence
x /∈ λ, which is a contradiction. Now (11) follows from the symmetry between α and
α̃. The proof of (10) is similar.

This proves that E-equivalence implies R-equivalence for ω-transformed
bipartitions. The converse claim can be proved in a similar way. �

This can be used to describe the structure of E-equivalence classes of bipartitions
from Pn,m.

THEOREM 2.5. Let α ∈ Pn,m and E be its E-equivalence class. Then, the following
holds true:

(1) E ⊂ Pn,m.

(2) E contains the minimal and maximal bipartitions αm, αM such that

αm ⊂ α ⊂ αM

for any bipartition α ∈ E. They can be characterised by the properties λ ∩ θ (μ) =
∅ and by λ ∪ θ (μ) = π (n, m) respectively.
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Figure 1.. (Colour online) Intersection of λ and θ (μ) (shaded) in the rectangle
π ((n, m) and the corresponding connected components νi. The boundary of θ (μ) is

shown in bold.

(3) Let αm = (λm, μm), αM = (λM, μM) and

λM \ λm = ν1 ∪ ν2 ∪ · · · ∪ νr, μM \ μm = τ1 ∪ τ2 ∪ · · · ∪ τs (12)

be the decomposition of the corresponding skew diagrams into connected
components. Then, νi, τj ⊂ π (n, m), r = s and, after a reordering,

θ (νi) = τi, i = 1, 2, . . . , r.

(4) Every element α from E can be represented uniquely in the form

α = αm ∪ (νa1 , τa1 ) ∪ (νa2 , τa2 ) ∪ · · · ∪ (νal , τal ), (13)

where {a1, a2, . . . , al} is a subset of {1, 2, . . . , r}. Any set of this form is a
bipartition from E, so the equivalence class E contains 2r elements.

Proof. The first part follows immediately from (5). Applying the involution ω and
the previous theorem, we have the remaining claims using simple geometric analysis
of the corresponding Young diagrams (see Figure 1). �

To describe E-equivalence class for general bipartition α = (λ,μ) denote by απ the
bipartition απ = α ∩ π = (λπ, μπ ) :

(λπ, μπ ) = (λ ∩ π (n, m), μ ∩ π (n, m)).

COROLLARY 2.6. Let E(απ ) be the E-equivalence class of απ . Then, E-equivalence
class of α can be described as

E(α) = {γ = β ∪ (α \ π ) ∈ P × P | β ∈ E(απ )}.
E(α) contains the minimal and maximal bipartitions αm, αM such that

αm ⊂ α ⊂ αM

with parts (3) and (4) of theorem 2.5 remaining valid for any bipartition α.
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Note that E(α) ∩ Pn,m ⊂ E(απ ) in general does not coincide with E(απ ).

3. Translation functors and regular basis. In [7], we have introduced the Jack–
Laurent symmetric functions Pα = P(k,p0)

α ∈ �± indexed by bipartition α = (λ,μ). As
we have shown, they are well defined provided k is not rational and p0 �= n + k−1m
with n, m ∈ �>0. Equivalently, we can consider Pα as elements of �±

p0
= �± ⊗ �(p0),

where �(p0) is the field of rational functions of p0.

Now we are going to study what happens when p0 = n + k−1m assuming that
k, n, m are fixed with k not rational and n, m ∈ �>0. Then, P(k,p0)

α as functions of p0

may have pole at p0 = n + k−1m depending on the choice of bipartition α.

The aim of this section is to construct a basis in �± which is regular at p0 = n +
k−1m. More precisely, we will define the Laurent symmetric functions Qα = Q(k,p0)

α ∈
�±, which are regular at p0 = n + k−1m, such that for any α

Qα =
∑

β∈E(α), β⊂α

aβαPβ

with some coefficients aβα = aβα(k, p0) which are rational functions of p0.

In order to do this, we are going to produce some family of linear transformations
FE,F acting on �±

p0
which are similar to the translation functors in the representation

theory [1, 8].
Let E be an E-equivalence class of bipartitions and VE ⊂ �±

p0
be the linear span

over �(p0) of Pα with α ∈ E. We have the decomposition of vector spaces over �(p0)

�±
p0

=
⊕

E

VE,

where the sum is taken over all E-equivalence classes of bipartitions.
Denote by PrE the projector onto the subspace VE with respect to this

decomposition and define for any E-equivalence classes E and F the linear map

FE,F (f ) := PrF (p1f ), f ∈ VE. (14)

The next result is quite simple but very important.

