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Recombination and the evolution of satellite DNA
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Summary

In eukaryotic chromosomes, large blocks of satellite DNA are associated with regions of reduced
meiotic recombination. No function of highly repeated, tandemly arranged DNA sequences has
been identified so far at the cellular level, though the structural properties of satellite DNA are
relatively well known. In studying the joint action of meiotic recombination, genetic drift and
natural selection on the copy number of a family of highly repeated DNA (HRDNA), this paper
looks at the structure-function debate for satellite DNA from the standpoint of molecular
population genetics. It is shown that (i) HRDNA accumulates most probably in regions of near
zero crossing over (heterochromatin), and that (ii), due to random genetic drift the effect of
unequal crossover on copy numbers is stronger, the smaller the population size. As a consequence,
highly repeated sequences are likely to persist longest (over evolutionary times) in small
populations. The results are based on a fairly general class of models of unequal crossing over and
natural selection which have been treated both analytically and by computer simulation.

1. Introduction

Eukaryotic chromosomes contain nucleotide se-
quences of lengths from about 10 to several hundred
base pairs that are repeated thousands to millions of
times per haploid genome. HRDNA is arranged
largely in long tandem arrays which are associated
with the heterochromatic regions of chromosomes.
Satellite DNA is associated with the bulk of
constitutive heterochromatin but it does not need to
parallel the distribution of heterochromatin (John &
Miklos, 1979; Brutlag, 1980). Thus in humans four
satellites which have been identified make up about 3 %
of the genome, whereas the C-banding material
amounts to approximately 20%. Similar situations are
reported from rye, Secale cereale (Peacock et al. 1977;
Flavell, 1982), and from the Chinese hamster,
Cricetulus griseus (see John & Miklos, 1979). Hetero-
chromatin and HRDNAs are distributed along the
chromosome arms. Though heterochromatic segments
are mostly found in centromeres and telomeres, it is
now apparent that chromosomes in many organisms
also show interstitial C-bands which are highly
variable in their locations (reviewed by John & Miklos,
1979).

Whereas very much is known about the structure,
variability and location of satellite DNA, the prob-
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lem of the function of these DNAs has been the sub-
ject of major controversies during the past two
decades. So far no function of highly repeated, tan-
demly arranged DNA sequences has been clearly
identified. It is largely the association between
heterochromatin and satellite DNA that gave rise to
speculations about the function of HRDNA. Numer-
ous attempts have been made to resolve the question
of function from a more and more detailed analysis of
structure and changes in structure. But it is an assump-
tion that important answers will be found exclusively
at the cellular level (Miklos, 1982).

It was proposed in an earlier paper (Charlesworth,
Langley & Stephan, 1986) that the distribution of
HRDNA along the chromosome is a consequence of
an evolutionary equilibrium between genetic drift,
natural section and mutation pressure (amplification)
in regions of restricted recombination and is not a
property of HRDNAper se. The first step in the develop-
ment of this hypothesis is to understand why certain
regions of the chromosome should have intrinsically
low recombination rates. The treatment of this
question is the subject of our previous paper
(Charlesworth et al. 1986). Several observations
reviewed there suggest that the suppression of
crossing over in regions such as centromeres and telo-
meres is not a direct physical property of HRDNA, but
is a consequence of the long-range effects of centro-
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meric and telomeric factors. A second important step
is to study the association between satellite DNA se-
quences and regions of restricted crossing over. Thus
I will present here mathematical models which may
explain why HRDNA accumulates preferentially in
chromosomal regions where virtually no meiotic
recombination occurs (heterochromatin), but is hardly
found in euchromatin.

