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HARDY'S U N C E R T A I N T Y P R I N C I P L E ON H Y P E R B O L I C SPACES

NILS BYRIAL ANDERSEN

Hardy's uncertainty principle states that it is impossible for a function and its Fourier
transform to be simultaneously very rapidly decreasing. In this paper we prove ver-
sions of this principle for the Jacobi transform and for the Fourier transform on real
hyperbolic spaces.

1. INTRODUCTION

The uncertainty principles roughly state that a non-zero function / and its Fourier
transform / cannot both be sharply localised. This is already evident in the Paley-Wiener
theorem; the Fourier transform of a compactly supported smooth function extends to an
entire function, hence it cannot have compact support. We also know that the Fourier
transform of a rapidly decreasing function, that is, a Schwartz function, is again a rapidly
decreasing function. Hardy's uncertainty principle tells us, however, that they cannot
both be very rapidly decreasing:

THEOREM 1 . 1 . [7], [5, pp. 155-157] Let f be a measurable function on R. If
\f(t)\ «S Ae~aM* and | /(A)| ^ Be~0^\ where A,B,a,p are positive constants and
a/3 > 1/4, then / = 0 almost everywhere.

Hardy's uncertainty principle has recently been generalised to the Fourier transform on
various families of Lie groups, in particular on semisimple Lie groups, see [16] and [4].
Further work and generalisations on Riemannian symmetric spaces of the non-compact
type were made in [15]. Also see [3] for similar results and a nice reference list.

The aim of this paper is to prove versions of Hardy's uncertainty principle for
the Jacobi transform and for the Fourier transform on the real hyperbolic spaces
SOo(p,q)/SOo(p — \,q),p,q € N. The proof of the latter case is based on the obser-
vation that the Fourier transform of functions of fixed A"-type can be expressed in terms
of modified Jacobi functions. This approach can be expanded to cover all hyperbolic
spaces and also yields a new proof of Hardy's uncertainty principle for all the Rieman-
nian symmetric spaces of rank 1.
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2. J A C O B I FUNCTIONS AND T H E JACOBI TRANSFORM

Let a, b, X € C and 0 < t < oo. We consider the differential equation

(1) (A-'W)"1 j t ( W ) ^ ) = -(A2 + P
2)u(t),

where p = a + b + 1 and Aa<b(t) - (2sinht)2o+1(2cosht)2l>+1. Using the substitution
x = — sinh2t, we can rewrite (1) as a hypergeometric differential equation with pa-
rameters (p + iA)/2, (p - iX)/2 and a + 1 (see [6, 2.1.1]). Let 2Fi denote the Gaufi
hypergeometric function. The Jacobi function (of order (a, b)),

(pa
x'

b(t) := 2F1 I ~{p + iX), -(p — iX),a + 1; - s i n h 2 t 1 ,

d
is for a £ —N the unique solution to (1) satisfying ¥>?'6(0) = 1 and — <£>°'f> = 0. The

d t (=0
Jacobi functions satisfy the following growth estimates:

LEMMA 2 . 1 . There exists a constant C > 0 such that:

|F(o + 1 ) " V A * W | < C ( l -I- |A|)*(1 + *)e( |3A |-R") t ,

for aJJ a, b € C and aii t ^ 0, where A; = 0 if^Ra > - 1 / 2 andk = [1/2 - Ko] if !Ra ^ - 1 / 2 .

P R O O F : See [11, Lemma 2.3]. D

Here [•] denotes integer part. We note that F ( a + I)'1 <pa
x'

b(t) is an entire function in
the variables a, b and A € C (also for a € —N). The Jacobi transform (of order (a,b)) is
defined by:

/a'6(A) = T(a + 1)~1 / f(t)ipa
x'

b{t)Aa'b(t)dt,
Jo

for all even functions / and all complex numbers A for which the right hand side is well-
defined. The Paley-Wiener theorem for the Jacobi transform, [11, Theorem 3.4], states
that the application / K+ fa'b is a bijection from C f (R)even onto ^(C)even. the space of
even entire rapidly decreasing functions of exponential type, for all a, b € C.

Define the Jacobi c-functions as:

v '" r ( ( i x + P)/2)r((ix + a - b +

for iX $ —N. Also consider the (Jacobi) functions (of the second kind):

<t>a
x'

b{t) := (2 cosh t)iX-p
2Fi (\{p - iA), \{a - b + 1 - xA), 1 - iX; cosh"21).

