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THE FILLING OF GAPS IN GEOPHYSICAL TIME SERIES BY ARTIFICIAL NEURAL 
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ABSTRACT. Nowadays, there is a large number of time series of natural data to study geophysical and astrophysical phe-
nomena and their characteristics. However, short length and data gaps pose a substantial problem for obtaining results on
properties of the underlying physical phenomena with existing algorithms. Using only an equidistant subset of the data with
coarse steps leads to loss of information. We present a method to recover missing data in time series. The approach is based
on modeling the time series with manifolds of small dimension, and it is implemented with the help of neural networks. We
applied this approach to real data on cosmogenic isotopes, demonstrating that it could successfully repair gaps where data was
purposely left out. Multi-fractal analysis was applied to a true radiocarbon time series after recovering missing data.

INTRODUCTION

The analysis of time series generated by natural dynamic systems has been a key element in inter-
preting geophysical and climatic information. The goal of this analysis is to describe and elucidate
the nature of the underlying physical processes producing a signal in the data under consideration.
The problem of extracting information from dynamic systems is very important in many scientific
and practical areas. In this paper, we focus on time series of cosmogenic isotopes.

Information carried in a time series is frequently a superposition of different processes with different
scales of coherence or memory. In many cases the correlation structure of the time series X(t) shows
the property of stochastic self-similarity: A magnified small section looks similar to a large one over
a wide range of scales. For stochastic objects, self-similarity is used in the distributional sense: when
viewed at varying scales, the object’s stochastic distributions remain unchanged. Time series show-
ing stochastic self-similarity are often considered to be multi-fractal processes that can be described
with the help of scaling exponents (Falconer 1994), by characterizing their singularities (Mac-
Donald 1989; Davis et al. 1994a), and by identifying irregular structures (Davis et al. 1994b). Real
natural records are contaminated with noise, which is rarely additive, Gaussian, or white. Often,
noisy structure of data is generated by underlying non-linear chaotic processes (Abarbanel et al.
1993b), which exhibits alternating periodic, quasi periodic, and chaotic patterns.

These factors lead to complex-structured non-linear and non-stationary properties. For time series
arising from low-dimension chaotic systems, there are certain quantities, e.g. the dimension of the
attractor or the Lyapunov exponents, that can be obtained using up-to-date topology tools (Abarbanel
et al. 1993a; Sauer et al. 1991). These quantities are especially interesting, as they characterize intu-
itively useful concepts of the underlying physical systems, e.g. its number of active degrees of free-
dom, or its predictability. If we cannot assume the existence of underlying low dimension dynamics,
we can use the Wold decomposition (Anderson 1971), which is satisfied for any stationary process.

Thus, nowadays investigators have a few tools to analyze complex data. Nevertheless, to apply these
techniques one should have long enough and equidistant time series. Considering the short length of

1Cosmic Ray Laboratory, Ioffe Physico-Technical Institute, St. Petersburg 194021, Russia. 
Email: v.dergachev@pop.ioffe.rssi.ru.

2Institute of Computational Modeling SD RAS, Akademgorodok, Krasnoyarsk-36 660036, Russia
3Institute of Mathematics, Almaty 480100, Kazakhstan
4VERA Laboratorium, Institut für Isotopenforschung und Kernphysik Universität Wien, A-1090 Wien, Austria

https://doi.org/10.1017/S0033822200038224 Published online by Cambridge University Press

https://doi.org/10.1017/S0033822200038224


366 V A Dergachev et al.

available cosmogenic time series, in particular if some part of the data is lost, this is a substantial
problem for obtaining reliable results. Non-equidistant data distort even ordinary statistic character-
istics, and using only an equidistant subset with coarse steps leads to a loss of information. Tradi-
tional methods of filling gaps are not effective for non-stationary and non-linear time series (Little
and Ruben 1987). In the case of a lot of missing data and when its location is random there is no
known solution. We suggest an approach to solve the problem of the recovery of missing data in time
series using artificial neural networks.