2. The model

It is clear from data on species comparisons (John &
Miklos, 1979, and references therein) that changes in
heterochromatin and satellite content are common-
place during evolution, and it is widely recognized that
the mechanisms for their changes are unequal
crossing over and saltatory amplification. Whereas
HRDNA is formed by saltatory events, unequal ex-
change is considered as a secondary randomization
process which leads to homogenization of the se-
quences within an HRDNA array or to variation of
cluster size, but is not used as a direct means of
amplification (see the definition of unequal exchange,
below). Before outlining details of these processes, let
me briefly describe the biological background which
the model is based on. For simplicity, I assume a sexual
haploid species, in which transient diploid zygotes are
formed by random mating. Meiosis follows immedi-
ately to produce the haploid phase, during which the
development of the organisms occurs and the
individuals formed from these gametes may be
exposed to selection. Thus in a given generation the
following processes are allowed to modify the copy
numbers of HRDNAs: amplification, selection and
sampling of individuals, and recombination among the
gametes produced by the sampled and surviving
individuals. For exploring the basic question of this
paper, the association between HRDNA and regions
of restricted recombination, it is not necessary to
assume a particular mechanism of sequence amplifi-
cation. It is only important that HRDNA is somehow
generated. The model of recombination and the
selection scheme, however, do have to be made explicit
(Charlesworth et al. 1986).

Natural selection. Suppose a given chromosome
carries a tandemly repeated DNA sequence, and there
is variation in the number of copies of members of this
sequence between different representatives of this chro-
mosome. (I consider here only one cluster of HRDNA
and neglect the fact that there is often sequence
variation within the cluster.) It is assumed that selec-
tion acts on the individuals through the copy number
of the chromosomes which they carry. In a haploid
species, the fitness of the individuals is then solely a
function of the copy number, i (Ohta, 1983). As in our
previous paper, I shall assume that the fitness, wt, is a
decreasing function of i and is zero beyond a certain
threshold, fl. This is because I am not considering
multigene families with specific functions such as

histone or ribosomal RNA genes which presumably
have optimal copy numbers of repeats. On the other
hand, an upper limit to copy number seems likely, since
cells with large amounts of H RDNA must have substan-
tially altered properties such as long division times
(John & Miklos, 1979). A possible form of wt is given
by

which is mostly used in the following and referred to
as the additive selection model.

Unequal exchange. Little is known at present about
the distribution of equal and unequal meiotic ex-
changes in HRDNA. However, large changes in the
amount of heterochromatin in specific chromosomal
regions have been observed in humans from one genera-
tion to the next (Craig-Holmes, Moore & Shaw, 1975;
Seabright, Gregson & Mould, 1976). This suggests that
unequal exchanges can involve a large number of
repeats. Various models of unequal exchange have
been proposed (Kriiger & Vogel, 1975; Perelson &
Bell, 1977; Ohta & Kimura, 1981). The present
analysis is based on the model of Takahata (1981),
which seems most general. It only assumes that the
exchange is symmetric, i.e. the probability that an
exchange between two chromosomes with copy
numbers j and k results in a daughter chromosome
with copy number / (1 ^i<j+k) is equal to the
probability of production of a daughter chromosome
with j+k — i copies. It follows from this assumption
that the mean copy number is not changed by unequal
crossing over from generation to generation. (Accord-
ingly, unequal crossing over itself must not be viewed
as an amplification mechanism.)

Let Qijk denote the probability that an exchange
between chromosomes with j and k copies, respect-
ively, yields a daughter with / copies (conditional on
an exchange having occurred). The probability of an
exchange occurring is denoted by yQm, where y is the
rate of exchange per cluster and generation for a
certain pair of chromosomes. I choose the following
explicit model of Qm (Takahata, 1981):

(2a)Qm = c\\-
j+k

- 1

where the normalization constant is given by

c =
j+k

, j+k even

-, j+k odd.
<j+kY-V J ' ( 2 6 )

The next two sections study the joint action of selec-
tion and unequal crossing over, as exemplified by the
above models, on the distribution of HRDNA in a
finite population of 2N haploid individuals. Analytic
approximations are possible for asymptotic par-
ameter ranges, i.e. 2Ny <$ 1 and Ny > 1. Given the
above selection scheme, it can be shown
(Charlesworth et al. 1986) that, having initially been
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accumulated, HRDNA will ultimately be lost from the
population in the absence of (further) amplification or
migration. In the following I give some asymptotic
formulae for the mean time to loss of HRDNA. The
effect of recombination on the rate of loss is of
particular interest.