PROPOSITION 3.1. Let f ∈ VE and suppose that f has no pole at p0 = n + k−1m. Then
for any E-equivalence class F, the function FE,F (f ) also has no pole at p0 = n + k−1m.

Proof. We have

p1VE ⊂ VF ⊕ VE1 ⊕ · · · ⊕ VEL (15)

where F, E1, . . . , EL are different classes of equivalence. First, we will construct linear
operator C1 which polynomially depends on CMS integralsB(r) with coefficients having
no poles at p0 = n + k−1m and such that

C1(VE1 ) = 0, C1(v) = v, v ∈ VF

Let α1, . . . , αN be all bipartitions in F and β1, . . . , βM all bipartitions in E1. Then by
definition of the equivalence classes, there is r1 ∈ �>0 such that

br1 (α1, k, p0) �= br1 (βj, k, p0), j = 1, . . . , M
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when p0 = n + k−1m. Let

f1(t) =
M∏

j=1

(t − br1 (βj, k, p0)),

then operator D1 = f1(B(r1)), where B(r) are the CMS integrals from Theorem 2.1, acts
as zero in VE1 and in VF as a diagonal operator

D1Pαi = g1(αi, k, p0)Pαi , i = 1, . . . , N,

where g1(αi, k, p0) = f1(br1 (αi, k, p0)). Now having in mind Cayley–Hamilton theorem
we can define

C1 = (−1)N+1 1
σN

(
DN

1 − σ1DN−1
1 + · · · + (−1)N−1σN−1D1

)
where σ1, . . . , σN stand for the elementary symmetric polynomials in

g1(α1, k, p0), . . . , g1(αN, k, p0).

From our assumptions, we see that σN = g1(α1, k, p0) . . . g1(αN, k, p0) �= 0 when p0 =
k−1n + m. We see that C1(VE1 ) = 0 and by the Cayley–Hamilton theorem C1 acts as the
identity in VF .

In the same way, we can construct operators C2, . . . CL and define

C = C1C2 . . . CL.

Let p1f = g + g1 + · · · + gL be the decomposition according to (15). Applying to both
sides of this equality the operator C, we get

C(p1f ) = g = PrF (p1f ).

But, since B(r) are polynomial in p0, C is a differential operator with coefficients that
have no poles at p0 = n + k−1m, so both sides must be regular at this point. �

The following definition is motivated by the Pieri formula for Jack–Laurent
symmetric functions [7]. Let α = (λ,μ) ∈ Pn,m be a bipartition inside π.

For any box x ∈ π (n, m), define the set of bipartitions Sx(α) as

Sx(α) = {(λ ∪ x, μ), (λ,μ \ θ (x))}
assuming that x /∈ λ and λ ∪ x is a Young diagram, and that θ (x) ∈ μ and μ \ θ (x) is
a Young diagram (otherwise the corresponding element is dropped from the set).

Let us denote by X(α) the set of all bipartitions in the right-hand side of the Pieri
formula (see formula (56) from [7]): X(α) is the set of all bipartions β = (λ̃, μ̃) such
that α can be obtained from β by deleting a box from λ̃ or adding a box to μ̃.

PROPOSITION 3.2. Let E be an E-equivalence class and suppose that there is α ∈ E
such that Sx(α) is not empty. Then, there exists a unique E-equivalence class Ex different
from E such that for any α ∈ E

X(α) ∩ Ex = Sx(α).
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Proof. Let us prove first that if α is E-equivalent to α̃ then Sx(α) and Sx(α̃) belong
to the same E-equivalence class. Applying the involution ω, we reduce this to the
following statement. Let ω(α) = (λ,μ), ω(α̃) = (λ̃, μ̃) and

λ ∪ μ = λ̃ ∪ μ̃, λ ∩ μ = λ̃ ∩ μ̃.

