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ON A PRODUCT RELATED TO
THE CUBIC GAUSS SUM, II

HIROSHI ITO

Abstract. We continue the investigation of the product whose argument has
been shown, in [2], to be related to the cubic Gauss sum.

§1. Introduction and results

Let p = e 2 π 2/ 3 and ω be a generator of a prime ideal of Q(p) which is

of degree one and prime to 3. We assume ω = 1 (mod 3). Let p be the

norm of ω. Define the cubic Gauss sum τ(ω) by

p-1
rM = Σ

where (^) 3 is the cubic residue symbol of Q(p). Consider two real analytic

functions g(z) and G(z) on the complex plane C defined by

g{z) = e(z) + ρe{pz) + p2e(p2z),

G(z) = e(z)+e(pz) + e(p2z).

Here,

e(z) = exp I 2πi—-— j , \ = p — p2 = y/3i,

and z is the complex conjugate of z. These functions g(z) and G(z) are

periodic with respect to Z[p], the integer ring of Q(p). We also have

g(pz) = p~ιg(z), G(ρz) = G(2:).

Take a ^-representative system S modulo ω; S is a set of (p— l)/3 elements

of Z[p] such that the numbers

s, ps, p 2s (5 G 5),
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H. ITO

together with 0, form a complete representative system of residue classes
modulo ω. Let a(S) be the cube root of -1 determined by the congruence

a(S) =]Js (modα;).
ses

The existence of a(S) follows from Wilson's theorem. The products

are independent of the choice of S.

THEOREM 1. We have

(1.1) a(S)p1/3 J] p^- ~ C (-λ τ(ω) as p -> oo

with an absolute constant C (> 0).

In (1.1), the symbol ~ means that the ratio of the both sides converges
to one as p tends to the infinity. The constant C is given as explained
at the end of Section 2 and its approximate value is 1.135... . Because
τ(ω)3 = —pω and

Hem i n / i G(±y

Theorem 1 implies, in particular, the following.

THEOREM 2.

11 lofk) ~ c ° as p ~* °°
α = l ^ujJ

The assertion of Theorem 1 is equivalent to

(1.2) logj(^) \{ω)a(S)p-2'3]l0}Λ-*logC as p->oo
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CUBIC GAUSS SUM

with an appropriate choice of the branch of the logarithmic function. We

will see, more precisely, that

(1.3)

= logC as

for any positive real number ε. The product ΓLes^Hf;) *s the r e a ^ c u b e

root of the positive number Πα=i ^(fO ( s e e §^, ^) Hence, Theorem in [2]

coincides with the "imaginary part" of (1.2), and that of (1.3) is also shown

in [2]. Thus, to prove (1.3) (and Theorem 1) it suffices to show the "real

part" of (1.3). This follows from the next theorem as a special case.

THEOREM 3. We have

Π CAv as oo,

where v stands for an element of Z[p] which is prime to 3. More precisely,

for any positive number ε, we have

(1.4)
Σ a

V
- l o g

.a
log g{-

= log \v\ + 3 log C + O{\ιs\)-1+ε) as oo.

Here, C is the same constant as in Theorem 1 and the O-constant depends

only on ε.

The proof of the above theorem is elementary but, unfortunately, rather

long. It will be given in Sections 2 and 3. Theorems 1 and 2 can be seen as

analogues of the following identities which hold for every odd prime number

p:

π
α = l

α = l (2)

e2πia/p _ e—2πia/p

e2πia/p _|_ e—2πia/p

P 1 p2πia/p _ ^—2-κia/p

Π _ r = z?
e2πia/p _ι ^.—O.-n-in In *"

a=l
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Here,
p-l /

MP) = 2^ ~
1 \P

a=l v ^

and (-) is the quadratic residue symbol of the rational number field Q. The

first identity is a consequence of a well-known formula due to Gauss

p-l

(1.5) τ2(p) =
a=l

OΞI (2)

