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Abstract. We derive lower bounds for the rank of Picard groups of modular varieties associ-

ated with natural congruence subgroups of the orthogonal group of an even lattice of signa-
ture ð2; lÞ. As an example we consider the Siegel modular group of genus 2. The analytic part
of this paper also leads to certain class number identities.
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1. Introduction

Let L be an even lattice of signature ð2; lÞ with l5 3. Write qð�Þ for the quadratic

form on L and L for the (finite) discriminant group of L.

Let O0
ðL�Z RÞ be the spinor kernel of the real orthogonal group of L and denote

the corresponding Hermitean symmetric domain by Hl. We write O
0
ðLÞ for the inter-

section of the integral orthogonal group of L with O0
ðL�Z RÞ. We consider the dis-

criminant kernel DðLÞ of the group O0
ðLÞ, that is the subgroup of those elements that

act trivially on L.
There is a natural notion of principal congruence groups for the group DðLÞ: For

any non-zero integer N we have the rescaled lattice LðNÞ, given by L as a Z-module,

but equipped with the quadratic form Nqð�Þ. The discriminant kernel of LðNÞ is a

subgroup of DðLÞ, defined by congruence conditions modulo N. We call it the prin-

cipal congruence subgroup of level N and denote it by GðNÞ.

We consider the arithmetic quotient XðNÞ ¼ Hl=GðNÞ. By the theory of Baily and

Borel, it carries the structure of a quasiprojective algebraic variety. A fundamental

geometric invariant is its algebraic Picard group PicðXðNÞÞ. Our assumption on l

implies that this group is finitely generated. In the present paper we shall derive a

nontrivial lower bound for the rank of PicðXðNÞÞ. In particular we are interested

in the asymptotic behavior of the numbers rank PicðXðNÞÞð Þ as N ! 1. Although

this problem seems very natural, to the best of our knowledge, just partial results

can be found in the literature. (See for instance [LW1,LW2] or [GN].) Certainly

one would expect that the rank of PicðXðNÞÞ tends to infinity as N ! 1, reflecting
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the fact that the geometry of XðNÞ gets more complicated as the level rises. However,

even a result of this type seems not to be known in general.

Put X ¼ Xð1Þ. It is a consequence of the work of Borcherds [Bo1,Bo2] and the

refinement given in [Br1] that there exists a homomorphism

Sk;L 	!ðPicðXÞ �Z CÞ
�

C½EHodge� ð1Þ

from a certain space Sk;L ofC½L�-valued cusp forms of weight k ¼ 1þ l=2 to the quo-

tient of PicðXÞ �Z C modulo the span of the class of the Hodge line bundle EHodge.

If L splits two orthogonal hyperbolic planes over Z, then the main result of [Br1]

says that this map is injective (see also [Br2] or [BF] for related results). Hence in this

case we can obtain a lower bound for rankðPicðXÞÞ by estimating the dimension of

Sk;L. By means of the Riemann–Roch theorem or the Selberg trace formula, the

dimension of Sk;L can be computed. Thereby the original problem is reduced to esti-

mating the different contributions in the dimension formula. Some of these are

‘strange’ invariants of the discriminant group L and the Q=Z-valued quadratic form

on it induced by q. They are studied in Section 2, the technical heart of this paper.

Let us now assume that L splits two orthogonal hyperbolic planes over Z, i.e. has

the special shape L ¼ L0 ? H ? H, where L0 is an even negative definite lattice.

Then the above argument can be used to find a bound for the rank of PicðXÞ. Unfor-

tunately, it cannot be applied directly to get a bound for PicðXðNÞÞ, since LðNÞ does

not split two hyperbolic planes over Z.

Therefore we first consider the lattice

L½N� ¼ L0ðNÞ ? H ? H

and its discriminant kernel G½N� ¼ DðL½N�Þ. We write X½N� for the quotient Hl=G½N�.