Without loss of generality, we can assume that the box x can be added to λ and λ̃. We
need to prove that

(λ ∪ x) ∪ μ = (λ̃ ∪ x) ∪ μ̃, (λ ∪ x) ∩ μ = (λ̃ ∪ x) ∩ μ̃.

The first equality is obvious. To prove the second, consider two cases: x /∈ μ and x ∈ μ.

If x /∈ μ, then x /∈ λ ∪ μ = λ̃ ∪ μ̃, hence x /∈ μ̃, which implies that (λ ∪ x) ∩ μ =
(λ̃ ∪ x) ∩ μ̃.

If x ∈ μ, then x ∈ λ ∪ μ = λ̃ ∪ μ̃, and hence x ∈ μ̃. Therefore,

(λ ∪ x) ∩ μ = λ ∩ μ = λ̃ ∩ μ̃ = (λ̃ ∪ x) ∩ μ̃.

Hence, there exists a unique equivalence class Ex containing the union of Sx(α), α ∈ E.

The relation X(α) ∩ Ex = Sx(α) is easy to check.
We only left to prove that these equivalence classes E and E(x) are different.

Suppose that (λ,μ) and (λ ∪ x, μ) are R-equivalent. Then, we have

λ ∪ μ = λ ∪ x ∪ μ, λ ∩ μ = (λ ∪ x) ∩ μ,

implying that x ∈ λ, which is a contradiction. �
For any box x ∈ π (n, m), define now the set of bipartitions Sx(α) as

Sx(α) = {(λ \ x, μ), (λ,μ ∪ θ (x))}.
In the same way as in proposition 3.2, it can be proven that there exists a unique
E-equivalence class Ex, which contains Sx(α) for any α ∈ E.

Let x ∈ π (n, m). Denote by Fx the linear transformation defined by

Fx = FE,Ex .

The following proposition is based on the Pieri formula for Jack–Laurent
symmetric functions [7]. Introduce the following functions for bipartition α = (λ,μ)
and box x = (ij):

U(x, α; p0) = U1(x, α)U2(x, α; p0)U3(x, α; p0), (16)

U1(x, α) =
l(μ)∏

r=i+1

cμ(jr, 1 + k)cμ(jr,−k)
cμ(jr, 1)cμ(jr, 0)

, (17)

U2(x, α; p0) =
l(λ)∏
r=1

cα(jr,−1 − k(p0 + 2))cα(jr,−kp0)
cα(jr,−1 − k(p0 + 1))cα(jr,−k(p0 + 1))

, (18)
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U3(x, α; p0) = (j − 1 + k(l(λ) + μ′
j − p0 − 1))(j + k(μ′

j − l(μ)))

(j + k(l(λ) + μ′
j − p0))(j − 1 + k(μ′

j − l(μ) − 1))
, (19)

where

cλ(jr, a) = λr − j − k(λ′
j − r) + a,

cα(jr, a) = λr + j + k(μ′
j + r) + a,

and λ′ as before is the Young diagram conjugated (transposed) to λ.

PROPOSITION 3.3. The action of Fx on Jack–Laurent symmetric functions can be
described by

Fx(Pλ,μ) = V (x, λ, μ)Pλ∪x,μ + U(θ (x), λ, μ; p0)Pλ,μ\θ(x), (20)

where

V (x, λ, μ) =
l(μ)∏

r=i+1

cμ(jr, 1 + k)cμ(jr,−k)
cμ(jr, 1)cμ(jr, 0)

, x = (ij) (21)

and U(x, λ, μ; p0) is defined by (16).

Proof. This follows immediately from proposition 3.2 and Pieri formula for Jack–
Laurent symmetric functions [7]. �

LEMMA 3.4. Let us assume that the box θ (x) = (n − i + 1, m − j + 1), x = (ij) can
be removed from μ, then the following hold true:

(1) If λi−1 = j − 1, or λi+1 = j, then the numerator of the function U(θ (x), λ, μ; p0)
has zero of the first order at p0 = n + k−1m;

(2) If λi = j, or λi = j − 1, or j = 1, i = l(λ) + 1, then the denominator of the
function U(θ (x), λ, μ; p0) has zero of the first order at p0 = k−1n + m.

In all other cases, neither numerator nor denominator of U(θ (x), λ, μ; p0) has
zero at p0 = k−1n + m.