3. Asymptotic theory

(i) Mean time to loss for small Ny

I assume here that population size 2N and recom-
bination rate y are sufficiently small that the popu-
lation is usually fixed for a single gamete type. In the
absence of selection, this requires 2Ny <̂  1, so that no
new type is produced by unequal crossing over while
a given one is on its way to fixation (a process which
takes in the neutral case an average of AN generations
while the time between successive recombination
events amounts to approximately l/Ny generations;
since, assuming neutrality, only \/2N recombinant
gametes get fixed, the present model requires 2Ny <̂  1).
A similar approach has been adopted by Walsh (1985)
in describing the evolution of multigene families under
gene conversion. It should be noted that the following
formal treatment is also valid for sister-strand
exchange.

It is convenient to study the process first on the time
scale of successive fixation events. Since I assumed an
upper limit, Q = s"1, to copy numbers, the system
occupies Q discrete states Et(i = 1, ..., Q), numbered
after the copy numbers of the individuals, and its
dynamics can be described by a finite Markov chain.
Let pi} be the probability of transition from state Et,
to Ej between times r and T + 1 on the scale of fixation
events, p^ is related to the unequal crossing-over
transition probabilities by

Pu= J (3)

where ri} is the probability of fixation of a variant with
j copies in a population originally fixed for i copies.
The calculation of the probability of fixation, ri}, is
difficult unless we assume that a variant chromosome
withy copies (say7 < 0 has an overall selective advan-
tage over all other individuals of the population (note
that apart from a chromosome withy copies, a variant
with 2/—y copies is also produced by unequal crossing
over between two individuals both carrying i copies).
In the additive selection model the overall advantage
is given by s(i—j). This can be inserted into the result
by Moran (1962, chapter 5) for haploid populations to
obtain an approximate expression for the probability
of fixation at state Ep coming from Et:

(4)

A simpler expression for ri} can be obtained by
assuming that the system is always far away from the

boundary Q. This may be realistic for HRDNA since
selection is very weak and thus Q = s"1 must be very
large; hence,

-j)- (5)

Given equations (4) or (5), the Markov chain (3) is fully
determined. To calculate the expected time until
HRDNA is lost from a given population, it is imprac-
ticable to use the method of our previous paper by
considering the eigenvalues of the matrix {ptj}.
Instead, we resort to a diffusion approximation of the
Markov chain model (Ewens, 1979; chapter 4).

Let Y(z) indicate the state of the Markov chain at
time T. The expected change in Y between z and T + 1
can easily be calculated using equations (2) and (5):

E{Y(z+l)- Y(z) I Y(z) = 1} = (7-O

According to the above assumption I neglected
boundary effects here too, so that 2i < Q always holds.

2*

The term S Qut (J— Ovanishesbecauseitisasumovera

product of a symmetric and an asymmetric function.
Similarly,

E{(Y(z +1)- Y(z)f I Y(z) = i} * ^ I Qm{j-i?.

(7)
Since 5 is assumed to be very small this is approxi-
mately equal to the variance in the change of Y
between z and z+1. The sums on the right-hand sides
of equations (6) and (7) can elementarily be evaluated
to be

O« = J(?-1). (8)

In order to obtain the operator for the diffusion
equation, space is rescaled by introducing
X(i) = (Y(t)-l)/n and time as / = (NyY1*. Since in
the additive selection model s = Or1, the mean a(x)
and the variance b(x) in the rate of change in X(t) = x
per generation are then obtained as

a(x) x - \x(x + 2s), (9 a)

(9 b)

As shown in our previous paper, the process starting
at a certain copy number will ultimately get absorbed
in state Eu where each chromosome carries only a
single copy. If the initial copy number of the repeated
sequences is i0, the expected time to absorption at copy
number 1 is in the diffusion approximation given by

x(x + 2s)
dx + e

4Nx

—
+ 2s)iXo

with ;cn = (10)
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If population size is small, such that N < Q//o and if
\<io< Q, as it might be realistic for HRDNA, the
integrals in equation (10) can be evaluated approxi-
mately to obtain the following simple results:

4N~s'
(1

(lib)

At the end of this section let me briefly consider the
effect of unequal crossing over on HRDNA in the
absence of selection (s = 0, neutral case). As outlined
above, the mean copy number of sequences is
unaffected by unequal exchanges in this case, but their
distribution might well be changing until a non-trivial
stationary distribution of copies is ultimately ap-
proached. None the less, interest centres in this case
also on the expected time to absorption at Ex, but con-
ditional on this state having been reached. By regard-
ing the diffusion as an approximation to the (modified)
Markov chain, the expected absorption time can again
be calculated. Since mean copy number does not
change per generation, one has a(x) = 0, instead of
equation (9a), whereas E{(Y(t+1) - Y(t))2 \ Y(t) = i}
is again given by equations (7) and (8). It follows that
the variance is obtained as

