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Abstract

We restrict the metaplectic representation to subgroups G of the symplectic group associated to equi variant
holomorphic maps into the Siegel disc. We describe the invariant subspaces of the decomposition, and
reduce the problem to the decomposition of a space of 'harmonic' polynomials under the action of the
maximal compact subgroup of G.

1991 Mathematics subject classification (Amer. Math. Soc): primary 22E46; secondary 43A85.

0. Introduction

The decomposition of the metaplectic representation to subgroups of the symplectic
group Sp2N (more exactly to their pull-back in the metaplectic group which is a 2-fold
covering of Sp2Ar) has been determined explicitly by Kashiwara and Vergne (see [8])
for two examples:

(i) G = Sp2n and G' = O (k) as subgroups of S p ^
(ii) G = U(p, q) and G = U(k) as subgroups of U(pk, qk) c Sp2(p+<?)Jt.

G and G' form a dual reductive pair, as defined by Howe ([5]); moreover G' is
compact, and G is of hermitian type, in the sence that the associated symmetric space
of G is hermitian. In fact, as G' is compact, it commutes with the 1-dimensional
center of a maximal compact subgroup of Sp2w(»; D(N)). This 1-dimensional center
belongs to G, because G is the commutant of G', and yields the desired complex
structure on the corresponding symmetric space G/K. These facts were tacitly used
in [8], but the role of the hermitian space G/K in its bounded realization was even
more transparent in a recent work [2] by Davidson, where the second example is again
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[2] Equivariant holomorphic maps 161

studied.
These remarks suggest it might be worthwhile to recast and extend at least part of

these results in the context of equivariant holomorphic maps into the Siegel disc. The
latter were studied and classified by Satake ([10, 11]), and offer intriguing examples
which might deserve further study. We hope to give more details for specific examples
in a further paper.

1. The Siegel disc

Let Syi% (C) denote the space of N x N symmetric matrices with complex entries,
and let

(1.1) A (= A*) = {Z e Sym^(C) | Hw - Z*Z » 0}.

A is a bounded symmetric domain, holomorphically equivalent to the Siegel half-plane
and will be referred to as the Siegel disc.

To describe the group of holomorphic diffeomorphisms of A, let us first consider
CN equipped with the standard inner product (£|»7) = Yl?=i £<*?" an(^ consider the
form Im(£|>j): this is a non-degenerate skew-symmetric form on the (real) vector
space €N. An (R-linear) transform g of CN preserving this symplectic structure can
be realized in a unique way as g. £ = At; + B£ where A and B are N x N complex
matrices which satisfy

I AA* - BB* = 1N

or equivalently

[ A*A - 'BB = HN
(1.2')

\ B*A-'AB = 0.

To such a transform we associate the 2N x 2N complex matrix g = I - - I. Let

also

(1.3) -2') }•
Now Spc is isomorphic to the real symplectic group Sp2W(R); on the other hand

Spc is a real form of the complex symplectic group Sp2W(C), where

A'D - B'C = ILy 1

A'B = B'A, C'D = D'C\
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162 Jean-Louis Clerc [3]

The conjugation a of Sp2A,(C) with respect to Spc is CT: I n ) ~ M ~
\C D) \B A

Now, if g = I I belongs to Sp2Ar(C), and if Z e Sym^ (C), the holomorphic

action g(Z) is defined if CZ + D is non-singular, and then

(1.5) 1

When g = I - - I belongs to Spc, and Z e A, the condition is always satisfied,

and (1.5) specializes to

(1.5') g(Z) = {AZ + B)(BZ + AY'.

Fix O as the origin in A. The stabilizer of the point O in Spc is the subgroup

j I - I, AA* — HAT \, which is isomorphic to U(JV).

The Lie algebra of the stabilizer has a one-dimensional center generated by the
element

o -,72nJ-
With respect to the adjoint action of this element, the Lie algebra sp2w of Sp2A, (C)

has the decomposition

(1.7)

K o z\ 1 \(x o \ 1

_ _ , Z € Syi%(Q 0 j ( , v U e MN(£)
0 0) \ \\0 -'XJ \

, We Sym^C)).