Proof. Note that U1 does not depend on p0. Introduce the new variable δ =
n + km − kp0. Since the box θ (x) = (i′j′) can be removed from μ, we have μ′

j′ = i′ =
n − i + 1 and

cα(j′r, a − kp0) = λr + j′ + k(μ′
j′ + r) + a − kp0 = λr − j − k(i − 1 − r) + δ + 1 + a.

The second factor cα(jr,−kp0) in the numerator of U2 corresponds to a = 0 and thus
equals to λr − j − k(i − 1 − r) + δ + 1. Since k is assumed not rational, the condition
δ = 0 gives r = i − 1 and λr = j − 1 and thus λi−1 = j − 1, which is the first condition
in case 1). Similarly, one can check the rest. �

Let E be an E-equivalence class consisting of more than one element and (λM, μM),
(λm, μm) be the maximal and the minimal bipartitions in it. Let us choose x ∈ λM \ λm

such that λM \ x is a partition and let ν be the connected component containing x.
Let α = (λ,μ) ∈ E, then it is easy to check that μ ∪ θ (x) is a partition if and only if
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λ ∩ ν = ∅. Therefore, for any α ∈ E, we can define a map ψ : E → Ex by

ψ(α) =
{

(λ \ x, μ), ν ⊂ λ

(λ,μ ∪ θ (x)), ν ∩ λ = ∅.
(22)

It is easy to see that ψ preserves the inclusions of bipartitions.

LEMMA 3.5. The following statements hold true:
(1) If ν \ x is non-empty and connected, then ψ is a bijection and for any α ∈ E

Fx(Pψ(α)) = d(x, p0, α)Pα,

where d(x, p0, α) is non-zero rational function in p0 which has neither zero nor
pole at p0 = n + k−1m.

(2) If ν \ x = ν1 ∪ ν2 is non-empty and not connected, then ψ is injective and for any
α ∈ E

Fx(Pψ(α)) = d(x, p0, α)Pα,

where d(x, p0α) has zero of the first order at p0 = n + k−1m if λ ∩ ν = ∅ and
d(x, p0, α) has neither zero nor pole at p0 = n + k−1m if λ ⊃ ν. If γ ∈ Ex and
γ /∈ Im ψ , then Fx(Pγ ) = 0.

(3) If ν \ x = ∅ is empty, then ψ is surjective such that for any γ ∈ Ex

ψ−1(γ ) = {α, α ∪ (x, θ (x))}

and

Fx(Pγ ) = d(x, p0, α ∪ x)Pα∪(x,θ(x)) + d(x, p0, α)Pα,

where d(x, p0, α ∪ x) has neither zero nor pole and d(x, p0, α) has a pole of the
first order at p0 = n + k−1m.

Proof. Let x = (ij). Consider the case (1). If ψ(α) = (λ \ x, μ), then d(x, p0) =
V (x, ψ(α)) and the claim follows. If ψ(α) = (λ,μ ∪ θ (x)), then d(x, p0) =
U(θ (x), ψ(α); p0). We claim that U(θ (x), ψ(α); p0) has no zero or pole at p0 = k−1n + m.

Indeed, according to lemma (3.4) we should show that none of the relations in the
lemma are satisfied. The last relation j = 1, i = l(λ) + 1 is impossible since ν \ x is
non-empty. To check the rest, note that since ν ∩ λ = ∅ we have j = λi + νi. If λi = j
then νi = 0 which is impossible. If λi+1 = j, we have λi ≥ λi+1 = j, which implies νi ≤ 0,
which is also impossible. If λi = j − 1 and λi−1 = j − 1 simultaneously, then the zero
in the denominator cancels the zero in the numerator and we have the claim. If at the
least one of these relations are not valid, then we have the strict inequality λi−1 > λi.