(12)

where M is an arbitrary but large number used to map
the process on to the unit interval [0, 1] (M is an
auxiliary parameter which must not appear in the end
results). It follows from standard diffusion theory
(Ewens, 1979; chapters 4, 6) that when the initial copy
number of the population is i0, such that 1 ̂  i0, the
conditional expected
number 1 is given by

time to absorption at copy

(13)

This is the same result as in the case of additive selec-
tion, when the initial copy number is small enough for
the process to be scarcely affected by selection (see
equation (lla)). The results will be discussed below,
together with the simulations.

(ii) Mean time to loss for large Ny

In this case population size 2N and recombination rate
y are supposed to be sufficiently large for the follow-
ing argument to be applied. Since selection is weak
relative to recombination, the mean copy number
changes slowly, relative to the rapid establishment of
a quasi-equilibrium distribution of copy number, after
a recombination event had occurred. (Sampling drift
can be neglected, because N is assumed to be large.)
The dynamics of the process is thus a function of the

current mean, I, only and will be approximated by a
diffusion in the single variable I. Since population size
is large, the change in the mean can be calculated
approximately by considering a population of infinite
size. Sampling is incorporated subsequently to obtain
the diffusion coefficient.

Infinite population. Let xt be the frequency of indi-
viduals of a sexual haploid species with / copies of the
family, measured after selection in a given generation.
After allowing copy number to be modified by un-
equal exchange, the new frequencies before selection in
the next generation are given by (Takahata, 1981)

,Qmx}xk, i = 1,2,... (14)
i

(15a)

The frequencies after selection are

A = xt w(/w,

where

wsl̂ wj. (156)
I now again make the assumption that Q. is sufficiently
large that the system is always far away from the
boundary Q. Given an explicit fitness function of the
form wt = 1 —s(i— 1), one is able to develop equation
(14) further and arrives at the following equation:

A = *< + 7
)

xjxk-xi\ + sxt{E{i} - i} + O(sy),

06)
where £{...} denotes some moments of the distri-
bution {xt}, e.g.

Q

£ { / " } = 2 i n x t , n ^ l .
i-l

In the derivation of equation (16) only the first-order
terms in y and s have been kept. The next higher-order
term O(sy) plays no role, even when y <, 1.

Progress in treating equation (16) can be made by
employing a moment expansion of the distribution
{xt}, a standard procedure used, for instance, to study
master equation systems (Van Kampen, 1975). Upon
use of the distribution for Qiik (equation (2)), a straight-
forward calculation leads to the following equations
for the three lowest-order moments (with 1= E{i}):

AT=i'~Tx -sE{(i-i)2}, (17a)

Clearly, these equations would still contain frequency
terms without some further but minor approxi-
mations. I approximated in equations (lib) and (17c)

j+k odd
by I, and similarly,

a

i,k-l
j+k odd
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by \i. Some insight into the validity of these approxi-
mations can be obtained by considering the following
two extreme cases. If copy numbers are equally distri-
buted, the first term is given by \—^ and the second
by |f— ^j. On the other hand, if the system is in the
neighbourhood of the absorption state, both sums will
vanish, as they should do.

Since the equation for a given moment always
depends on the next higher moment, the moment expan-
sion does not stop, unless one breaks it off at a certain
point. This is done after the third moment because the
term containing the fourth moment in equation (17 c)
can be neglected in the kind of approximation I pursue
(see below). To solve the moment equations I em-
ployed an adiabatic approximation procedure (Haken,
1977, chapter 7), noting that unequal crossing over
does not affect mean copy number in the absence of
selection, and using the argument from the outset of
this section. For our case of very weak selection it is
thus possible to conclude that the variance and third
moment change rapidly on the time scale of the very
slowly moving mean, so that, after a short transient
phase, one has