Note that

P~^ p4πia/p _ —4πia/p

e2πia/p , e~2πia/p\ __ TT ^ ^
^ 1 1 g2πia/p g—2πia/p

a=l
α = l _ _

a=l (2) α Ξ l (2)

- Γ 2

An analogue, using elliptic functions, of (1.5) for the cubic Gauss sum τ(ω)

is given in Matthews [4]. It should be noted that the proof of Theorem in [2],

and hence that of Theorem 1 above, both depend on his result. The author

does not know if the theory of elliptic curves is really necessary to prove

assertions as Theorem 1 or Theorem in [2], which involves only trigonomet-

ric sums and products. The product Πses#(;~j) i n (1-1), a trigonometric

analogue of the right hand side of (1.5), already appears in Cauchy [1] (cf.

(4.1) in Section 4) and is studied, more recently, by Loxton [3], Reshetukha

[6], and [2]. Loxton has shown that

{
ω J J # ( - j > —>0 as

i.e., the "argument part" of Theorem 2. Reshetukha's treatment of the

product Πα=i#(fί) i s different from that of Loxton and is an interesting

one, although it is not so successful at least at present. This paper is partly

motivated by his work. In Section 4, we state some remarks including this

point.
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§2. Proof of Theorem 3

Because every ideal of Z[p] which is prime to 3 is generated by an

element congruent to one modulo 3, it is enough to show (1.4) for v with

(2.1) Ϊ/ΞΞI (mod 3).

We assume this in the following. From the definitions, it follows easily that

p{a+b)J+b ( α Λ j e Z ) >

ei-z) = elz)

(2.2)

and

(2.3)

(2.4) g [ z ± τ l = p - g { z ) , g [ z + - ] =

We also see, by some calculation, that

M := {zeC; g(z) = 0}
(2.5)

with

= {z G C z = m (modZ[p]) for some m G Mi}

M i : = j θ , ± i , ^ C? = 0 , 1 , 2 ) 1 .

Now, if v = 1 + 36 (b G Z[p]), then

a 1 a — b 1

v 3 "" v 3v'

Hence, by G(β) = 3 and (2.3), our proof reduces to showing that

(2.6)
Σ l

O^α mod u

= log Iz/1 +31ogC-log3 + O (\ι/\

for any ε > 0.

- l + ε λ
as v \ —•> oo
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Next, we quote, from [2], pp. 206-207, some facts concerning the be-

havior of the function g(z) around points of M. Because of (2.4), it is

sufficient to know the behavior of g(z) around the origin. For the moment

we restrict the variable z to a sufficiently small neighborhood of the origin.

Then, there exist real analytic functions qι(z) and q2(z) such that we can

write

(2.7) g(z) = zqi(z) + z2q2(z)

and

(2.8) gi(z):=

is continuous at z = 0. We also have

and

(2.9) | |

Furthermore log \g(z)\ is differentiable infinitely many times outside M, and

we have, for every m in M and every pair (α, b) φ (0, 0) of non-negative

integers,

Qa+b

(2-10) Q^(log\g(m + z)\-log\z\) = 0{\z\1-a-b) as \z\ -> 0,

where the implied constant depends at most on a and b (cf. the proof of

Lemma 2 in [2]). Finally, from the continuity of g\(z) at z — 0 and (2.4),

(2.9), we see

(2.11) lim(log \g(m + z)\ - log \z\) = log | f l l (0) |

= log(2>/3 π) (m G M).

Let

D = {2 G C |J2Γ| < \z - u\ (Oφue Z[p]) },

^ ( ^ ) = v + -V . (u, υ e C, u φ 0)

and

D(υ) = ̂ ( υ ) .

Denote by μ the Lebesque measure of C.
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LEMMA 1. The integral fDrv\ log \g(z)\dμ exists for any υ in C.

Proof. It is clearly sufficient to show the assertion for v = m with

m £ M. From (2.10), we see that the derivatives of log \g{m + z)\ — log \z

with respect to z and z remain bounded when z tends to zero. Hence, by

the mean value theorem and (2.11), we have,

(2.12) log \g(m + z)\ - log \z\ = log(2>/3 TΓ) + O(\z\)

as 0 (me M).