The group G½N� can be viewed as a subgroup of the rational orthogonal group of L

with the property that GðNÞ � G½N�. In the Oð2; 3Þ-case of the Siegel modular group

of genus 2 it is isomorphic to the paramodular group of level N. Using the injectivity

of the map (1) and the estimate of Section 2 for the dimension of Sk;L, we obtain a

bound for rankðPicðX ½N�ÞÞ (see Theorem 8). In particular we find that for any e > 0

there exists a constant Ce > 0 (which can be easily determined) such that

rank PicðX ½N�Þð Þ5
ljLjNl	2

48
	

CeN
1=2þe; if l ¼ 3;

CeN
l	3þe; if l > 3;

�
ð2Þ

for all N 2 N (Corollary 9).

The projection XðNÞ ! X½N� induces an injective homomorphism

Pic X ½N�ð Þ 	!PicðXðNÞÞ:

Hence all bounds for the rank of PicðX ½N�Þ give us also bounds for the rank of

PicðXðNÞÞ. There are some reasons to believe that our estimate (2) actually describes

the true asymptotic growth of rankðPicðX ½N�ÞÞ, whereas the resulting bound for

PicðXðNÞÞ seems rather poor (see Questions 1 and 2). Better results for XðNÞ could

be obtained by studying the injectivity properties of the map (1) more carefully

for lattices which do not split two hyperbolic planes over Z.
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As an important example we consider the special case of the Siegel modular group

of genus 2 in somewhat more detail. We take L ¼ Zð	2Þ ? H ? H and use the excep-

tional isomorphism from Spð4;RÞ to Oð2; 3Þ. Due to the work of Weissauer

[We1,We2] we know a lot about the Picard groups PicðXðNÞÞ in this case. For

instance the Tate conjecture for algebraic divisors is proved in [We1]. However, lower

bounds for the rank of PicðX ½N�Þ or PicðXðNÞÞ seem not to be known in general.

The group G½N� is isomorphic to the paramodular group of level N (cf. [GrNi]).

The quotient X½N� is the moduli space of Abelian surfaces with a ð1;NÞ-polarization.

Our result implies that for any e > 0 there is a constant Ce > 0 such that

rankðPicðX ½N�ÞÞ5N=8	 CeN
1=2þe

for all N 2 N (Corollary 10). The same estimate holds for the Siegel principal con-

gruence subgroup of level N.

In the Appendix we apply some ideas of Section 2 to derive certain class number

identities. Together with the lemmas in Section 2 they can be used to evaluate the

formula for the dimension of Sk;L explicitly when L has the special shape

L ¼ Zð	2t1Þ ? � � � ? Zð	2trÞ with nonzero integers t1; . . . ; tr. Moreover, these iden-

tities might be of independent interest.

2. The Dimension Formula

Let L be an even lattice of signature ðbþ; b	Þ. We denote the bilinear form on L by

ð�; �Þ and the associated quadratic form by qðxÞ ¼ 1
2 ðx; xÞ. We write L0 for the dual

lattice of L and L ¼ L0=L for the (finite) discriminant group. Moreover, let

d ¼ jL=f�1gj, r ¼ bþ þ b	 be the rank of L, and denote by

D ¼ minfn 2 N; nqðgÞ 2 Z for all g 2 L0g ð3Þ

the level of L.

We write Mp2ðRÞ for the metaplectic 2-fold cover of SL2ðRÞ and denote by

Mp2ðZÞ the inverse image of SL2ðZÞ under the covering map. Recall that the

elements of Mp2ðRÞ are pairs ðM;fðtÞÞ, whereM ¼

�
a b

c d

�
2 SL2ðRÞ, and f denotes

a holomorphic function on the upper complex half plane H with fðtÞ2 ¼ ctþ d. It is

well known that Mp2ðZÞ is generated by

T ¼
1 1
0 1

� �
; 1

� �
and S ¼

0 	1
1 0

� �
;

ffiffiffi
t

p
� �

:

One has the relations S2 ¼ ðSTÞ3 ¼ Z, where Z ¼

��
	1 0

0 	1

�
;i
�
is the standard gen-

erator of the center of Mp2ðZÞ.