There corresponds, at least on a dense open set, a decomposition for the elements
ofSp2/v(C):

= /Ew BD-l\('D-1 O\( KN O\
\o nN ) \ o nN)\D-lc iNy

where <? € Sp2A,(C) is such that D is non-singular.
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On the open set {det D ^ 0} define, for g = ( I,

(1.9) X+(g) = BD~\ X-(g) = D-1C, K(g) = D.

This clearly defines three holomorphic maps, with values the two first in SymA,(C),
the last one in GL(n, C).

If, moreover g = I - - e Spc, then the condition is always satisfied, and (1.9)
\B A)

specializes to:

(1.10) X+(g) = BA-1, X-(g) = A-lB, K(g) = A.

By abuse of notation, we denote, for Z e Symw (C), exp Z = ( J* I. Now it
\ O 11/v/

is easily seen that if Z e Sym/v(C) and g e Sp2N(C) is such that g(Z) is defined, then

(1.11) X+(gexpZ) = g(Z) = (AZ + B)(CZ + D)"1.

Finally, let us introduce the canonical factor of automorphy

(1.12) J(g, Z) = K(gexpZ) = CZ + D.

This factor is easily seen to verify the following relation, whenever it makes sense:

(1-13) J(gg\ Z) = J(g, g'(Z))J(g', Z).

Let also j(g, Z) = det J(g, Z), and for Z, W e Symw(C), define whenever it
makes sense

(1.14) K(Z, W) = J(a(exp W)~\ Z)"1 = (1 - WZ)~l

and k(Z, W) = det K(Z, W).
Notice that K is well defined if Z and W belong to A.

2. The Fock model for the metaplectic representation

The Fock space & is the space of holomorphic functions F: CN —>• C, such that

(2.1) \\F\\%= I \F{i; '
Jc

where dfi is the measure on C^ defined by

(2.2)
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where dk is the ordinary 2n-dimensional Lebesgue measure on C^.
The Fock space is a Hilbert space when equipped with || F | | & as a norm; it admits

a reproducing kernel. Explicitly:

(2.3) [
Jc

£ e CN.
The metaplectic representation is realized on the Fock space in a very convenient

way ([1,7,4]). We only sketch the construction. First, consider the Heisenberg group
M2N+i = C x I , with the group law

By the Stone-von Neumann theorem, an irreducible unitary representation U of
M2AM-1 which is given by a non-trivial character times the identity on the center
{(0, s), s e K} of H2w+i is unique up to a unitary isomorphism.

The group Spf acts as a group of automorphisms of M2N+I- if g e Spc, define
g(£, s) — (g.£, s). So, for g e Spc, we may define a new representation Ug by
Ug(£, s) = U(g.2;, s). As g fixes the center of M2N+I, it is clear that Ug is unitarily
equivalent to U. It follows that there exists a unique (up to a complex factor of
modulus 1) unitary operator Tg, such that Ug o Tg = Tg o U.

Now it is easily verified that if g and g' are two elements of Spc, then Tg o Tg< is
a unitary intertwining operator between Ugg> and U, so that Tgg- = c(g, g')Tg o Tg>,
where c(g, g') is a complex number of modulus 1.

This produces a projective representation of Spc. It can be shown ([12,9]) that it can
be lifted to a unitary representation of a 2-fold covering of Spc, called the metaplectic
group. It implies that one can choose Tg for g € Spc, such that c(g, g') = ± 1 .

The Fock space can be used to give a concrete realization of the unitary representa-
tion of the Heisenberg group (this amounts to using a complex polarization). Choose
the character on the center to be (0, s) -*• e'"s, and let, for F e & and (£, s) e

It is easily verified that this defines an irreducible unitary representation on
which satisfies C/(0, s) = einsU&. In this context we have (see [1, 7, 4]):

= I - - )PROPOSITION 1. For g = I - - ) e Spc, define the operator Tg (modulo ±1) on

(2.4)

https://doi.org/10.1017/S1446788700000732 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000732


[6] Equivariant holomorphic maps 165

where

(2.5) KtQ, n) = ±(det A ) - 1 / 2 e x p | { A

Then for all g,h e Spc and (£, s) e M2N+\

(i) Tg is unitary
(ii) r,oi/(f,j) = i/(g.?,5)or,

(iii) TgoTh = ±Tgh.

