
ADJOINT ABELIAN OPERATORS ON BANACH SPACE 

J. G. STAMPFLI 

I . In the first part of this paper we introduce a new class of operators, 
mentioned in the title. I t is easy to say that these are a generalization of 
self-adjoint operators for Hilbert space. This is deceptive since it implies 
that the definition of self-adjointness is forced into the unnatural setting of 
a Banach space. We feel that the definition of adjoint abelian preserves the 
obvious distinction between a space and its dual. Certain attractive properties 
of self-adjoint operators have already been singled out and carried over to 
Banach space. Specifically, we mention the notion of hermitian (see 17; 11), 
and spectral type operators (see 4). There is some comparison of these concepts 
later. 

Let X be a Banach space. We define a duality map <£: X —» X* as follows. 
Given x £ X, by the Hahn-Banach theorem, there exists an x* £ X* such 
that ||x*|| = ||x|| and x*(x) = ||x||2. Set <£(x) = x*, and $(Ax) = \x*, and 
define 0 on the rest of X in the same manner. In general, <j> is not unique, 
linear or continuous. The duality map <t> induces a semi-inner product [ •, • ] if 
we set [x, y*] = y*(x). I t is clear that [•, •] has the following properties 
(see 11 for an elegant discussion of the semi-inner product): 

(1) [xi + x2, y*] = [xi, y*] + [x2, y*]\ 
(2) \[x,y*] = [Ax, 3/*] = [x,\y*] = [x, (Xy)*]; 
(3) [x, x*] ^ 0 and equality implies that x = 0; 
(4) |[x,;y*]|2 S [x,x*]\y,y*]. 

Definition. Let A be a bounded linear operator mapping the Banach space X 
into itself. If there exists a duality map <j>\ X -+ X*, such that A*(j> = <t>A, 
then A is adjoint abelian (equivalently, (Ax)* = A*x* for all x £ X). 

If X is a Hilbert space, then the duality map is unique, and the adjoint 
abelian operators are precisely the self-adjoint ones. 

Despite the generality of the definition, a surprisingly large number of 
properties of self-adjoint operators carry over to adjoint abelian operators, 
particularly for reflexive Banach spaces. 

From now on, we will assume that X has been equipped with a semi-inner 
product and duality map. 

LEMMA 1. If A and B are adjoint abelian with respect to the same semi-inner 
product, and A commutes with B, then AB is adjoint abelian. If A is invertible, 
then A~l is adjoint abelian. 
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The proof is clear. 

Note, however, that if A and B are adjoint abelian, this does not imply 
that A + B is adjoint abelian. In fact, the adjoint abelian operators are not 
even invariant under translation by real scalars. We will illustrate this with 
an example later. 

Definition. An operator T on a Banach space X is hermitian if ||7 + iaT\\ = 
1 + oia) for a real. This is equivalent to W(T) real, where 

W(T) = {[Tx,x*]: ||*|| = 1} 

and [, ] is any semi-inner product on X. If W(T) is real in one semi-inner product, 
it is real in every semi-inner product. A discussion of the numerical range for a 
semi-inner product space and the equivalence of the two definitions can be 
found in (11). 

LEMMA 2. If A is adjoint abelian, then A2n is hermitian, and W(A2) is positive. 

Proof. Let ||x|| = 1. Then [A2nx, x*] = [Anx, (Anx)*] = \\Anx\\2 ^ 0. 

COROLLARY 1. If A is adjoint abelian, then a (A) is real. 

Proof. Since A2 is hermitian, a (A2) C convex hull W(A2) is real and positive ; 
see (11). The Spectral Mapping Theorem thus implies that a {A) is real. 

Even though a (A) is real, the numerical range W(A) need not be. For that 
reason, we include the next lemma. 

LEMMA 3. Let A be invertible and adjoint abelian. If Re A ^ 0 {i.e., 
Re W(A) ^ 0), then Re A-1 ^ 0. 

The proof is clear. 

Lemma 3 is not true for operators in general. An example for Lv, p ^ 2, 
can be found in (18). 