Let λi−1 = j − 1, then λi−1 = λi + νi − 1, which implies that νi > 1. It is easy to see
that this contradicts to the connectivity assumption of ν \ x. The last case to check is
when λi = j − 1, λi−1 > λi. This case contradicts to the connectivity of ν. This proves
the lemma in case (1). The remaining cases can be proved in the same way. �

THEOREM 3.6. Let α ∈ Pn,m and E be the E-equivalence class containing α, k /∈ � be
fixed. Then, there are rational functions aβα(p0) with β ∈ E, β ⊂ α such that aαα = 1 and
aβα(p0) has a pole at p0 = n + k−1m of order, which is equal to the number of connected
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components in α \ β, and such that the linear combination of Jack–Laurent symmetric
functions

Qα =
∑

β∈E, β⊂α

aβα(p0)Pβ

is regular at p0 = n + k−1m.

Proof. Let us prove theorem by induction on |λ \ λm|.
If |λ \ λm| = 0, then α = αm = (λ,μ) and in this case the theorem states that Pαm

is regular at p0 = k−1n + m. By part (2) of theorem 2.5, we have λ ∩ θ (μ) = ∅. Let
x1, . . . , xN be all boxes of the diagram λ beginning from the first box of the first row
and ending by the last box of the last row. Consider the following function:

Q = FxN . . .Fx1 (P∅,μ).

We have P∅,μ = P∗
μ is dual to Jack symmetric function and thus does not depend on

p0. Therefore, by proposition 3.1 Q has no poles at p0 = n + k−1m. Moreover, since
λ ∩ θ (μ) = ∅ by proposition 3.3 and lemma 3.4 we have

Q = VN . . . V1Pαm ,

where Vi, i = 1, . . . , N do not depend on p0, and thus Pαm is regular at p0 = n + k−1m.

Now suppose that α ∈ E and α �= αm. Therefore, there exists a connected
component ν ⊂ λM \ λm, ν ⊂ λ. Let us pick x ∈ ν such that λ \ x is a Young diagram.
It is easy to see that λM \ x is also a Young diagram.

Consider three different possibilities as in Lemma 3.5. In all three cases,

ψ(α) = (λ \ x, μ), ψ(αm) = (λm, μ ∪ θ (x))

and λm ∩ (θ (μ) ∪ x) = ∅. Therefore, ψ(αm) is the minimal element in Ex and | (λ \ x) \
λm |=| λ \ λm | −1 and we can apply inductive assumption. After applying Fx to Qψ(α)

and using lemma 3.5, we get

Fx(Qψ(α)) =
∑

β∈E, β⊂α

ãβα(p0)Pβ

with some coefficients aβα(p0) which are rational functions in p0. By proposition 3.1,
Fx(Qψ(α)) is non-singular at p0 = n + k−1m and d(x, p0, α) is also non-singular and
non-vanishing by lemma 3.5 in all three cases. Define

Qα = 1
d(x, p0, α)

Fx(Qψ(α)) =
∑

β∈E, β⊂α

aβα(p0)Pβ

with aβα(p0) = ãβα(p0)/d(x, p0, α).
Now let us prove that the coefficients aβα(p0) have the analytic properties stated in

the theorem. We have in all cases

aαα = ãαα

d(x, p0, α)
= d(x, p0, α)

d(x, p0, α)
= 1.
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Let β �= α. Then again in all three cases from Lemma 3.5, one can see that

aβα = d(x, p0, β)
d(x, p0, α)

aψ(β)ψ(α).

Now consider three different cases separately.
(1) If ν \ x is non-empty and connected, then by the first statement of

lemma 3.5 d(x, p0, β) is regular at p0 = n + k−1m and the number of connected
components α \ β is the same as the number of connected components of
ψ(α) \ ψ(β). This implies the theorem in this case.

(2) Let ν \ x = ν1 ∪ ν2 be a disjoint union of two non-empty components. Consider
two cases: β ⊃ ρ and β ∩ ρ = ∅, where ρ = (ν, θ (ν)). In the first case, the
number of connected components α \ β is the same as the number of connected
components of ψ(α) \ ψ(β) , d(x, p0, β) is regular and theorem follows. In the
second case, the number of connected components α \ β is less by 1 than
the number of connected components of ψ(α) \ ψ(β) , d(x, p0, β) has zero of
the first order and the theorem again follows.