REMARK 1. There are in fact two metaplectic representations, depending on the
choice of the character on the center of M2N+I- The two representations are the
contragradient of one another. Notice that, as our choices of the group law and the
character differ from those in [1] and [4], we obtain a different result. The reason for
this choice is to have holomorphic formulas (as opposed to anti-holomorphic) later
on.

Now, using the Harish Chandra decomposition of Spc (formulas 1.10), we can
re-write (2.5) as

(2.6)KtQ, i,) = ±det t fOO-1 / 2exp| {'£X+(*)£ +2(K(gT1S\r>) -'

REMARK 2. Formula (2.6) shows that the metaplectic representation has a holo-
morphic contituation to a large open set in Sp2JV(C). In [6] Howe found an interesting
holomorphic semi-group which is part of our extension and which acts by contractions.
See also related results in [3].

3. Equivariant holomorphic map into the Siegel disc

Let 3) be a hermitian symmetric space of the non-compact type, and assume G is
a reductive Lie group acting holomorphically and transitively on f£*. For technical
reasons, we assume that G is the connected component of the identity in a Zariski-
connected reductive algebraic K-group. We fix an origin o in &, let K be the stabilizer
of o in G, and 6 the Cartan involution of G such that the fixed points of 9 is K.

A pair (p,p&) of an K-homomorphism p:G —> Spc and a holomorphic map
p®: Si —• A is an equivariant holomorphic map if the following conditions are
satisfied:

(3.1) Ps>(g(z)) = p(g)(p®(z)), foig € G, z e 9
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and

p®{6) = O,

(3.2) \

These axioms imply that p® is a totally geodesic map for the Bergman metrics.
As G is of hermitian type, there exists an element Ho in R = Lie(K), such that//0

belongs to the center of R and ad Ho defines the complex structure onp = { I e g =
Lie (G) | OX = —X] which is identified with the tangent plane at o. The fact that p®
is holomorphic, together with (3.1) imply that

(3.3) [p(H0) - {Jo, p(X)] = 0, VX e g.

Although some of our results are true in this general situation, we require a stronger
condition, called the (H2) condition in [11], to which we refer for more details on
equivariant holomorphic maps:

(3.4) p{H0) = \J0 \H2) condition'.

Consider now the complexification of the whole situation. Still denote by p the
extension of p to Gc, the complex algebraic group corresponding to G (or more
precisely to the algebraic group whose component of the identity is G) into Sp2A,(Q,
and let a be the conjugation of Gc with respect to G. We may decompose gc with
respect to the action of ad Ho, and get

(3.5) gc = *>+eRcep-,

where p + , Re, p~ are the eigenspaces of ad Ho for the eigenvalues respectively i, 0, —i.
There is a global analogue, the Harish Chandra decomposition on a dense open

subset of Gc:

(3.6) g = expx+(g)k(g)expx~(g),

where x+(g) e p+, k(g) e Kc, x~(g) e p~.
The assumptions (and notably (3.3)) imply that the decompositions (3.5) and (3.6)

are p-compatible, in the following sense:

(3.7) X+(p(g)) =

K(p(g)) = p(k(g)),

geG.
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Finally, for g e G, and z e ^ , introduce the automorphy factors (we again abuse
notation):

(3.8)

(3.9) j(g,z)=detJ(p(g),p9(z)),

where we use notation from Section 1.
Again, from the cocycle relation (1.13) and the assumptions on p, it is immediate

that J and j satisfy the following property:

(3.10) J(gg',z) = J(g,g'(z))J(g',z),

z) = j(g,g'(z))j(g\z).

We also set

(3.11) K(z, w) = K(ps(z), pg,(w)), and k(z,w)=k(p&(z),p@(w)).

We further assume that Q is realized in the Harish Chandra imbedding, so we view $1
as an open set in p+, and p® is just the restriction to *2l of the linear map, still denoted
by p, from p+ into SymA,(C) which is obtained from p: g —> spc by complexification
and restriction.