THEOREM 1. If A is adjoint abelian, then 

\\Ax\\n ^ \\Anx\\ \\x\\n~l for n = 1, 2, . . . . 

Proof. Note that 

||,4x||2 = \[A2x,x*]\ S \\A2x\\ \\x\\. 

Thus, \\Ax\\2n ^ p 2 x | h | x | | w = \\A(Ax)\\n\\x\\n g H^+^H \\Ax\\n-l\\x\\n or 
||^4x||w+1 ^ ||^4w+1x|| \\x\\n, which completes the induction argument. 

COROLLARY 2. If A is adjoint abelian, then \\A\\ = RBP(A), the spectral 
radius of A. 

Proof. This follows directly from the fact that ||^4W|| = \\A\\n. 

COROLLARY 3. / / A is adjoint abelian, and Anx = 0 for some x f l , then 
Ax = 0. 
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We will present a more complicated version of the next lemma later. Lemma 4 
has been included because of its simplicity, and because it avoids an additional 
hypothesis necessary in the later version (Theorem 5). 

LEMMA 4. Let A be adjoint abelian and let A for i = 1,2, where 
Xi 9^ X2. Then [xi, x2*] = 0. 

Proof. Note that 

Xi[xi, x2*] = [Axu x2*] = [xi, (Ax2)*] = [xh \2x2*] = \2[xly x2*] 

since X2 is real. Hence, (Xi — X2)[xi, x2*] = 0, and the conclusion follows. 

The following lemma appears in (12), with slight modification. The proof 
is short, and we include it since it contains several useful facts. 

LEMMA 5. Let A be adjoint abelian. Let fit) be continuous on a (A2). Then 
\\f(A*)\\ S 8 | | / (0 |L (||/(0IU = sup{|/(0|: t e «(A*)}). 

Proof. For any operator T, \ \ T\ | ^ 4 |T^(r) | (the numerical radius of T) (11). 
For B hermitian, | W(5) | = R8T>(B), the spectral radius of B; see (12). If B is 
hermitian and p (t) is a polynomial with real coefficients, then p(B) is hermitian. 
Let p{t) = pv{t) + ipi(t), where pr and p{ are the real and imaginary parts 
of the polynomial p. Let B = A2. Using the above, we see that 

\\p(B)\\ ^ W»(Pr(B)) + RsP(pt(B))] = 4[||/>r(0IL + \\pi(t)\U ^ 8\\p(t)\L-

The passage to continuous functions involves no difficulties. 

I I . We digress, for a moment, from our discussion of adjoint abelian 
operators. 

Definition. Let {xn} be a sequence in the Banach space X such that x*(xn) 
is a Cauchy sequence for all x* Ç X*. If this implies the existence of an x0, 
such that {xn} converges weakly to Xo, then X is weakly complete. Observe 
that a reflexive Banach space is always weakly complete. 

The next theorem is implicit in the combined work of Dunford (4), and 
Bartle, Dunford, and Schwartz (2), but does not seem to be written down 
anywhere;! see also (7; 8; 14). Since the proof parallels (4, Theorem 18), we 
omit some of the details. 

THEOREM 2. Let T be an operator mapping the weakly complete Banach space X 
into itself. Let | | / ( r ) | | ^ K\\f(s)\\œ for some constant K and all f Ç C(5), 5 a 
compact Hausdorff space (||/(s)||oo = sup{|/(s)|: 5 G S}). Then, T is a scalar 
operator. 

tAdded in proof. See Theorem 2.5 of Unbounded normal operators on Banach spaces by 
T. W. Palmer (Trans. Amer. Math. Soc. 133 (1968), 385-414). 
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Proof. For / £ C(S) and x Ç X , set JB/(X) = f(T)x. For x fixed, £>/(x) is a 

bounded linear operator , mapping C(5) into X . Hence, by (2, Theorems 3.2 

and 3.5), 
BÀX) = !f(x) dux(s), 

where ux(s) is a measure on Borel sets with values in X. 
For each Borel set ô and x f I , set E(ô)x = ux(ô). T h e linearity of the 

operator E(8) follows from the l inearity of Bf(x) in x, and the uniqueness 
of ux(s). Since 