The existence of JDίm\ log \g(z)\dμ follows from that of JD/Q\ log \z\dμ or of

J, z |< 1 log |2:|o?μ, which can easily be seen by the coordinate transformation

to the polar coordinates.

LEMMA 2. Let ϊ\ = Jplog \z\dμ. Then we have

JD(O)

/o 1

log \g(z)\dμ = - ^-^ log |i/| + —

Λ/3

2|z/|2
log(2>/3π) I—3\

The implied constant is absolute.

Proof. The area of V is Λ/3/2. Hence,

ι/\ dμ = \vl o g | z | φ = / log
O) 7P.

/ \z\dμ = ί
JD(O) JV

- 2 ; Λ log \v\,

- 2 . - 3 / \z\dμ.
Jv

The assertion follows from (2.12).

Put, for z in C,

d(z, M) = inf
mGM

— m .

If 6/(z, M) < 1/6, we can define m(z) as the point in M which is nearest to

z. We have d(z,M) — \z — m(z)\. For υ in C - M, set

(2.13)
D(v)

- log\g(v)\)dμ

JD(v)
\og\g(z)\dμ-
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and, for v with 0 < d(υ, M) < 1/6,

(2.14) Eo(v)

= / (log \g(z)\ - log \z - m[v)\ - (log \g[v)\ - log \v - m[v)\))dμ
JD(v)

= / (log \g(z)\ - l og \z - m(v)\)dμ
JD{V)

Vs
2\u

(log \g(υ)\ - log \υ - m(υ)\).

Let

Take a complete representative system i? of ^Z[p]/Z[p] and set

Ru = RΠU, Rv = RΠV.

Because

/ log 1̂ (

reR°^r~ϊϊ)

and m(r — ̂ ) = m{r) (r G RJJ) if |^| > 4, we have, using Lemma 2,

rβRu lD(r)
(log |0(z)| - log \z - m(r)\)dμ

2\u\
- m(r)\ - Eo(

- m(r)\)dμ
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r m(r)

' / (log|z-τπ(r)| - log |r - m(r)|)dμ

- m ( r ) I - l o g l r -

log I ̂

1

7r)

Here

(2.16) F(u):= I (\og\z-m(u)\-\og\u-m{u)\)dμ
JD(u)

)

and the primes on the summation symbols mean to omit the terms corre-

sponding to r E Z[p].

Estimation of terms appearing in the last expression in (2.15) will be

given in the next section. Here we only state results. Take an integer K
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greater than one and put

; d(z,M) < \v\~ι+1'κ},

Uk = {z € C
(2.17) (2<k<K-l),

Uκ = {zeC; \u\~ιlκ < φ , M) < ^ } ,

Rk = R Γ) Uk (1 < fc < UΓ).

In what follows, some of the arguments are valid only when \v\ is sufficiently

large with respect to K. We assume this. All the implied constants depend

at most on K. We have

K

= ί/UF, U = [jUk (disjoint unions).
k=l

Also,

(2.18)

The last estimate in (2.18) is a consequence of the following fact; if r G Rk

(k < K) and \r — m\ < \v\~1Jrk/κ with m G M, then D(r), whose area

is Λ/3/2|^|2, is contained in the disk around m with radius \v\~1+k/κ +

whose area is π\ιs\~2(y/3 + \u\k/κ)2.

LEMMA 3. We have

LEMMA 4. Ifre Rk with 2 < k < K, then

LEMMA 5. Ifve V, then
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It follows from Lemma 3 and (2.18) that

From Lemma 4 and (2.18) follows that

H 2 E (Eo(r)-Eo(r-±))=0(\v\-1+2/K)

Therefore, because RJJ = U/c=i -̂ fe?

(2 < k < K).

V

reRu

Finally, from Lemma 5 and (2.18),

From these estimations and (2.15), we see

(2.19)

reR
9[r-

2
= log |i/| - - ^ / i - log(2Λ/3 7τ)

For each m G Mi, put

Ru,m = {r e Ru m(r) = m (modZ[p]) }.