There is a particular unitary representation rL of Mp2ðZÞ on the group algebra

C½L� of L. If we denote the standard basis of C½L� by ðeeegÞg2L, then rL can be defined
by the action of the generators S;T 2Mp2ðZÞ as follows (see also [Bo1], [Bo2], where

the dual of rL is used):

rLðTÞeeeg ¼ eð	qðgÞÞeeeg; ð4Þ
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rLðSÞeeeg ¼

ffiffi
i

p bþ	b	ffiffiffiffiffiffiffi
jLj

p
X
d2L

eððg; dÞÞeeed: ð5Þ

Here and throughout we abbreviate eðzÞ ¼ e2piz for z 2 C. This representation

is essentially the Weil representation attached to the quadratic module ðL; qÞ (see
[No]).

Let k 2 1
2Z. We denote by Mk;L the vector space of C½L�-valued modular forms

of weight k with representation rL for the group Mp2ðZÞ. The subspace of cusp

forms is denoted by Sk;L. (See also [BF] or [Bo1].) It is easily seen that Mk;L ¼ 0,

if 2k 6� b	 	 bþ ðmod 2Þ.

Since rL factors through a finite quotient of Mp2ðZÞ, it is clear that the dimension

ofMk;L is finite. It can be computed using the Riemann-Roch theorem or the Selberg

trace formula in a standard way. This is carried out in [Fi] in a more general situa-

tion. In our special case the following formula holds (see [Bo3], [Bo2] p. 228):

Assume that 2k � b	 	 bþ ðmod 4Þ (we will only be interested in this case). Then

the d-dimensional subspace W ¼ spanfeeeg þ eee	g; g 2 Lg of C½L� is invariant under
rL, more precisely rL acts by multiplication with eð	k=2Þ on it. We denote by r the
restriction of rL to W. If M is a unitary matrix of size d with eigenvalues eðnjÞ and
04nj < 1 (for j ¼ 1; . . . ; d), then we define

aðMÞ ¼
Xd
j¼1

nj:

The dimension of Mk;L is given by

dimCðMk;LÞ ¼ dþ dk=12	 a epik=2rðSÞ
� �

	 a
��
epik=3rðST Þ

�	1�
	 aðrðT ÞÞ: ð6Þ

Furthermore, using Eisenstein series, it can be easily shown that the codimension of

Sk;L in Mk;L is equal to the number of elements of the set

g 2 L=f�1g; qðgÞ 2 Z
	 


ð7Þ

(see also [Br1] chapter 1.2.3).

As already pointed out in the introduction, we need to find a lower bound for the

dimension of Sk;L. In view of (6) and (7) we have to estimate the quantities

a1 :¼ a epik=2rðSÞ
� �

;

a2 :¼ a
�
epik=3rðSTÞ
� �	1�

;

a3 :¼ aðrðTÞÞ;

a4 :¼ g 2 L=f�1g; qðgÞ 2 Z
	 
�� ��:

This can easily be done for a1, a2, and a4. However, for a3 this problems turns out to
be more difficult. In the appendix we will see that a3 sometimes is related to class
numbers of imaginary quadratic fields.

For the estimates we first need some facts on Gauss sums attached to L. Let n 2 Z.

We define the Gauss sum Gðn;LÞ by
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Gðn;LÞ ¼
X
g2L

eðnqðgÞÞ: ð8Þ

Two basic but important properties of Gðn;LÞ are

Gð	n;LÞ ¼ Gðn;LÞ; ð9Þ

GðnþD;LÞ ¼ Gðn;LÞ: ð10Þ

If n is an integer, we define

Ln
¼ fg 2 L; ng ¼ 0g:

Observe that jL2j ¼ 2d	 jLj. In general it follows from the theorem of elementary

divisors that

jLn
j4 ðD; nÞr; ð11Þ

where ðD; nÞ denotes the greatest common divisor of D and n.

LEMMA 1. Let n be a positive integer. ðiÞ If Djn, then Gðn;LÞ ¼ jLj. ðiiÞ The absolute
value of Gðn;LÞ is given by

jGðn;LÞj ¼
ffiffiffiffiffiffiffi
jLj

p ffiffiffiffiffiffiffiffi
jLn

j
p

:

In particular jGðn;LÞj ¼
ffiffiffiffiffiffiffi
jLj

p
, if ðn;DÞ ¼ 1.

The proof is left to the reader.