Then r (a+l )~VA > 6 = ca'(>(A)(^A'6 + co'i>(—A)^"'* as ameromorphic identity. The inversion
formula for the Jacobi transform can be written as (for any \x ^ 0, \i > -!R(a ± b + 1)):
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for / € Cc°°(K)even, see [12, Theorem 2.2].

Our proof of Hardy's uncertainty principle for the Jacobi transform is inspired by

the proof of the semisimple case, see [16]. The following lemma from complex analysis

is crucial:

LEMMA 2 . 2 . Let h be an entire function on C such that:

\h{X)\^Ce^\ A e C and \h(X)\ ^ Ce~iw\ A G R,

for some positive.constants 7 and C. Then h(X) = const. e~~'x , A G C.
PROOF: See [16, Lemma 2.1]. D

THEOREM 2 . 3 . [Hardy's uncertainty principle for the Jacobi transform.] Let
a, b G C, a £ —N. Let f be an even measurable function on R satisfying the following
growth estimates:

| / ( i ) | ^ ^ e - a | t | 2 , * € R and \f"-b(X)\ ^ Be~^\ X G R,

for positive constants A, B, a, ft. If a/3 > 1/4, then / = 0 almost everywhere.

PROOF: Let / be an even measurable function satisfying the above growth condi-
tions. The very rapid decay implies that / e Ll(R+, \Aa'b(t)\dt) n t 2 ( E + ] \Aa<b(t)\dt)
and that fa'b(X) defines an analytic function in A € C for all a, b € C. Choose numbers
a' and a" such that 0 < a" < a' < a and a'/3 > a"ft > 1/4. Using Lemma 2.1, we get
the following estimates on fa'b(X) (for different constants C > 0):

|/a'6(A)UC fe-Q'2(1 + |A|)*(1 + t)e^-up)tdt
Jo

Te-^e^^dt
Jo

Jo

dt

for A € C, using translation invariance of dt and the inequality |5A| < |A|.

Since -/? < - l / 4 a " , we also have \fa'b{X)\ ^ Be-W4a" for A G R, whence by
Lemma 2.2:

fa>»{X) = const.e-x2'*a" < Be~^\

for A G R, which is impossible unless the constant in the middle is zero. We conclude that
fa'b is identically zero on C and hence that / is zero almost everywhere by the inversion
formula (2). See [2] for more details. D
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3. T H E F O U R I E R TRANSFORM ON REAL HYPERBOLIC SPACES

Let p ^ 1 and q ^ 2 be two integers and consider the bilinear form (•, •) on W+q

given by

(x, y) = xxyx + 1- xpyp - xp+1yp+i xp+qyp+q, x, y e W+q.

Let G = SOo(p, q) denote the connected group of (p+q) x (p+q) matrices preserving (•, •)
and let H = SO0(p - 1, q) C G denote the isotropy subgroup of the point (1,0,..., 0)
€ W+q. Let K = SO[p) x SO(q) C G be the (maximal compact) subgroup of elements
fixed by the classical Cartan involution on G: 0(g) = (ff*)"1.

The space X := G/H is a semisimple symmetric space (an involution r of G fixing
H is given by r(g) = JgJ, where J is the diagonal matrix with entries (1, — 1 , . . . , —1)).
The map g >-> g • (l,Q,...,0) induces an embedding of X in W+q as the hypersurface
(with xi > 0 if p= 1):

X= {xeW+q | (x,x) = l}.

Let Y := S^ 1 x S'"1. We introduce spherical coordinates on X as:

x(t,y) = (vcosh.t,rysinht), t € R+, y = (v,w) G Y.

The map is injective, continuous and maps onto a dense subset of X. The (if-invariant)
metric distance from x £ X t o the origin is given by |a;| = \x(t, y)\ — \t\.

The unique (up to a constant) G-invariant measure on X is in spherical coordinates
given by:

f f(x)dx= f f(x(t,y))J(t)dtdy,
J\ JwL+xY

see for example, [8, Part II, Example 2.3], where J(t) = coshp~1 tsinh*"11 is the Jacobian,
dt the Lebesgue measure on R and dy an invariant measure on Y, normalised such that
/ ¥ l d y = l.