(3) Let ν = x and (x, θ (x)) ∈ β, then the number of connected components α \ β

is the same as the number of connected components of ψ(α) \ ψ(β), d(x, p0, β)
is regular and the theorem follows.
If (x, θ (x)) /∈ β, then the number of connected components α \ β is greater by
1 than the number of connected components of ψ(α) \ ψ(β), d(x, p0, β) has a
pole of the first order and theorem again follows. This completes the proof.

�
COROLLARY 3.7. The Jack–Laurent symmetric function Pk,p0

α as a function of p0 has
a pole at p0 = n + k−1m of order l, where l is defined by (13) and Corollary 2.6.

For bipartitions α ∈ Pn,m, the order l of the pole at p0 = n + k−1m can be described
geometrically as the number of connected components in the intersection λ and θ (μ)
(which are shaded parts in Figure 1).

From Corollary 2.6 using the same technique, one can show that the assumption
α ∈ Pn,m in the theorem can be omitted.

PROPOSITION 3.8. Theorem 3.6 is true without assumption α ∈ Pn,m.

4. Algebra of integrals in generalised eigenspaces. Assume now that k is non-
algebraic and that p0 = n + k−1m for some n, m ∈ �>0 as before.

Let E be an E-equivalence class of bipartitions, consisting of 2r elements and
consider 2r-dimensional subspace VE(p0) ⊂ �± defined as the linear span of Jack–
Laurent symmetric functions P(k,p0)

α , α ∈ E for non-special p0, and as the linear span
of Q(k,p0)

α , α ∈ E for all p0 in a neighbourhood of p0 = n + k−1m.
The action of the algebra of CMS integrals D(k, p0) is diagonalisable for non-

special p0, but at p0 = n + k−1m it has a generalised eigenspace VE = VE(n + k−1m)
spanned by Q(k,n+k−1m)

α , α ∈ E. We are going to study now the action of the algebra in
this invariant subspace.

Consider the natural homomorphism

ϕ : D(k, n + k−1m) −→ End (VE).
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THEOREM 4.1. If k is non-algebraic, then the image of the homomorphism ϕ is
isomorphic to the tensor product of r copies of dual numbers

Ar = �[ε1, ε2, . . . , εr]/(ε2
1, ε2

2, . . . , ε
2
r ).

VE is the regular representation of Ar with respect to this action.

Proof. Let ν1, . . . , νr be the corresponding sets from Theorem 2.5 and Corollary
2.6, describing the equivalence class E and define

gs(ν) =
∑
x∈ν

c(x, 0)s−1,

where c(x, a) = (j − 1) + k(i − 1) + a as before.

LEMMA 4.2. If k is non-algebraic, then the determinant

� =

∣∣∣∣∣∣∣∣∣

g1(ν1) g1(ν2) . . . g1(νr)
g2(ν1) g2(ν2) . . . g2(νr)

...
...

...
...

gr(ν1) gr(ν2) . . . gr(νr)

∣∣∣∣∣∣∣∣∣
is non-zero.

Proof. Indeed, we can represent this determinant as a sum over all sequences of
boxes x1 ∈ ν1, . . . , xr ∈ νr

� =
∑

(x1,...,xr)

�(x1, . . . , xr),

where

�(x1, . . . , xr) =

∣∣∣∣∣∣∣∣∣

1 1 . . . 1
c(x1, 0) c(x2, 0) . . . c(xr, 0)

...
...

...
...

c(x1, 0)r−1 c(x2, 0)r−1 . . . c(xr, 0)r−1.

∣∣∣∣∣∣∣∣∣
But �(x1, . . . , xr) is Vandermonde determinant, so

�(x1, . . . , xr) =
∏
u<v

(c(xu, 0) − c(xv, 0)) =
∏
u<v

(ju − jv + k(iu − iv)),

where the product is taken over all boxes xu ∈ νu, xv ∈ νv. We can suppose that if u < v,
then the connected component νu is located higher and more to the right than νv, so we
have for u < v that ju − jv > 0 and iu − iv < 0. Therefore, if we consider �(x1, . . . , xr)
as a polynomial in k, then its constant term is strictly negative and thus the same is
true for �. In the same way, we can see that the coefficient at the highest degree of k is
strictly positive. Since k is not algebraic number we see that � �= 0. �

https://doi.org/10.1017/S0017089515000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000361