LEMMA 2. The quantities a1 and a2 can be expressed in terms of Gauss sums as

follows:

a1 ¼
d

4
	

1

4
ffiffiffiffiffiffiffi
jLj

p eðð2kþ bþ 	 b	Þ=8Þ<ðGð2;LÞÞ; ð12Þ

a2 ¼
d

3
þ

1

3
ffiffiffiffiffiffiffiffiffi
3jLj

p <ðeðð4kþ 3bþ 	 3b	 	 10Þ=24ÞðGð1;LÞ þ Gð	3;LÞÞÞ: ð13Þ

Proof. The idea of the proof was communicated to us by R. E. Borcherds. Let us

first consider (12). In Mp2ðZÞ we have the relation S2 ¼ Z. Since Z acts onW � C½L�
by multiplication with eð	k=2Þ, the identity

ðeðk=4ÞrðSÞÞ2 ¼ eðk=2ÞrðZÞ ¼ id

holds. Hence, all eigenvalues of eðk=4ÞrðSÞ equal �1. If b denotes the number of
eigenvalues equal to 	1, then

trWðeðk=4ÞrðSÞÞ ¼ 	bþ ðd	 bÞ ¼ d	 2b:

Thus

a1 ¼ b=2 ¼
d

4
	
1

4
trWðeðk=4ÞrðSÞÞ:
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Note that trWðrðSÞÞ ¼ 1
2 trC½L�ðrðSÞ þ rðSÞXÞ, where X denotes the map C½L� ! C½L�

given by eeeg 7! eee	g. Hence it follows from (5) that

trW eðk=4ÞrðSÞð Þ ¼
1ffiffiffiffiffiffiffi
jLj

p e ð2kþ bþ 	 b	Þ=8
� �

< Gð2;LÞð Þ:

This implies the assertion.

Equality (13) can be proved in the same way. Using the relation ðSTÞ3 ¼ Z we

find

a2 ¼
d

3
þ

2

3
ffiffiffi
3

p <
�
eð	5=12þ k=6ÞtrW rðSTÞð Þ

�
:

Furthermore, by (5) and (4) we have

trW rðSTÞð Þ ¼
1

2
ffiffiffiffiffiffiffi
jLj

p eððbþ 	 b	Þ=8Þ Gð1;LÞ þ Gð	3;LÞð Þ:

&
From Lemma 2 we obtain the following corollary.

COROLLARY 3. The quantities a1 and a2 satisfy the estimates

ja1 	 d=4j4
1

4

ffiffiffiffiffiffiffiffi
jL2j

q
; ð14Þ

ja2 	 d=3j4
1

3
ffiffiffi
3

p 1þ

ffiffiffiffiffiffiffiffi
jL3j

q� �
: ð15Þ

We now derive an estimate for a4. If n is a positive integer, we define the divisor
sum stðnÞ ¼

P
ajn a

t.

LEMMA 4. We have

ja4j4
jL2j
2

þ

ffiffiffiffiffiffiffi
jLj

p

2
sr=2	1ðDÞ:

Proof. We write a4 as

a4 ¼
1

2

X
g2L2
qðgÞ2Z

1þ
1

2

X
g2L

qðgÞ2Z

1:

The second term on the right hand side is equal to

1

2D

X
g2L

X
n ðDÞ

eðqðgÞnÞ ¼
1

2D

X
n ðDÞ

Gðn;LÞ:

Thus, using Lemma 1, we obtain
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ja4j4
jL2j
2

þ
1

2D

X
n ðDÞ

ffiffiffiffiffiffiffi
jLj

p ffiffiffiffiffiffiffiffi
jLn

j
p

4
jL2j
2

þ

ffiffiffiffiffiffiffi
jLj

p

2D

X
n ðDÞ

ðn;DÞ
r=2

4
jL2j
2

þ

ffiffiffiffiffiffiffi
jLj

p

2D

X
ajD

XD=a

m¼1
ðm;D=aÞ¼1

ar=2

4
jL2j
2

þ

ffiffiffiffiffiffiffi
jLj

p

2D

X
ajD

D

a
ar=2

4
jL2j
2

þ

ffiffiffiffiffiffiffi
jLj

p

2
sr=2	1ðDÞ: &

Before we consider a3 we introduce some more notation. If x 2 R, then we write

½x� for the greatest-integer function maxfn 2 Z; n4 xg. Moreover, we define

BðxÞ ¼ x	 1
2 ð½x� 	 ½	x�Þ: ð16Þ

Thus BðxÞ is the 1-periodic function on R with BðxÞ ¼ 0 for x ¼ 0; 1 and

BðxÞ ¼ x	 1=2 for 0 < x < 1. By definition

a3 ¼
X

g2L=f�1g
	qðgÞ 	 ½	qðgÞ�ð Þ:

Using BðxÞ and a4 we may rewrite this in the form

a3 ¼
d

2
	
a4
2
	

X
g2L=f�1g

BðqðgÞÞ:

Hence, to obtain information on a3, it suffices to consider the invariants

a5 ¼
X

g2L=f�1g
BðqðgÞÞ; ð17Þ

a05 ¼
X
g2L

BðqðgÞÞ ð18Þ

of L. Obviously the relation

a5 ¼
1

2

X
g2L2

BðqðgÞÞ þ
a05
2

holds. For g 2 L2, we have qðgÞ 2 1
4Z and thereby jBðqðgÞÞj4 1=4. Hence

ja5j4 jL2j=8þ ja05j=2 and ja3 	 d=2þ a4=2j4 jL2j=8þ ja05j=2: ð19Þ

The main result of this section is the following estimate for a05.
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LEMMA 5. The invariant a05 satisfies

ja05j4
ffiffiffiffiffiffiffi
jLj

p

p
ð3=2þ lnðDÞÞðsr=2	1ðDÞ 	Dr=2	1Þ:

Proof. The 1-periodic function BðxÞ has the pointwise convergent Fourier

expansion

BðxÞ ¼ 	
1

2pi

X
n2Z	f0g

eðnxÞ

n
: ð20Þ

Inserting this into the definition of a05 we find

a05 ¼ 	
1

2pi

X
n2Z	f0g

1

n

X
g2L

eðnqðgÞÞ

¼ 	
1

2pi

X
n2Z	f0g

1

n
Gðn;LÞ

¼ 	
1

p

X1
n¼1

1

n
=ðGðn;LÞÞ:

We use (9) and (10) and the fact =ðGðDn;LÞÞ ¼ 0 to rewrite this as follows:

a05 ¼ 	
1

2p

X1
n¼0

XD	1

n¼1

=
�
GðDnþ n;LÞ

�
Dnþ n

þ
=
�
GðDðnþ 1Þ 	 n;LÞ

�
Dðnþ 1Þ 	 n

� �

¼ 	
1

2p

X1
n¼0

XD	1

n¼1

1

Dnþ n
	

1

Dðnþ 1Þ 	 n

� �
=ðGðn;LÞÞ

¼ 	
1

p

XD	1

n¼1

1

n
=ðGðn;LÞÞ 	

1

2p

X1
n¼1

XD	1

n¼1

D	 2n
D2nðnþ 1Þ þDn	 n2

=ðGðn;LÞÞ:

By means of Lemma 1 we obtain

ja05j4
1

p

XD	1

n¼1

1

n
jGðn;LÞj þ

1

2p

X1
n¼1

XD	1

n¼1

D	 2

D2nðnþ 1Þ
jðGðn;LÞÞj

4
ffiffiffiffiffiffiffi
jLj

p

p

XD	1

n¼1

1

n

ffiffiffiffiffiffiffiffi
jLn

j
p

þ

ffiffiffiffiffiffiffi
jLj

p

2pD

XD	1

n¼1

X1
n¼1

ffiffiffiffiffiffiffiffi
jLn

j
p 1

nðnþ 1Þ
:

The latter sum over n equals 1. We apply (11) and rewrite the sum over n. We get

ja05j4
ffiffiffiffiffiffiffi
jLj

p

p

X
ajD

a6¼D

XD=a

m¼1
ðm;D=aÞ¼1

1

am
ar=2 þ

ffiffiffiffiffiffiffi
jLj

p

2pD

X
ajD

a 6¼D

XD=a

m¼1
ðm;D=aÞ¼1

ar=2

4
ffiffiffiffiffiffiffi
jLj

p

p

X
ajD

a6¼D

ð1þ lnðD=aÞÞar=2	1 þ

ffiffiffiffiffiffiffi
jLj

p

2pD

X
ajD

a6¼D

D

a
ar=2
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4
ffiffiffiffiffiffiffi
jLj

p

p
ð3=2þ lnðDÞÞðsr=2	1ðDÞ 	Dr=2	1Þ:

Here we have also used the estimate
Pn

n¼1
1
n 4 1þ lnðnÞ. &

If we put the above lemmas together we finally obtain the desired estimate for the

dimension of Sk;L.

THEOREM 6. Assume that 2k � b	 	 bþ ðmod 4Þ. Then

dimðSk;LÞ 	
ðk	 1Þd

12

���� ����
4

ffiffiffiffiffiffiffiffi
jL2j

p
4

þ
1þ

ffiffiffiffiffiffiffiffi
jL3j

p
3

ffiffiffi
3

p þ
3

8
jL2j þ

ffiffiffiffiffiffiffi
jLj

p

4
sr=2	1ðDÞþ

þ

ffiffiffiffiffiffiffi
jLj

p

2p
ð3=2þ lnðDÞÞðsr=2	1ðDÞ 	Dr=2	1Þ:

This estimate could be further improved by using the theorem of elementary divi-

sors more carefully in the proof of Lemmas 4 and 5. However, since we are mainly

interested in asymptotic questions, the above result suffices for our purposes. Recall

that the quantities jLn
j are bounded by (11).

3. Picard Groups

For any lattice ðL; qÞ and any nonzero integer N, we may consider the rescaled lattice

LðNÞ. It is given by L as a Z-module, but equipped with the rescaled quadratic form

Nqð�Þ. The dual is given by LðNÞ
0
¼ ð1=NÞL0.

From now on we suppose that L has signature ð2; lÞ with l5 3. The orthogonal

group OðLÞ of L is a discrete subgroup of the real orthogonal group OðL�Z RÞ ffi

Oð2; lÞ. Let O0
ðL�Z RÞ be the spinor kernel of OðL�Z RÞ and O0

ðLÞ ¼

O0
ðL�Z RÞ \OðLÞ. We denote by DðLÞ the discriminant kernel of the group

O0
ðLÞ. By definition, this is the subgroup of those elements of O0

ðLÞ, which act

trivially on the discriminant group L.
Let us briefly recall the construction of the Hermitean symmetric domain Hl asso-

ciated to O0
ðL�Z RÞ. We extend the bilinear form ð�; �Þ on L to a C-bilinear form on

the complexification L�Z C and consider the following chain of subsets of the asso-

ciated projective space PðL�Z CÞ:

Hl � K � N � PðL�Z CÞ:

Here N denotes the zero quadric, i.e. the subset of PðL�Z CÞ represented by vectors

z of norm zero ðz; zÞ ¼ 0. The open subset K is defined by the condition ðz; �zÞ > 0. It

has two connected components. We choose one of them and denote it byHl. The real

orthogonal group of L acts on L�Z C, PðL�Z CÞ,N , and K. The spinor kernel acts
on Hl.
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Let G ¼ DðLÞ and X be the quotient Hl=G. By the theory of Baily and Borel, X is a

quasi-projective algebraic variety.

If G acts freely on Hl, then X is smooth. In this case we denote by PicðXÞ the usual

algebraic Picard group, i.e. the group of isomorphism classes of algebraic holo-

morphic line bundles on X. If G does not act freely, then we choose a normal sub-

group G0 of finite index which acts freely. We define the Picard group of X by

PicðXÞ ¼ PicðHl=G0Þ
G=G0

;

i.e. as the subgroup of PicðHl=G0Þ, which is invariant under the action of the finite

group G=G0. Our assumption on l implies that these Picard groups are finitely gener-

ated.