Recovering Gaps in the Data by Neuromathematical Methods 

Available time series have different indices, which are often heterogeneous: they may have a differ-
ent length, different argument steps, and often some fragments are lost. We approach the problem of
recovering gaps in time series using a new neural non-linear method (Rossiev 1998; Gorban et al.
1998) of modeling data with gaps by a sequence of curves. The method is a generalization of the
iterative construction of the singular expansion of matrices with gaps (Hastie and Stuetzle 1988;
Kramer 1991). The method itself is founded on Ansatz-reasoning and only allows one to obtain the
plausible values of the missing data. However, the testing by means of artificially gapped time series
has shown remarkable results.

The Basic Model

The idea of modeling data with the help of manifolds of small dimension was conceived long ago.
Its most widespread, old, and feasible implementation for data without gaps is the classical method
of principal components. The method calls for modeling the data by their orthogonal projections
over “principal components”. Generally, to present data with sufficient accuracy requires relatively
few principal components.

We assume that our data are a set of n-dimensional vectors, which form the rows of a table A={aij}.
Let a part of information in the table be missing - there are some gaps aij=@ for some i, j (the symbol
@ is used to denote gaps in the data). Let us take a look at the row x which forms a vector (x1,
x2,...,xn). There may be k gaps in the vector x, i.e. some of the components of x are unknown. There-
fore this vector represents a k-dimensional linear manifold Lx, parallel to k coordinate axes corre-
sponding to the missing data. If there are additional a-priori restrictions on the missing values,
instead of Lx we obtain a rectangular parallelepiped .

We search for a manifold M of a given small dimension (in most cases a curve, dimension = 1)
approximating the data set in the best way and satisfying certain additional regularity conditions.
The quality of the approximation is determined from the lower bound of the distances between the
points of M and Lx, (or, accordingly, Qx). We obtain a residual by subtracting from each data vector
the closest point of M. The process is repeated until the residuals are close enough to zero. Approx-
imations can be constructed recursively (Rossiev 1998; Gorban et. al. 2000) for three models: linear,
quasi-linear or essentially non-linear (self-organizing curves—SOC). We illustrate the idea starting
with a linear model as an example.

In the first step we approximate the data A with a straight line M. The points on M which are closest
to the data points form a matrix P1 = {ciyj+bj}. The vectors y and b are found by minimizing the
quality of the approximation, which is measured by means of the least-squares method:

(1)
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Further, we are looking for a matrix P2 that is the best approximation of the residual A-Pl and so on,
while the norm of the residual isn’t sufficiently close to zero. Thus, the initial matrix A is presented
in a form of a sum of q matrices, i.e. A≈P1+P2+...+Pq. The q-factorial recovering of the gaps con-
sists in their definition through the sum matrix. For incomplete data, with a number of iterations we
get a system of factors which we will use for recovering.

Figure 1a shows the geometrical interpretation of a linear model, for x(i) ⊂  R2, i = 1,2,…. We
assume that for one point x one coordinate is lost, so it corresponds to a line Lx. The data is approx-
imated by the inclined line M (with direction parallel y), which approximates the known data in a
best manner. The matrix P1 consists of the points on M closest to the initial data set. The lost coor-
dinate of x is substituted by the intersection .

Quasi-linear models (Rossiev 1998; Gorban et. al. 2000) are constructed in several stages: First, we
construct a linear model with the algorithm explained above, yielding the vectors y and b. These
vectors can always be chosen so that y · b = 0 and y ·  y =1. 

Then, we construct a vector-function f(t) = [f1(t),...fn(t)] (a cubic spline or a polynomial) which min-
imizes the function

(2)

where α > 0 is a smoothing parameter.

So, first we are looking for the projection of data vector a on the line y: Pr(a)=ty+b, t=(a,y), then we
find a point on the curve f(t). For incomplete data it is taken the closest point t(a) on the line. And
after that we take the corresponding point on the curve f(t) for t=t(a). After construction of f(t) the
matrix A is substituted by the matrix of deviations from the model (see Figure 1b). The process is
repeated several times and in the end the initial table A is represented in the form of the q-factorial
model: aij · ≈ Σi,j fi(tj).