-03}«0. j (18)
In dealing with the fourth moment, it is realistic to
assume that it is of the order of E{(i—I)2}2 or smaller.
(This is fulfilled for most of the known distributions.)
In the following, I consider only the case E{(i—z)4} <
6E{(i—j)2}2. (Relaxing this condition a bit does not
change the main result (equation (21)) and has only
slight influence on the domain of validity of this result.)
Under these circumstances, 13E{(i- i)2}2 - E{(i- J)4} |
(see equation (17c)) can be estimated by 3E{(i—f)2}2.
Using this approximation and equation (18),
equations (lib) and (17c) can be combined to give the
following equation, which is quadratic in the second
moment:

( ? - l ) « f l . (19)

The first term of equation (19), which is proportional
to the square of the second moment and which is
basically an upper bound of the fourth moment can,
in turn, be neglected if

(20a)

or, to be more specific and requiring the left-hand side
of (20a) to be smaller than 0 1 , if

T*0-nl (20b)

Under these conditions one is allowed to approximate
system (14) of equations by their three lowest order

moments. It follows then from equation (19) that the
variance is given by

i- D2}
s

48-H-25
Y

(21)

provided / is sufficiently small. However, since selec-
tion is presumably very weak, say s< 10~10—10~8,
and recombination rate is assumed to be rather high,
conditions (20) do not imply any greater restraints on
the present analysis. Note that the dynamics becomes
independent of recombination, if f is sufficiently small,
say I < 0-05 y/s (see (21)).

Finite population. The deterministic model, presen-
ted above, studies the change in copy number under
unequal crossing over and selection only. In finite popu-
lations sampling has to be taken into account. This
occurs in a given generation after selection to form new
zygotes. Let {Xf} again be the frequency distribution of
copy number in a given generation after selection. A
possibly different frequency distribution {xt} is pro-
duced by N male and N female gametes when taken as
random samples from {xt}. The expected change of the
mean, E{Ai}, per generation of the distributions {x't}
and {xt} can be calculated from standard multinomial
formulae (Crow & Kimura, 1970, p. 330):

E{AT} = Af (22 a)

and the variance of the change of the mean is given by

E{(Ai-E{Ai})*} = ±jE{(i-r (22b)

where E{...} indicates that expectation has to be taken
over the distributions {xj and {x't}, respectively.

Formulae (22) constitute the relationship between
the deterministic model and finite populations. They
allow one to employ a diffusion approximation, with
the mean copy number as the diffusing variable. The
combination of equations (17a) and (22a) and, simi-
larly, of equations (21) and (22b) yields the mean, a(x),
and the variance, b(x), in the change in x per genera-
tion:

a(x) x -s

48-X + 25
Y

(23 a)

(23b)

y
If the initial mean copy number is To, the expected time
to absorption at copy number 1 is approximately given
by:

48- (x+ l ) + 25

! ~ ' *** 10;t(;c+2)
(\-e~

— (e*Nsx0_]
S

L e-i Nsx
10X(JC+2) ' (24)
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where z is the upper boundary determined by con-
ditions (20). For evaluating the integrals, z can be
replaced by oo. The integrals can approximately be
carried out if l0 is sufficiently large. The mean time to
loss is then given by

and

F(fo)

In £

In

(25a)

(256)

These results may again be compared with those of the
corresponding neutral case (conditional on the absorp-
tion state Ex having been reached). In this case the
mean copy number does not change, so that AT = 0,
whereas equation (21) has to be replaced by

E{(i — T)2} « §(F— 1). (26)

The expected time to loss of HRDNA, conditional on
E1 having been reached, is then given by

/(io)« lOWln^, (27)

provided the process started with a high copy number

4. The simulations

To obtain the expected time to loss of HRDNA from
a given population for intermediate values of the recom-
bination rate y and to examine the validity of the
analytic results, a simulation study was performed. A
haploid species of population size 2N was considered.
In each generation, the following processes were
allowed to modify copy numbers: sampling and selec-
tion of gametes, and recombination among the
sampled and survived individuals. Sampling and selec-
tion were done simultaneously. Individuals were
sampled at random from the population, with
replacement. Their survival was determined
according to the additive selection scheme of
equation (1). This process was repeated until
population size became 2N. Recombination was simu-
lated as follows. Two gametes were chosen randomly
from the pool of the sampled and survived individuals
and were paired up according to the probability distri-
bution (equation (2)) to generate recombinants. The
number of crossovers between the parental chromo-
somes had a Poisson distribution with mean Ny.