A last comment on the (H2) condition (3.4): it implies that the commutant of p(G)
in Spc is compact; in fact the center of the maximal compact subgroup of Spc, which is

ic O
= exp #70> # € R/2n1 \ belongs to p(G), and its commutant in

O e nNJ j
Spf is (isomorphic to) QJ(7V). In other terms the map p® is rigid (see [11]); conversely,
it is easily seen that if p@ is rigid, that is if the commutant of p(G) is compact, then
one can enlarge G to a group G such that the (H2) condition is satisfied, and without
changing the commutant in Spc.

4. Special gaussians and harmonic polynomials

One of the advantages of using the Fock model is that & has two families of
elements which can be used for computations: the (holomorphic) gaussians and the
(holomorphic) polynomials.

For Z € Symw (C) define the associated gaussian F z by

(4.1) r z ( f ) =enl2'm for f € C w .

Now Fz belongs to & if and only if Z e A (see [4]), and moreover

(4.2) ^ 1 / 2
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Denote by & the set of holomorphic polynomials o n C . If p e @>, denote by
d{p) the coefficients differential operator on <CN such that

where d(p) acts on the £ variable. In other words we set 3(£;) = (l/7r)9/3£; (1 <
j < N) and extend as an algebra homomorphism. Then we have the following
expression for the inner product:

(4.3) (p\q), = d(pKq)(O).

Notation of Section 3 being in force, recall that p denotes (among other things) a
C-linear map from p + into Syi%(C).

If Z e Syi%(C), denote by qz the associated quadratic polynomial qz{H) = '
For z G p+, set qz = qp^, so that

(4.4) qz{$)=

and let J' be the subalgebra of &> generated by the qz, as z varies through p+. Elements
of J^ will be referred to as special polynomials.

Similarly, for z G p+, define the special gaussian Tz by Fz = rp(z). Clearly if
ze&, Tze&. Finally let 3^ be the subspace of & defined by

(4.5) Jf? = [p

Elements of Jf will be referred to as harmonic polynomials.

PROPOSITION 2. (a) &

(b) The space spanned by the products of a harmonic polynomial and a special
gaussian is dense in &.

By using the standard graduation of & by the degree, it is clear that (a) is a
statement for each £?m (= the space of homogeneous polynomials of degree m), so
we may ignore any difficulty from using infinite dimensional vector spaces. Now if
h 6 J(f, formula (4.3) shows that h is orthogonal to <#+, the subspace of polynomials
in y without constant terms, and even to the ideal y+£P generated by J^+ in &.
But as an element orthogonal to J+& is clearly in 3%*, we get g? = Jf? 0 J+&>\
but of course we may iterate this result to get that any polynomial in & can be written
as a sum of products of a harmonic polynomial by an element in y . This is what (a)
means.

To prove (b), observe first that

j-t(riz)\l=0 = \n qz, zep+.
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From this it follows that the closed space generated by the special gaussians contains
«/, and hence the closed space generated by products of a harmonic polynomial and a
special gaussian contains J2" Jf, which equals & by a part (a). As & is dense in &,
we get (b).

There is a natural action of GL(N, C) on 8?; if g e GL(N, C) and p € &, define
L(g)p by

Then L(g)<?z = qgZ, where

Using the identifications made in Section 1, this corresponds to the adjoint action
of GL(n, C) (complexification of U(A0) on SymAr(C).

Now if g e Kc and z e p+, this implies that L{p{g))qz = qgz, where g.z =
Ad g(z). This clearly implies that Jj? is stable under L(p(Kc)), and gives rise to a
representation of K<c in Jff.

5. The main formula

In this section we describe the action of the metaplectic representation on the
product of a special gaussian by a harmonic polynomial.

THEOREM 1. Let z e 9, h e J? and g e G. Then

(5.1) Tp(g)(Vzh) = ±j(g, zYmrmL{J{g, z))h.

We first need a simple lemma which generalizes the orthogonality relation between
f and J+&.

LEMMA 1. Leth e JP, / e ^ and p e J^+.