\\E(ô)x\\ g total var(ux(Ô)) g sup \\Bf(x)\\ ^ K\\x\\ | | / | l œ , 
l!/llco=l 

£ ( ô ) is bounded. T h e fact t h a t Bfg(x) = Bf(Bg(x)) and ^ ( ô ) is unique and 
regular implies t h a t E(b C\ $) = E(ô)E(p) for Borel sets <5 and 0. 

Thus , r is a scalar operator with the representat ion T = jssdE(s). (Of 
course, the measure E(5) mus t be carried on a(T).) 

For the case when X is reflexive, the above a rgument can also be found in 
(10, p . 93) . No te t h a t Theorem 3 is no t t rue wi thout some condition on X. 
For an example, see the discussion in (12, p. 84) . 

I I I . Th i s section contains the main results on the spectral decomposition 
of adjoint abelian operators . 

T H E O R E M 3. Let A be an adjoint abelian operator on a Banach space X. Then 
(1) (A2)* is a scalar operator (of class X), 
(2) A2 is a scalar operator, if X is weakly complete. 

Proof. Lemma 5 and (4, Theorem 18) imply (1). T h e val idi ty of (2) follows 
from L e m m a 5 and Theorem 2. 

COROLLARY 4. Let A be adjoint abelian on the weakly complete Banach space X. 
If one of the following holds: 

(a) A is invertible; 
(b) 0 is an isolated point of a (A); 
(c) <J(A) is non-negative (or non-positive); 
(d) (0, 5) or ( — 8, 0) are in the resolvent set of A, for ô > 0, 

then A is a scalar operator. 

Proof. If (b) holds, then A = S + N, where SN = NS, S is scalar, and 
N is n i lpotent of order 2; see (15). Moreover, E(0)N = N (S = jsdE(s)). 
If x e E(0)X, then A2x = N2x = 0, which implies t h a t Ax = Nx = 0 by 
Corollary 3. T h u s N = 0. 

T h e proof of (c) is similar once we invoke (6, Theorem 7) . T o prove (d) , 
we simply apply (c) and the next theorem. T h e condit ions ( a ) - ( d ) are no t 
independent , e.g., (a) implies (d) . 

COROLLARY 5. Let A ^ \I be an adjoint abelian operator on a weakly complete 
Banach space X. If the linear operator T: X —* X commutes with A, then T has 
a proper invariant subspace. 
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T H E O R E M 4. Let A be an adjoint abelian operator on a weakly complete Banach 
space X, and let e > 0. Then there exist projections P, Q, with P + Q = / , 
such that 

A = PAP + QAQ, 

where PAP is scalar, and \\QAQ\\ < e. 

Proof. Let A2 = Js dE(s). Since A commutes with A2, i t commutes with 
E ( • ) . Le t M be the uniform bound on E ( • ) and set Ô = e2/M. Le t Q = E(K) 
and P = E(K'), where K = (-<5, <5). Then S = PAP is an invertible operator 
on PX, and since S2 is scalar, so is S. Note t ha t ||-42x|| S 8M for x G ÇX. 
Hence, by Theorem 1, 

\\QAQx\\2 = \\Ax\\2 ^ p 2 x | | | |*|| S ôM\\x\\2 = e2\\x\\2 

for x G QX, which completes the proof. 

COROLLARY 6. Let A be an adjoint abelian operator on a weakly complete 
Banach space X. Then Null (^4) + Range (A) is dense in X. 

We have been unable to decide whether every adjoint abelian operator on a 
weakly complete Banach space is scalar, and we leave this as an open question. 

IV . W e will now consider adjoint abelian operators on an arbi t rary Banach 
space X. 

Notation. Given an operator T, d\ = dist[X, cr(T)]. 