Figure 1 Geometrical interpretation of the linear model (a) and the quasi-linear model (b).
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The third model is based on the theory of Kohonen self-organizing maps (or, more precisely, on the
paradigm of self-organizing curves). These curves are defined by a set of model points (a kernel). In
the first approximation polygons are used. Every data point is mapped onto the closest point of the
kernel. The domain of points mapped to a certain kernel point is called its taxon. The kernel points
are to be placed in a way that 1) the total length of the curve is minimal, 2) the summed distance of
the data points from their respective taxons is minimal, and 3) the angles between adjacent segments
of the polygon is minimal (Gorban et. al. 2000). This can be achieved iteratively: under fixed decom-
position of the data set into taxons the kernel points are calculated. Under fixed location of kernels,
the taxons are re-determined. Successive searching of kernels → taxons → kernels → … leads to a
convergent algorithm. The final smoothening of the polygon is done analogous to the method used
in the quasi-linear model. 

The computational process is implemented on the neural conveyor Famaster-2 made by Gorban’s
team at the Institute of Computational Mathematics of SD RAS (Russia). Contrary to the original
approach (Rossiev 1998; Gorban et. al. 2000), in this paper we form a data table according to Takens
algorithm (Sauer et al. 1991). So, we assume that the data are produced by the underlying dynamic
system, whose trajectories are continuous and belong to low dimensional attractor.

RESULTS

We carried out experiments with different time series. Figure 2 shows the results obtained for the
annual Wolf index time series after deleting about 50% of the points. The gaps were recovered using
the SOC model. Vectors of the initial data table were Takens’ m-dimensional retarded vectors (Sauer
et al. 1991) with delay 1 and embedding dimension 6, i.e. the k-th vector consists of 6 consecutive
elements starting with the k-th element in the time series: ak=(xk,xk+1,..., xk+5). Therefore, a missing
point in the time series implies missing elements in 6 data vectors. As can be seen in Figure 2, the
neural conveyor remarkably recovered even the peaks of the cycles.

Figure 3 shows a part of the cosmogenic isotope 14C time series (Stuiver and Becker 1993). We show
the results for deleting and recovering 30% of the points in the time range from 5995 BC to 10 AD.
The last time series we used in our experiment was a 10Be time series (Beer et al. 1994), where we
deleted about 10% of all points (Figure 4).

Figure 2 A fragment of the annual Wolf index time series, SOC, number of mode: 10
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Multi-Fractal Spectrum of 14C Time Series 

The multi-fractal spectrum f(α) is the characteristic customarily studied when dealing with multi-
fractals. We calculate this quantity for the annual 14C time series from 1510 AD–1954 AD (Stuiver
and Braziunas 1993). In one part of the initial time series data values exist only for every second year
(1891 AD–1910 AD), and there are some gaps (1911–1912, 1914, 1946). With the help of the
method suggested above this missing data was recovered. Thus, we have obtained an equidistant
time series that is applicable for multi-fractal analysis.

Let us note (Barreira et al. 1997), that the multi-fractal spectrum of singularities of strength α for the
Borel finite measure µ on a compact set X is a function f(α) defined by a pair of functions (g,G).
Here, g: X → [-∞, ∞] is a function which determines the level sets: 
and produces a multi-fractal decomposition. 

Figure 3 A fragment of the 14C 10-year time series, quasi-linear model, number of nodes: 8

Figure 4 A fragment of a 10Be time series, quasi-linear model, number of nodes: 6
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Let G be a real function, which is defined on Zj ⊂  X such as G(Z1) ≤ G(Z2), if Z1 ⊂ Ζ 2. Then the

multi-fractal spectrum is . Let g be determined as point-wise dimension dµ of mea-

sure µ at all points x ∈ X for which the limit exists, where

µ(B(x,r)) is a “mass” of measure in the ball of radius r centered at x. Since we have chosen g = dµ

we can drop the subscript g from further references to . 

Then , where the exponent α is the local density of µ. The singular distribu-
tion µ can then be characterized by the Hausdorff dimension of Kα, i.e. f(α) = G(Kα) = dimH (Kα).
If µ is self-similar in some sense, f(α) is a well-behaved concave function (Falconer 1994). 

To estimate f(α) we applied both the method of the partition sum and the method of direct calcula-
tion (Riedi 1997) on the 14C time series. Figure 5 shows the f(α)–spectrum. We see that the 14C
record has a large range of multi-fractal properties from 1.0 to 2.2.

CONCLUSION

Our experiments have shown that the neural method for recovering of gaps in a time series is quite
eligible for analysis of cosmogenic isotopes. This method allows to obtain equidistant time series,
which can be analyzed by using the modern tools of non-linear analysis.
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