RJJ = |̂ J i?t/,m (disjoint union).

We have

(2.20)

An element r of iΐf/ belongs to Ru,m (m ^ Mi) if and only if there exists

an integer a in Z[p] such that

|r + α — m\ < — .
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LEMMA 6. For every m in M\, we have

Σ
αGZ[p]-|-m

where the summations over a are absolutely convergent.

Because (—p)V = V, the value of the infinite series

a

does not change when we replace b by — pb. Noting this fact, we see from

(2.19), (2.20), and Lemma 6 that

= log \u\ - log(2V3 π) - -j=

Σ
aeZ[p]+j-

4 Σ
This proves (2.6) and Theorem 3, for the integer K can be taken arbitrarily

large. The absolute constant C is determined by equating 3 log C — log 3 to

the right hand side minus log \v\ and O(\v\~1+2/κ) of the above equation.

§3. Proof of Lemmas

We continue to assume that \u\ is sufficiently large with respect to

K. First we prove Lemma 3. The first partial derivatives of log |(7(2)| are

continuous outside M. In particular they are bounded on \JveV D(v). Let

v £V. By the mean value theorem,

log | f f ( * ) | - log \g(v)\ = O(\z - v\), z € D(υ).

https://doi.org/10.1017/S0027763000006413 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006413


CUBIC GAUSS SUM 13

Hence,

\E(v)\ = θl ί \z- v\dμ) = θ( [ \z\dμ
\JD(V) J \JD(O) J

f l l
v v

This proves the first assertion. The second one can be proved in the

same way using (2.10), from which we know the first partial derivatives

of (log I(7(2:)I — log Iz — m(u)\) are bounded on D(u) — {m(u)} uniformly

with respect to u.

To prove Lemma 4, let z G D(r) U D(r — ̂ ) and m = m(r). Since

r £ Ujc and k > 2, we see

(3.1) \z -m\>
1

\ 1-1+

1
3|^

fc-1

It follows from (2.10) that

( 3 2 )

Now by Taylor's theorem, for each TV G N, we can write

= Γ(z;m):=log|,(3.3) T(z) = T(z; m):= log \g(z)\ - log \z - m

da+bT , s ,

a,b>0
a+b<N

α,6>0

= 3.

with ξ = ξ(z) lying in the interval (0,1). Consider the case TV = 3 and use

the identity

(3.4) (z-/ (
D{V)

= v'a-1V-b-ί j zazbdμ

JV

= 0, aφb (modβ).
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Then, from (3.2),

(3.5) E0(r)= f (T(z)-T(r))dμ
JD(r)

d2τ= JD ^zk.(r)-\z-Λ2dμ
lD(r)

- ί
ύb\ JL

d3T

a\b\ JD{r) dz"
a+b=3

d2τ
dzdz

1-4 / \z\2dμ + O(\ι
Jv

i-3-2 I T "

In the same way, expanding T(z) around r — j - , we have

Ea r-^- =
3ẑ Ldzdz όu Jv

By (3.2) and the mean value theorem,

, f c - l .

Hence,
1-3-2 fe-i ,

This proves Lemma 4.

We next prove Lemma 5. The partial derivatives Sa

ad-b log 1̂ (̂ )1 (a +

6 < 3) are continuous outside M and bounded on \JveV(D(υ) U D ( u - ^ ) ) .