JACK–LAURENT SYMMETRIC FUNCTIONS FOR SPECIAL PARAMETERS 613

Let B(r) be the CMS integrals (1) and consider the following system of linear
equations

⎧⎪⎪⎨
⎪⎪⎩

g1(ν1)M1 + g1(ν2)M2 + · · · + g1(νr)Mr = B(2) − b2I
g2(ν1)M1 + g2(ν2)M2 + · · · + g2(νr)Mr = 1

2 (B(3) − b3I)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gr(ν1)M1 + gr(ν2)M2 + · · · + gr(νr)Mr = 1
r (B(r+1) − br+1I)

(23)

where the eigenvalue bs = bs(α, k, n + k−1m) does not depend on α ∈ E. Since the
determinant of this system is non-zero, the system has a unique solution M1, . . . ,Mr,
which are certain CMS integrals. We claim that the image of Mi of under ϕ give us
required εi.

To show this, consider the transition matrix A = (aβα), β, α ∈ E from the basis P
to Q in VE(p0) :

Qk,p0
α =

∑
β⊂α

aβαPk,p0
β .

Let A−1 = (ãβα) be the inverse matrix. It is easy to see that ãβα can be different from 0
only if β ⊂ α. Now, let ν be one of ν1, . . . , νr and define 2r × 2r matrix

ε̃ν =
∑
β,γ,α

ãβγ aγαEβα, (24)

where the sum is taken over all triples β ⊂ γ ⊂ α from E such that γ \ β ⊃ ρ, ρ =
(ν, θ (ν)) and Eβα, α, β ∈ E are standard matrices with only one non-zero matrix
element (βα) equal to 1.

Let D(s) = D(s)(p0) be the matrix of the operator B(s) in the basis Pk,p0
α , which is a

diagonal matrix with the diagonal elements d (s)
αα = bs(α, k, p0). Then, the matrix of the

operator B(s) in the basis Qk,p0
α is D̃(s) = A−1D(s)A. Consider the matrix

B(s) = D̃(s) − D(s) = A−1D(s)A − D(s)

with matrix elements

b(s)
βα =

∑
β⊂γ⊂α

ãβγ d (s)
γ γ aγα − d (s)

βα =
∑

β⊂γ⊂α

ãβγ (d (s)
γ γ − d (s)

ββ)aγα,

where we have used that A−1A = I . It is easy to see from the form of d (s)
ββ = bs(β, k, p0)

that

d (s)
γ γ − d (s)

ββ =
∑

ν⊂γ \β
g̃s(ν),

where

g̃s(ν) =
∑
x∈ν

c(x, 0)s−1 + (−1)s
∑

x∈θ(ν)

c(x, 1 + k − kp0)s−1.
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Therefore, the matrix B(s) can be represented in the form

B(s) =
∑
β⊂α

b(s)
βαEβα =

∑
ν

g̃s(ν)ε̃ν . (25)

From this, we see that the matrices ε̃ν satisfy the following system of linear relations⎧⎪⎪⎨
⎪⎪⎩

g̃2(ν1)ε̃1 + g̃2(ν2)ε̃2 + · · · + g̃2(νr)ε̃r = D̃(2) − D(2)

g̃3(ν1)ε̃1 + g̃3(ν2)ε̃2 + · · · + g̃3(νr)ε̃r = D̃(3) − D(3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g̃r+1(ν1)ε̃1 + g̃r+1(ν2)ε̃2 + · · · + g̃r+1(νr)ε̃r = D̃(r+1) − D(r+1).

(26)

It will be convenient now to use instead of p0 the local parameter

h = m + kn − kp0,

such that h = 0 when p0 = n + k−1m. From the identity (7), we have

g̃s(ν) =
∑
x∈ν

c(x, 0)s−1 −
∑
x∈ν

(c(x, 0) − h)s−1,

which implies that

lim
h→0

g̃s

h
= (s − 1)gs−1(τ ).

From Lemma 4.2, the determinant

�̃ =

∣∣∣∣∣∣∣∣∣

g̃2(ν1)/h g̃2(ν2)/h . . . g̃2(νr)/h
g̃3(ν1)/h g̃3(ν2)/h . . . g̃3(νr)/h

...
...