(5.2) /

This is a consequence of the density of & in ^ .
Let us first prove (5.1) when z = o. Notice that Fo = 1, J(g,o) = K(p(g)),

g(o) = x+(g), j(g, o) = det K(p(g)). Using this and formulas (2.4) and (2.6), the
left-hand side of (5.1) can be written as

Jc
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As r_x-(g) can be expanded as 1 plus a converging series of elements in J^+, we
see from (5.2) that the value of the integral is just

f
J
f
c

Using now the reproducing property (2.3), this integral is equal to hiJig, o)~'£) =
, o))hi%), hence formula (5.1) is true in this special case. For the general case,

choose a, e G, such that z = go(p). Then AT, = jigo, o)+]'2Tp(go)iLiJig0, orl)h),
by using the part of the formula we already proved. As T is a representation, we
obtain

TP(g)ihTz) = ±Jig0,oy/2TMggo)iLiJig0,o)-l)h)

= ±j(g0, o)1/2j(gg0, o)-l/2rgg0(o)iLiJigg0, o)Jig0, o)-')A),

where we use again the part of the formula we already proved. It just remains to use
the cocycle relations (3.10) to conclude.

In deriving consequences of the main formula, we need another result which is
proven along similar lines.

PROPOSITION 3>. Letz,w e S>, h, I e Jf?. Then

(5.3) ( T z h , r w t ) # = k i z , w ) ) l / 2 i K i z , w ) '

Here we use notation from Section 1; the determination of the square root is chosen
so that kiz, z)1/2 is positive.

Choose g and y in G such that z = gio), w = y(o). Then

hTz = jig, o)l/1Tp(g)iLiJig, oTx)h and

trw = jiy, o)

So

-1/2 ,
= jig, oy^jiy, o) iTpig)iLiJig, o) ')h), Tp(Y)iLiJiy,,

= jig, o)l/2jty~o)1/2iTp(y-,g)iLiJig, O ) - ' )A;

= jig,o)l/2jiy,o)jiy-lg,oy1/2

lg, o)Jig, o)~l)

= j(g,o)mjiy,o)jiy-lg,o)-l/2

'g, o)J(g, o)~l)h), LiJiy,

where we use (5.2) again.
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[12] Equivariant holomorphic maps 171

Now L(g)* = Liaig)'1), and so by transposition we get

(rzh, y/2T^l/2ll/2

• (L(a(J(y, o)))J{Y~lg, o)J(g, o)~l

Consider now the function o(J(y, o))J(o{y)~xg, o)J(g, o)"1. It is holomorphic
in g, antiholomorphic in y in a (connected) open set in Gc x Go and coincides on
G x G with cr(J(y, o))J(y~lg, o)J(g, o)"1. It is unchanged if we multiply g (and
y) by any element in Kc, as Kc normalizes p+ and p~. These remarks allow us to
substitute g = expz and y = expw in the computation; but this gives immediately
K(z, w)~[ (see condition (3.11)). The same argument can be used to compute the
scalar factor j(g, oY/2j(y, o)1/2J(y~lg, <?)~1/2. Of course the formula is proven up
to a sign. But for fixed h and £, the inner product is clearly a function in & x Q
which is holomorphic in z and antiholomorphic in w; this forces the choice of the
sign, because this must be positive for z — w.

6. Consequences of the main formula

The main formula suggests that the decomposition of T\G is connected with de-
composition of L\p(Kc) on the space J4?.

For Jz? an invariant subspace of Jif under L(p(Kc)), form

(6.1) &<e = the closed subspace of & generated by all products hFz,

where A e i f and z e l
Clearly, by an argument similar to the one used in Section 4, && is also the closure

of the subspace generated by all products hq, where h e Jf and ^ e / .
Thanks to the main formula (5.1), ^ f i s stable under 7]c.

THEOREM 2. Assume Jz? is irreducible under L(p(Kc)). Then &<£ is irreducible
under 7|c.