Let v G ^ and consider the Taylor expansions of log |#(z)|, around υ and

v — T ;̂, as (3.3) with N = 3. In the same way as in (3.5), we get

E(v) = ^ log \g(v) \z\2dμ + O(\u\-5)

and a similar formula for E(υ — ^ ) . Applying the mean value theorem

again, we see

d2 Θ2 ,

and obtain the required estimate of Lemma 5 for E(v) — E(v — •*-)•
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Finally we shall prove Lemma 6. We can take a complete representative

system R of ̂ Z[p]/Z[p] so that m(r) is contained in M\ for every r in Ru

From (2.16) it is seen that F(u) is periodic with respect to Z[p]. Hence

we may (and shall) assume that the above condition is satisfied. Then, for

each m in Mi,

m(r) = m, r G i?t/,m

and

(3.6) Ru,m = < -Z[p] |r - m| — J
Now, utilizing (2.1),

(3.7)

= Σ / (log \z — m\ — log \r — m\)dμ
JD(r)

r:as above
1 +

— r

r — m
dμ

r:as above

Σ

1 + dμ

dμ, m G Mi.

In the same way,

(3.8) I2 Σ

Σ
oeZ[p]-m-l/3

log|l + - |
a

m G

LEMMA 7. For any a in C with \a\ > 1/y/S, we have

ί log|l
Jv

< b\a - 6

with an absolute constant b.
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Proof. Note that \z\ < l/>/3 if z is in V. Suppose \a\ > 1/Λ/3. Then,

1
(3.9)

and we have

< l, z

log

n = l

- I ( - ) + -
α

The infinite series in the above equation converges uniformly on V because
of (3.9). Hence, by (3.4)

/ log 1 + - dμ = / log
Jv & Jv

dμ

6n

with

Furthermore,

'.= f z6ndμ = ί z6ndμ.
Jv Jv

\cn\< ί
J\z\

\6nz\6ndμ =
•1Λ/3

πί
\z\<l/y/3

It then follows from 3|α|2 > 1 that

n = l

-1 OO -i

1 ^ 1 π
1

3n + 1 3 3 r ι + 1 '

1

n = l
3n+ 1 3 3 n + 1 | α | 6 n - 6

£
34 R e ^ n(3n + 1) " (3|α| 2) 3"- 3

^ i

The same estimate holds for Y^LΛ —^- This concludes the proof of

Lemma 7.
n
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We return to the proof of Lemma 6. By the above lemma the infinite

series appearing in the right hand sides of the equations of Lemma 6 con-

verge absolutely. From (3.7) and (3.8), we see that the proof of Lemma 6

reduces to showing the following:

(3.10)
Z_^

α£Z[p] + m
\a\>\v\/12

v

where the implied constant is absolute. Now, by Lemma 7, the left hand

side of (3.10) does not exceed

Σ π-6

\a\>\u\/12

Again this does not exceed

b

\a\>\v\/12

Because

- 6

\a\>\u\/4

we have

2 (

Σ
\a\>\u\/4

yp\ < \χ\ + \y\

a\~6< - 6

Σ n
- 6

n>\u\/4 \x\ + \y\=n

a / I ,

,4'

- 4

This proves (3.10) and completes the proof of Lemma 6.

§4. Remarks

1. We would like to discuss the connection between Theorem 3 and

a result of Reshetukha [6]. Let, as before, S be a ^-representative system
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modulo ω, the conditions on ω being the same as in Section 1. By Cauchy,

there exists a number 7 = 7(0;) in Z[p] which satisfies

(4.1) α ( S ) Π f f ( - ) = 7 τ M ,

cf. also [3]. It follows from this that

(4.2)

with

Put

(4.3)

p - l

Π
α=l

H =

•(Ξ)

p - l

a=l

-(s
<sω.

h-

j = P Ω

H-l

P

Then ft is a rational integer ([6], p. 614). Reshetukha has obtained the

following formula.

(4.4) Ω = l + hω+ Σ

The set Λo and the numbers do (I) are defined as follows. For n in Z denote

by ψp(n) the integer between 0 and p — 1 which is congruent to n modulo

p. Put

K = {(fco,/ci,fc2) fc0 = l , . . . , p - 1, fcj = φp(fJk0) (j = 1,2)},

ϋΓo = {(fco,fci,fc2) e K fco + Λ + A Ξ l (mod3)},

where / is a rational integer satisfying

/ = p (modα;).