The action of SO(p) on COO(SP~1) decomposes into irreducible representations Hl of
spherical harmonics of degree |/|, see for example, [9, Introduction], characterised as the
eigenfunctions of the Laplace-Beltrami operator Ap on §P~l with eigenvalue -l(l+p-2).
Here / = 0 if p = 1, / € Z for p = 2 and / e N U {0} for p > 2.

Let ~Ul'm = Hl ®Um and denote the representation of K on Ul'm by 5l>m. Let
di,m — dim'H'1"1 and xi,m denote the dimension and the character of 8^m. A function in
L2(X) is said to be of if-type (I, m) if its translates under the left regular action of K
span a vector space which is equivalent to <Sj,m. We write L2(X)''m for the collection of
functions of X-type (l,m). The projection P''m of L2(X) onto L2(X)'>m is given by:

[
K
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for x G X, see for example, [9, Chapter V, Section 3] and [10, Chapter III, Section 5].
There are similar definitions and results for functions in L2(Y) and also for functions in
C°°(X) and C°°(Y).

The algebra of left-G-invariant differential operators on X is generated by the
Laplace-Beltrami operator A x , see for example, [8, Part II, Example 4.1], which in spher-
ical coordinates is given by:

£ ( « ' > ) *' + k A / ' e c""(x)

see for example, [14, p. 455]. It reduces to a differential operator Ax
m in the t-variable

when acting on functions of if-type (l,m):

Ai,mf A , 1 d i 3 / \ l{l + p-2) m(m + q - 2) r°°(YV.»>
A x / = A x / = J{t)~diV{t) *) + cosh2* f ~ sinh2t f' f e ° W •

Consider the differential equation:

(3) A x / = Ax / = (A - p ) / , / G O (A) ,

where p = {p + q — 2)/2. Altering the proof of [10, Chapter I, Proposition 2.7] to fit our
setup, we see that we can write any function / G C°°(K)l'm in spherical coordinates as:

(4) /(*(t ,y))

where {< |̂'m} = {(£' ® <̂ >m}i is a (finite) basis for %l'm, and /i is a function of the form
fi(t) = <w/i,0(t), with fi>0 even. Let x = - s inh 2 t and.g = (1 - x)-W2(-x)-WI2fi.
Then g is a solution to the hypergeometric differential equation with parameters 1/2 (A
+ p + |/| + |m|), 1 / 2 ( - A + />+ |Z | + |TO|) and g /2+ |m| . Let $^m denote the regular (for

generic A) solution to this hypergeometric differential equation satisfying the asymptotic
condition ^m(t) ~ e^"^ ' for t -> oo (for KA > 0 and when defined), then

r f (A + p+\l\ + \m\)/2)r((X -p + q-\l\ + \m\)/2\
= 2 A - ' - l ' l - H cosh"" t s i n h H t - ^ ' / > , ,. ' >

r(A)r((l/2)g+|m|)

Kl + H ) . 2(~A + ^+ Kl + H ) ; § + H ; -sinh2t),

for SRA > 0, see [1, pp. 72 and 76]. We also note that the function x(t,y) t-> ^

extends to a solution of (3) on X for any 4> G %l'm.

Let e G {0,1} and define C£°°(Y) := {<j> G C°°(Y) 14>(-y) = ( - l ) £0(y)}. The

Poisson transform, Fe<x • Cf (Y) ->• C°°(X), is defined as:

(x) = [\(x,y)\{-X-p)sign*(x,y)<i>(y)dy,

w h e n — 5RA
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LEMMA 3 . 1 . Let </> G Cf(Y) . The (meromorphic extension of the) function

F£t\<t> is an eigenfunction of the Laplace-Beltrami operator Ax with eigenvalue X2 - p2

(when defined), that is,:

The asymptotic behaviour of F£t\<p for t -¥ oo is given by (when defined):

for !RA > 0, where c{e, A) is the so-called c-function for X given by:

22 ' - 1 r(p/2)r(g/2) T(A) f tan(7r/2(A + p + £)) if p is even
C{£< >~ n T(X + p)\ 1 if p is odd.