...
...

g̃r+1(ν1)/h g̃r+1(ν2)/h . . . g̃r+1(νr)/h

∣∣∣∣∣∣∣∣∣
is not zero and since the right-hand side is regular at h = 0 we can define

εν = lim
h→0

hε̃ν . (27)

Taking limit h → 0 in (26) and comparing the result with the system (23), we see
that εi = ενi satisfy the same linear system as (and hence coincide with) ϕ(Mi) in the
basis Qk,n+k−1m

α .

Thus, we have shown that εi belong to the image of ϕ. We claim now that ε2
i =

0, i = 1, . . . , r and that the products εi1 . . . εis are linearly independent for all subsets
{i1, . . . , is} ⊂ {1, . . . , r}.

The relations ε2
i = 0 follows from the equality ε̃2

i = 0, which is a simple
consequence of the formula (24). Indeed, it is easy to see that for any two terms
Eβα and Eβ̃α̃ entering (24) we have α �= β̃ since ν is a subset of α, but not of β̃.

Define ci
βα = ∑

ãβγ aγα, where the sum is taken over all γ ∈ E such that β ⊂ γ ⊂ α

and γ \ β ⊃ ρi, ρi = (νi, θ (νi)). Then

ε̃i =
∑

ci
βαEβα,

where the sum is taken over α, β ∈ E such that β ⊂ α and α \ β contains ρi.
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We have

ε̃i1 . . . ε̃is =
∑
β⊂α

ci1,...,is
β,α Eβ,α,

where

ci1,...,ir
β,α =

∑
β⊂γ1⊂···⊂γs−1⊂α

ci1
βγ1

. . . cis
γs−1α

and sum is taken for all possible chains such that ρi1 ⊂ γ1 \ β, . . . , ρis ⊂ α \ γs−1.
If β = αm is minimal in the sense of Theorem 2.5 and Corollary 2.6 and α =

β ∪ ρi1 ∪ · · · ∪ ρis , then there is the only chain

β ⊂ β ∪ ρi1 ⊂ β ∪ ρi1 ∪ ρi2 ⊂ · · · ⊂ α

and ci1,...,is
β,α = ci1

βγ1
. . . cis

γs−1α
. Now look at the coefficient ci

βα, where α = β ∪ ρi. In that
case, ci

βα = ãβαaαα = ãβα = −aβα. From theorem 3.6, this coefficient has a pole of
order 1, so the limit hci

βα when h → 0 is non-zero. Hence, the product εi1 . . . εis has
a non-zero coefficient at Eαmαm∪ρi1 ∪···∪ρis

. One can check that Eαmαm∪ρi1 ∪···∪ρis
does not

enter in any other product of εi. This proves linear independence of εi1 . . . εis .

The fact that εi, i = 1, . . . , r generate the whole image of ϕ follows from the
formula (25) and from the fact that the operators B(l) generate the algebra of CMS
integrals.

Note that the commutativity of εi (which follows from the commutativity of CMS
integrals) imply some relations for the coefficients aβα.

To prove that the corresponding action of Ar in VE is the regular representation
consider the socle1 of Ar generated by the product S = ε1 . . . εr ∈ Ar. The action of
Ar in VE is faithful, so there is a vector v ∈ VE such that Sv �= 0. Since S belongs to
all non-zero ideals of Ar the subspace Arv ⊆ VE is the regular representation of Ar.

Now the claim follows since Arv and VE have the same dimension 2r and thus must
coincide. �

5. Concluding remarks. The behaviour of Jack symmetric functions for special
(namely, positive rational) values of parameter k are known to be quite tricky and is
still to be properly understood. As it was shown by B. Feigin et al. [3], this question
turned out to be closely related with the classical coincident root loci problem going
back to Sylvester and Cayley (see [4]).

We have shown that the Jack–Laurent case turns out to be much simpler in this
respect and the analytic properties of the coefficients can be described in a satisfactory
manner (see Section 3 above). The reason is that in this case we have two parameters k
and p0, and we can fix k to be generic and consider the analytic properties in p0 instead.

Our main motivation to study Jack–Laurent symmetric functions came from the
representation theory of Lie superalgebras, where the case of special parameters is
particularly important. We will discuss this in a separate publication.
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