To prove this result, we need to consider the metaplectic representation as a unitary
representation f of Spc a two-fold covering of Sp. We denote by G the corresponding
covering of G, and p the lifting of p to G. Let U be the compact subgroup {exp t H0}ie^,
and 0 the pullback of U in G. Now, formula (2.6) implies in this case

(6.2) f (P(«)) = detp(M)"1/2L(p(M)),

where det/o(w)"1/2 is a (univalued) character on U. As Jzf is irreducible under
L{p(Kc)), and Ho is in the center of fi, L(p(u))\y is, by Schur lemma, a multiple of
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These facts together imply that there exists a character x of £/, such that

(6.3) f(p(Z))\je =

Now define the following operator P on

(6.4) Pf= f X(ii
JO

This clearly defines a bounded operator on &&. Moreover P2 = P, and because
of the unitarity of T, it is easily seen that P is self-adjoint. Now, if h e Jzf, then
Pf = / as a consequence of (6.3). Moreover, if g e J!

+, and h e Jz?,

Piqh) = f *(«)-' detp(url/2L(p(u))(qh)du
JO

= f *(«)-' det/o(M)-'/2L(p(M))(^).det p(uy/2.X(u).hdu
Jo

= (I L(p(u)){q)d0\ .h.

But JQ L{p{u)){q)du = 0, as q is the sum of holomorphic homogeneous polynomials
of strictly positive degree.

From these results, we conclude that P is the orthogonal projection of && onto jSf.
Now the rest of the proof is standard: if V is a closed invariant subspace in &<g. then
P leaves "¥ invariant, and same is true for YL, its orthogonal complement in &%.
So we may assume that V does contain an element / such that Pf ^ 0 (otherwise
use V1 instead). So f n j£? is not reduced to {0}, so V D 3? by the irreducibility
of ££ under L(p(Kc)). But (5.1) implies that rzh € f for z € 9 and h e ^f. So
^ D «̂ !sf, and this obviously shows the irreducibility of J ^ .

REMARK 3. As K is compact, an irreducible subspace Jzf is always finite dimen-
sional. Moreover, Kc has a center, which (through p) acts on CN by complex dilations
(this is essentially the '# 2 assumption' (3.4)). From this we conclude that _£? consists
in homogeneous polynomials and two irreducible subspaces corresponding to equi-
valent representations of Kc correspond to the same degree of homogeneity. So 3^
decomposes under p(Kc) with finite multiplicity.

REMARK 4. Let £?& be the vector subspace spanned by all products hq, where h
runs through S£ and q runs through J^. Then £?<£ is dense in &se, and is graded
space under the natural graduation on &, as a consequence of the last remark. But
& n &% is also a graded space (because of (6.2)), and each homogeneous component
of these two spaces are clearly equal. So j£? is the space of elements in <^ D && of
minimal degree.
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THEOREM 3. Let .if and %" be two invariant irreducible subspaces. Then &% and
&<e> are equivalent as representations of G if and only if ££ and j£?' are equivalent
as K-representations.

Let first assume <^> and &&. are equivalent, and let A be a (unitary) intertwining
operator form &# into ^JZ° •

A commutes with L(p(u)) for u e U, which implies that A maps & D && into
& fl &<g,, preserves the degree, so maps j£f into _Sf" by Remark 4. But for A: e K,
Tpig) coincides with L(p(k)) (except for the caracter detp(fc)~l/2) and hence ££ and
Jjf' are equivalent as /^-representations.

Conversely, let Jif and _Sf' be two equivalent subspaces of Jf . Let B be a
(unitary) intertwining operator. Let / = 5Z"=1/i,TZi, with A, e ^f and z, € ^ .
Define A/ = £"=1 B/i.T,.. To see that A is well defined on & n ^ . , observe
that | |A/| |^ = Il/H jr, as a consequence of formula (5.3). Now extend A to &<g by
continuity. The intertwining property is clearly a consequence of the main formula.
This proves Theorem 3.

THEOREM 4. The restriction of the metaplectic representation T to G decomposes
discretely and with finite multiplicities. Each component is of the form &&, for
some invariant irreducible subspace _£?, and the multiplicity of the corresponding
representation of G in & equals the multiplicity of the corresponding reprsentation
ofKin JT.

In fact, let Jf = 0 , e / J>% be a decomposition of Jt? into irreducible subspaces.
Let J^ = ^jg!. Then, as the J£j are mutually orthogonal, the same is true for the ^
(see formula (5.3)). As £? = Jjrif, we see by density that & = 0 1 € / & (direct
orthogonal sum).

The rest of the proof is an easy consequence of Theorems 2 and 3.
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