T H E O R E M 5. Let A be adjoint abelian on X. Then \\(A — X7)_ 1 | | ^ Kd\~* 
in a neighbourhood of <r(T). If [a, b] is a connected component of cr(^4), then 
\\(A — A/) - 1!! ^ Kd\~2 in a neighbourhood of [a, b] (a = b permitted). 

Proof. WTe will begin by proving t h a t \\{A — X / ) _ 1 | | ^ K\lm X|~2 for all 
|X| ^ R. For any operator £ , i t is t rue t h a t || (B - wl)'1]] S l /d is t [w, W(B)]. 
For \t\ S TT/4 and \t — T\ S 7r/4, 

|| (A2 -r2eiUI)~l\\ S l A 2 | s i n 2 / | S l / | r s i n * | 2 , 

since W(A2) is real. For \t db TT/2| ^ TT/4, 

11(^2 _ r2g<2«j)-i|| ^ 1 / f 2 ^ l / [ r sin /|2, 

since W(A2) is positive. Thus , 

11(4 - reuI)-l\\ S \\A + reuI\\ \\A2 - rHiUI)~l\\ ^ K'\r sin t\2 

for 0 g / ^ 2TT and r ^ R. 
From here on, the proof is similar to one by Bart le (1, Theorem 1). W e will 

present a direct proof, ra ther than pointing out the changes t h a t mus t be 
made in his theorem. 

Let (a, 0) be an open interval in p(A), the resolvent set of A, with 
a,jff € o-(4). S e t / 0 ) = (z - ax)

2{z - Pi)2(A - zl)~\ where a < ax < & < 0. 
Then , \f(z)\ is bounded by K on the rectangle Re z — ai, Re z = 0i , 
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I m z = db l ; and this cons tant K does not depend on ai, fii or the par t icular 
open set (a, (3) selected (\a\ and \/3\ are bounded, of course). Then , for X in 
the rectangle, it follows t h a t | / (X)| = ||(X - «i)2(X - /3i)2(^L - X/)"1!! ^ K. 

Let t ing a\ approach a and /5i approach /3 yields 

||(i4 - XI)"1! | S K\(\ - a)~2{\ - /3)"2| S Kdx~* 

for X in the rectangle. T h e two end points of a (A) may be handled in a 
similar way. Combining all this completes the first half of the theorem. 

T h e case [a, 6] C <r(A) is proved in a similar manner ; however, one uses 
the function f(z) = (z — a\)2(A — s i ) - 1 and a semi-circular contour a t the 
end points. 

T h e last theorem permits us to conclude t h a t A has a C5 functional calculus 
in the sense of Ti l lmann (16), Maeda (13, Remark 1.3) or Kantorov i tz 
(9, Theorem 1). If the underlying Banach space is weakly complete, Theorem 3 
yields a more detailed spectral s t ructure . Moreover, the resolvent R\(A) 
would have first-order growth on sets bounded away from the origin in this case. 

T H E O R E M 6. Let A be adjoint abelian, and let w be an isolated point of <r(A). 
By the Riesz-Dunford theory, there exist projections P and Q such that P + Q = I, 
and 

(1) APX C PX; AQX C QX, 
(2) a(A\PX) = {w}, a(A\QX) = v(A)\{w}. 

Then Axi = w%\ for x\ G PX; and [x2, xi*] = 0, for x2 € QX. 

Proof. By the Riesz-Dunford theory, A = wl + N on PX, where N is 
quasi-nilpotent. Since the resolvent of A has second-order growth near w, 
N2 = 0. Thus , A2y = (w2I + 2N)y, for y G PX, and hence (A2 - zl)~ly = 
(w2 — z)~ly + 2(w2 — z)~2Ny. However, A2 is hermit ian, and consequently 
\\(A2 — J3/) - 1 | | ^ | Im z\~l, which implies t h a t Ny = 0. Thus , A = wl on PX, 
which completes the first pa r t of the proof. 