P R O O F : The lemma follows from [14, Lemma4, Lemma 5 and Lemma 7]. D

We define the (normalised) Fourier transform TJ of any function / G C£°(X) as:

Ff(e,\,y) := c^-A)"1 [ \{x,y)\{X-p) sign* (x,y)f(x)dx,
Jx

for e G {0,1}, m ^ p and y e Y. Let / G Cc°°(X)''m for some fixed K-type (l,m). We
can (re)write the Fourier transform of / as (with e = I + m mod 2):

Ff(e,\,v)= f $':m
x(t)f(x(t,y))J(t)dt,

using spherical coordinates, Schur's Lemma and properties of the Poisson transform, see
[1, pp. 74-76] for details. We see that Tf(e,X,y) extends to a meromorphic function in
the A-variable, with zeros and poles completely determined by the above expression for
<£^m. Due to the factor F(A) in the denominator there are no poles for purely imaginary
A.

THEOREM 3 . 2 . [Hardy's uncertainty principle on SOo(p, q)/SOo(p- l,q).] Let
f be a measurable function on X satisfying the following growth estimates:

\f(x)\ ^ Ae-°W\ xeX and \Ff{e,\,y)\ ^ Be~^\ (e,X,y) e {0,1} x , R x Y ,

for positive constants A, B, a, /3. If a/3 > 1/4, then f = 0 almost everywhere.

PROOF: Let / be a measurable function satisfying the above growth conditions. The
very rapid decay again implies that / G Ll(X) D L2(X) and that the Fourier transform
J-f is well-defined.

Define p - p+ \l\ + \m\, a = \m\ + (q/2) - 1 and b - \l\ + (p/2) - 1, then:

r((A + p)/2)r((A - p + q + 217710/2)

https://doi.org/10.1017/S0004972700020785 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020785


[7] Hyperbolic spaces 169

Let fi,m{t,y) := P ' ' "7(z(£ ,? / ) ) /cosh l ' l i s inh H t. By (4) we see that /,,m is a measurable

function on R x Y, even in the ^-variable. Let also

Qlim(A) := 2*-3 '

Then:

fii{i\ V) ••= F(o + I ) " 1 f /,,„,(*,y)tff(t)Aa'b(t) dt = Q, , r a (A)-1^P l 'm / ( e , A,y).

We note that {Qi^iX)'1] ~ const. \\\W*-i-*\™\ for |A| -> oo, see [6, 1.18(6)], whence
compactness of [—1,1] x Y gives us the following estimates of /;,m and / ,°^:

\fljm(t,y)\^A'e-a^, (t,y) € K x Y and | ^ ( A , y ) | < 5'c"^*!2, ( A , j , ) € R x Y ,

for positive constants A', B'. Hardy's uncertainty principle for the Jacobi transform,
Theorem 2.3, implies that P ' ' m / is zero almost everywhere. We conclude the theorem
since / = £ P ' > m / . D

l,m

4. REMARKS AND FURTHER RESULTS

The space X = SOo(p, q)/SOo(p— 1, q) is a semisimple Riemannian symmetric space
of the non-compact type when p = 1 and of the non-Riemannian type when p > 1.
Hardy's uncertainty principle for the Riemannian case is due to A. Sitaram and M.
Sundari, see [16, Theorem 4.1]. Our proof generalises to all rank 1 Riemannian symmetric
spaces of the non-compact type, using that the Fourier transform of /^-finite functions
can be expressed by Jacobi functions.

Let F be one of the two classical fields C or H and let x H-> X be the standard (anti)-
involution of F. Let p and q be two positive integers and let [, ] be the Hermitian form
on FP+I given by

[x, y) = x{yx + •••+ xpyp - xp+lyp+l xp+qyp+q,

for x,y G F p + ' . Let G = U(p,q\¥) denote the group of all (p + q) x (p + q) matrices
over F preserving [, ]. Thus U{p,q;C) = U(p,q) and U(p,q;M) = Sp(p,q) in standard
notation. Let H be the subgroup of G stabilising the line F(l , 0 , . . . , 0) in W+q. We can
identify H with C/(l, 0; F) x U{p - l,g;F) and the homogeneous space G/H (which is a
reductive symmetric space) with the projective image of the space {z 6 Fp+* | [z, z]} = 1.
The statement and proof of Hardy's uncertainty principle for the Fourier transform on
G/H follows from the above, either embedding G/H into SOo(dp,dq)/SOo(dp — l,dq),
with d = dimR F, or again expressing the Fourier transform of A'-finite functions using
modified Jacobi functions. See [1, p. 117] for more details.

We finally note that we prove V versions of Hardy's uncertainty principle for the
Jacobi transform and for the Fourier transform on real hyperbolic spaces in [2]. Also see
[13] for a similar result in the Lie group case.
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