The simulations were started with an initial copy
number i0 = 50 (for each gamete) and were run for
5 x IO6 generations, or until absorption at copy
number 1 occurred. For populations of sizes 10 and 40,
the simulations were repeated 50 times, for sizes 100
and 400 25 times. The upper limit to copy number was
Q, = io4. The results of the simulations are sum-
marized in Fig. 1. Terminating runs at 5xlO6

io3 -

in2

Fig. 1. Mean time to loss of satellite DNA vs inverse
recombination rate. The simulations were done with the
following sets of parameter values: selection coefficient,
s = 00001; initial copy number, i0 = 50; and population
sizes, IN = 10 (A), 40 (D), 100 ( • ) and 400 (O). The
theoretical curves are represented by solid lines, with the
corresponding population size by the curve.

generations had almost no effect on the estimates of
the times to loss since, for the given set of parameter
values, the boundary has hardly been reached.
However, a slight artifact has arisen through the way
in which the simulations were realized on the com-
puter. Since each batch job could run for only a
limited amount of time, longer runs remained
unfinished (and could not be counted) more often than
shorter ones. The times to loss are therefore slightly
underestimated, in particular, for the larger popu-
lations (2N = 100 and 400) and small ys.

In Fig. 1 the simulation results are compared with
those predicted by the model, as obtained by numeri-
cal integration of equations (10) and (24), respect-
ively. The asymptotic results agree reasonably well
with the simulations for large ys. The agreement is the
better the larger the recombination rates and popu-
lation sizes are. The deviations for very low popu-
lation sizes, 2N = 10, are due to the semi-deterministic
approach used in the analysis. On the other hand, the
adiabatic approximation technique leading to
equation (18) is responsible for the deviations of the
theoretical curve for smaller ys (y < 1). In this approxi-
mation, I is nearly independent of y since, apart from
the change in the mean (see equation (17a)), the vari-
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ance E{(i—f)2} is hardly affected by unequal crossing
over, due to the weakness of selection (see equation
(21)). On the whole, the comparison between theoreti-
cal and simulation results suggests that for realistic
population sizes the mean time to loss of HRDNA
from a population is correctly described by the model
over a wide range of recombination rates including
those of euchromatic chromosomal regions.

More important for the evolution of HRDNA and
heterochromatin where virtually no meiotic exchange
occurs (Szauter, 1984) is the other asymptotic case
2Ny <£ 1. The model predicted an inverse linear
relationship between / and recombination rate for
small ys (see equation (10)). This character of tis found
in the simulations over an even wider range of y than
required by the condition 2Ny <̂  1, a fact which
suggests that the model could also be used as an approxi-
mation in circumstances in which copy number is
known to vary from individual to individual within a
given population (for instance, deca-satellite in the
African green monkey genome; Maresca, Singer &
Lee, 1984). The values obtained from equation (10) are
slightly higher than those found by the simulations. To
some extent, this is due to the time limitations of the
batch jobs, mentioned above.

Two remarkable consequences of the model, which
have been obtained analytically, are confirmed by the
simulations. First, the expected times to loss of
HRDNA are greater in small populations. This result
is not intuitively obvious and is in contrast to the large
Afy-case. It follows from this effect, which is a conse-
quence of sampling drift, that the amount of HRDNA
should be higher in small populations. Fig. 1 indicates
that the effect is not large. But a final answer cannot
be given without including the amplification process
explicitly. Secondly, the simulations confirmed the pos-
sibility of the accumulation of HRDNA in chromo-
somal regions where recombination is suppressed. In
such regions the mean time to loss of HRDNA in-
creases by several orders of magnitude relative to seg-
ments of high recombination rates, i.e. Ny ^ 1. The
interpretation of this result is as follows. Frequent
unequal exchanges tend to spread out the distribution
of copy number, so allowing selection to be very effec-
tive in the elimination of individuals with high copy
numbers. Selection itself, being not supported by
unequal crossing over, appears to be rather weak in
preventing the spread of tandemly repeated DNA
sequences.