For xi e PX and x2 £ QX, let f{z) = [(zl - A)~lx2, xi*]. Clearly, f(z) is 
analyt ic for z G p(A) \J {w}, and hence in a neighbourhood of w. However, 
for \z\ > | \A | | , we have 

/ (*) = E z~(n+1)[Anx2, Xl*] = £ z~M1)[x2, (An
Xl)*] 

oo 

= 2 z~inJrV)wn[x2, xi*] = [x2, Xi*](z — w)~l (w is real) . 

T h e last expression is analyt ic for z ^ w, and is an analyt ic extension of f(z). 
Hence, f{z) is entire and vanishes a t infinity. Thus , f(z) = 0, and therefore 
[x2, xi*] = 0. 

COROLLARY 7. If A is adjoint abelian, and a (A) = {c}, then A = ci. 

T h e second pa r t of the theorem is a restricted version of the following 
well-known result. If A is a self-adjoint operator on a Hi lber t space, then 
a (A, Xi) Pi a (A, x2) = 0 implies t h a t (xi, x2) = 0. 
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V. An example. Let X be the two-dimensional Euclidean space over the 
complex numbers, with the LP metric. Thus, we write x = (xi, x2) for x £ X. 
If ||*|| = [\xx\

v + \x2\
p]1/p = 1, then x* = (x^x^-2, x2\x2\

p~2). Let 

II 0 | 

with respect to the basis indicated above. I t is easy to check that A is adjoint 
abelian. However, [Ax, x*] = x2Xi\xi\v~2 + XiX2\x2\

p~2. If we choose Xi real 
and x2 imaginary, with \xi\ ^ |x2|, it follows that [Ax, x*] is not real. This 
shows first that the numerical range of an adjoint abelian operator need not be 
real (as it is in Hilbert space), and second that not every adjoint abelian 
operator is hermitian. 

This operator also shows that adjoint abelian operators are not invariant 
under translation by real scalars. Indeed, if 

for a real and ||x|| = 1, then 

A*<j>x = (a^i|xi|^-2 + x2\x2\
p~2, x^Xil*-2 + ax2\x2\

p~2). 

However, </>Ax = \\Ax\\2~p((axi + x2)\axi + x2\
p~2, (xi + ax2)\xi + ax2\

p~2), 
and these are not equal in general. 

VI. We may define operators on Banach space analogous to the unitary 
operators on Hilbert space by means of another compatibility relation between 
the duality map of X to X* and the natural map of 3§ (X) to 3$(X*). 

Definition. Let U be an invertible operator on a Banach space X. Let 0 be a 
duality map of X to X*. Then U is iso-abelian if 0 U = t/*_10> or equivalently, 
(Ux)* = f7*_1x*, for all x £ X. Note that if X is a Hilbert space, then the 
iso-abelian operators are precisely the unitary ones. 

LEMMA 6. Let U be iso-abelian on X. Then (U~1x)* = U*x* and \\Ux\\ = 
WU^xW = \\x\\,for x e X. 

Proof. Note that [x, {U~lyY\ = [U~lUx, {U~ly)*] - [Ux,y*] = [x, U*y*], 
and thus (f/ -1^)* and U*y* must be the same linear functional. Since 
||Z7x||2 = [Ux, (Ux)*] = [x, x*] = ||x||2, the proof is complete. 

From this lemma, it is clear that iso-abelian operators have their spectrum 
on the unit circle, and ||i?z(Z7)|| S | \z\ — l\~l for ||z|| ^ 1. The analogues to 
Lemmas 1, 4, and Theorem 6 carry over without difficulty, and we will omit 
statements and proofs. 

However, the ''spectral theorem" does not seem to generalize. Consider 
X = D>[0, 2T], p^2. Then for/(0) G X, \\f\\p = l,f = / W I / W l p " 2 - Define 
Uf(Q) = /(0 + a) fo r / Ç X, where a is irrational. Then U is not spectral or 
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scalar (see 5), but it is a routine matter to show that U is iso-abelian. What is 
needed is an analogue to Lemma 3; however, this does not hold in Lv in general. 
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