The map from Ko to Λo sending (^0,^1,^2) to I = ko + (?k\ + p&2 gives a

one to one correspondence between Ko and Λo For each I = ko+p2k\ -\-pk2

in Λo, set
p!
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This is the number of triples (Γo, Γi, Γ2) of subsets of ZjpZ which satisfy

2

(4.5) Z/pZ - U Γj (disjoint), # Γ , = k3 (3 = 0,1, 2).
3=0

Also let to(l) be the number of such triples satisfying the following condition:

£ 7 = 0 (j = 0,l,2).

Define do (I) by

It is known that do (I) is an integer ([6], Lemma 1 and (26)).

We quote some additional facts from [6]. The number of elements of K

is p — 1 and that of Ko and Λo is (p — l)/6. Also,

ko + kι + k2=p if (kθikι,k2) e Ko,

ί Ξ θ ( m o d ί j ) if ZeΛ 0 .

The set UΓQ coincides with the set of lattice points lying inside the triangle

Δ with vertices (0,0,p), (0,p, 0), (p, 0, 0) which satisfy certain congruence

relations ([6], p. 616). Putting

we have (/co, &i, ^2) G Ko and u; = ko+p kι + pk2 G Λo Because \a,j\ <

the point -(ko,kι,k2) approaches to ( | , | , ^), the center of gravity of the

triangle - Δ , as p goes to the infinity.

Reshetukha remarks, after some additional consideration, that "evalu-

ation shows that h increases significantly as p increases" and by (4.4) "it is

natural to suppose that the term hώ is in the same sextant inside which Ω

lies". Also some numerical calculation by the author shows that |do(OI °̂ e"

creases rapidly as \l — ώ\ increases. Thus, compairing (1.6), (4.2) and (4.4),

one may be led to the expectation that, in (4.4), the term hω gives the

main term of Ω as p tends to the infinity. This work was at first motivated

by this question. According to Theorem 3 and (4.3), we see that

hώ ,. Hώ ώ ^ o

!ίί£) ~o~ = ^ o ~~o " ~o = = °*68''' '
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Hence the above question is settled negatively. At the same time however,

this result says that the term hω in (4.4) contributes to Ω with the definite

rate of C~~3. Further study of (4.4) and the nature of do(l) might give

another proof of (1.6). At present, we have only one way for proving (1.6),

namely to approximate ω-division values logg(^) by some suitable integrals

of log g(z), a branch of the logarithm of g(z) (cf. [3], [2]).

2. The integer 7 = 7(0;) in (4.1) is an invariant of the ideal generated

by ω as are the Gauss sum τ(ω) and the left hand side of (4.1). Our result

gives the following information on 7. From (4.1) and Theorem 1, we see

We have τ(ω)3 = — pω and τ{ω)/τ{ω) — pjτ{ω) = —τ(ω)/ω. Hence,

Note that Πα=i ^ ( S ) *s a Po sitive number as the norm of G(^) from Q(C)

to Q and ΓLeS ^(i) *s ^ e r e a ^ cn^°e r o °^ °f ^^is number since the product

over S is independent of the choice of S. Then it follows, in particular, from

the above that

arg < — f — 1 ωτ(ω) 7 > —> 0 as p —> 00.

3. The product expression for τ{ω) obtained in [4] by means of elliptic

functions has been extended to the case where we do not restrict ω to be a

prime number of degree one, although the definition of the sextic root a(S)

of unity becomes rather complicated. See Takagi [7] for details. Similar

extension of our Theorem 1 will be possible by the method in [2].

4. To understand the relation between the uniform distribution of the

argument of the Gauss sum τ{ω) and the fact that τ{ω) admits product

expression as in [4] or product approximation as (1.1) is a fundamental

problem, which does not have a complete solution at present. However,

using a result of McGettric [5], one can see, without any essential difficulty,

that the uniform distribution of the argument of the cubic Gauss sum is
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directly related to a certain kind of uniform distribution of the cube root
a(S) of —1 if we suitably normalize the choice of the ^-representative system
S modulo ω. The author hopes to discuss this subject in the future.
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