5. Conclusions

Meiotic exchanges occur non-uniformly along the chro-
mosomes of most higher eukaryotes. There are at least
two aspects of this. First, there is virtually no crossing
over in heterochromatin. Secondly, there are fewer
cross-overs per unit of physical length in regions near
the centric, telomeric and apparently also near the
interstitial heterochromatin than in the remainder of

euchromatin (Szauter, 1984, and references cited there-
in). Apart from the fact that we do not know
whether small amounts of satellite DNA have gone
undetected at other regions throughout the lengths of
chromosomes, there is a strong association between
heterochromatin and satellite DNA. As a contri-
bution to the structure-function debate about
HRDNA, the possibility of this association has been
investigated in this paper on the basis of quantitative
modelling.

To this end, the time to loss of HRDNA from a
given population has been calculated, both analyti-
cally and by computer simulations. To understand
why HRDNAs are likely to persist longest in regions
of suppressed recombination, it was not necessary to
introduce an explicit model of amplification. The evolu-
tionary dynamics of HRDNA can also be understood
in the following way. At each time, when new
repeated sequences are regenerated by an amplifi-
cation event the (unidirectional) process of loss of
HRDNA is restarted. Since the rate of producing new
copies of DNA sequences is presumably very low
(Schimke, 1984), interaction between selection (operat-
ing through unequal exchange) and amplification thus
leads to a mutation-selection balance, i.e. a steady-
state probability distribution of copy numbers in evolu-
tionary times. Sufficiently strong amplification could
certainly generate limit cycles or chaotic behaviour,
but this possibility seems somewhat remote. Given the
results presented above, the steady-state distribution
of copy numbers will be such that mean copy number
is highest in segments of chromosomes with low values
of y. In fact, the greatest effect of meiotic recom-
bination on HRDNA is in the neighbourhood of zero
crossing over (see Fig. 1).

Thus the present analysis questions the often-used
argument that the localization of H RDNAs along chro-
mosomes gave hints to understanding the functional
aspects of satellite DNA. Many arguments concern-
ing satellite DNA function are based on the centric
or telomeric localization of these DNAs, but it is now
apparent that heterochromatin is distributed through-
out the entire chromosome arms (see Introduction)
and may persist everywhere in the genome where recom-
bination is restricted. Under these circumstances our
earlier paper (Charlesworth et al. 1986) attempted to
answer the question why recombination is suppressed
in some chromosomal regions separately and to treat
the accumulation of HRDNAs as a pure consequence
of such restriction. Two (independent) observations,
the non-uniform distribution of meiotic exchanges
along the chromosomes and the distribution of satel-
lites, are thus brought together to constitute a causal
relationship. We presented evidence that this relation-
ship is essentially established by long-range effects of
centromeric and telomeric factors in controlling
recombination.

A more complete picture of the accumulation of
satellite DNA can be obtained, considering possible
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counter-forces of the mechanisms controlling recom-
bination. Recent data on minisatellites (Jeffreys,
Wilson & Thein, 1985) show that repeated, non-tran-
scribed DNA sequences are not inherently incapable
of recombination. These observations suggest, that, in
order to behave as recombinationally inert, satellite
sequences must obey certain constraints with respect
to their DNA structure. Further evidence pointing in
this direction has been reported by Strauss &
Varshavsky (1984). They found a non-histone protein
that binds to a-satellites from African green monkeys
at three specific sites per repeat. Due to their apparent
nucleosome-positioning activity, such proteins may
underlie the highly regular nucleosome arrangements
in regions of repetitive DNA and so stabilize repeated
DNA sequences against strand breakage and subse-
quent recombination events. Accordingly, we ad-
vanced the following hypothesis on the evolutionary
accumulation of satellite DNA. There is a preferential
accumulation of repeated sequences in the neighbour-
hood of centromeres and telomeres, due to these
regions having been selected for restricted rates of
crossing over, and the HRDNA sequences which
accumulate are those with low rates of exchange.

This research has been carried out at the Universities of
Sussex and Edinburgh. I am considerably indebted to Brian
Charlesworth and Charles H. Langley for numerous
discussions and their comments on this paper, and John
Maynard Smith for his continuing help and advice. More-
over, I thank the members of the Department of Genetics at
Edinburgh University for their hospitality. My work has
been financially supported by a fellowship from the
Deutsche Forschungsgemeinschaft.
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