In the same way we define the divisor class group ClðXÞ of X. (See also [Bo2] and

[Br1].) Moreover, we write eClðXÞ for the quotient of ClðXÞ modulo the subgroup
AðXÞ of divisor classes coming from meromorphic automorphic forms (of generally

non-zero weight with a character of finite order) for the group G. There is the usual
injective map

ClðXÞ 	!PicðXÞ;

which assigns to a divisor class its associated class of line bundles. (By our definition

of Cl and Pic this map also makes sense if G does not act freely. Since X is quasi-

projective, this map is in fact an isomorphism.) Thus the rank of PicðXÞ is bounded

by dimCðClðXÞ �Z CÞ. It follows from the Koecher boundedness principle (which

holds since l5 3) that dimðAðXÞ �Z CÞ ¼ 1 and thereby

rankðPicðXÞÞ5 1þ dimCð
eClðXÞ �Z CÞ: ð21Þ

Put k ¼ 1þ l=2. It is a consequence of the existence of Borcherds’ lifting from

modular forms of negative weight 1	 l=2 to automorphic products for the group

G and Serre duality that there exists a homomorphism from the space of

Galð �Q=QÞ-conjugates of Sk;L to eClðXÞ �Z C (cf. [Bo1, Bo2]). By the refinement given

in [Br1] chapter 5.1, we more precisely know that there is a homomorphism

Z: Sk;L 	!
eClðXÞ �Z C: ð22Þ

We may infer the following fundamental proposition.

PROPOSITION 7. Suppose that the map Z is injective. Then

rankðPicðXÞÞ5 1þ dimCðSk;LÞ:

Recall that a hyperbolic plane is a lattice H which is isomorphic to the lattice Z2

equipped with the quadratic form qðða; bÞÞ ¼ ab. For the rest of this section we

assume that L splits two orthogonal hyperbolic planes over Z, i.e. has the special

shape L ¼ L0 ? H ? H, where L0 is an even negative definite lattice of rank l	 2.

Let N be a positive integer. We consider the lattice

L½N� ¼ L0ðNÞ ? H ? H;
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its discriminant kernel G½N� ¼ DðL½N�Þ, and the associated modular variety

X½N� ¼ Hl=G½N�. We may view G½N� as a subgroup of OðL�Z QÞ which is commen-

surable with G ¼ DðLÞ.

THEOREM 8. Let L be a lattice as above and L its discriminant group. Let D be the

level of L as defined in ð3Þ. Then

rankðPicðX ½N�ÞÞ5
ljLjNl	2

48
þ l=48þ 1	 2l=2	3 	 3 � 2l	5 	 3	3=2 	 3l=2	5=2	

	

ffiffiffiffiffiffiffi
jLj

p

4
Nl=2	1sl=2	2ðDNÞ	

	

ffiffiffiffiffiffiffi
jLj

p

2p
Nl=2	1ð3=2þ lnðDNÞÞðsl=2	2ðDNÞ 	 ðDNÞ

l=2	2
Þ:

Proof. By construction the lattice L½N� splits two hyperbolic planes over Z. The

main result of [Br1] chapter 5.2 says that the map (22) is injective in this case. By

Proposition 7 we find

rank PicðX ½N�Þð Þ5 1þ dimðSk;L½N�Þ ¼ 1þ dimðSk;L0ðNÞÞ:

We apply Theorem 6 to estimate the dimension of Sk;L0ðNÞ. The rank of L0ðNÞ is

l	 2, the level of L0ðNÞ is DN, and

L0ðNÞ
0=L0ðNÞ

�� �� ¼ Nl	2jLj;

ðL0ðNÞ
0=L0ðNÞÞ=f�1g

�� ��5 1

2
ð1þNl	2jLjÞ:

If we also take into account (11) we obtain the assertion. &

COROLLARY 9. Let e > 0. Then there exist positive constants C1 ¼ C1ðL; eÞ and
C2 ¼ C2ðLÞ ðwhich can be easily determined explicitlyÞ such that

rankðPicðX ½N�ÞÞ5
ljLjNl	2

48
	 C2 	

C1N
1=2þe; if l ¼ 3;

C1N
l	3þe; if l > 3;

(

for all N 2 N.

In the above situation the map (22) induces in fact an isomorphism from Sk;L½N� to

the subspace of eClðX ½N�Þ �Z C, which is generated by algebraic divisors l?, where
l 2 L½N�

0 is a negative norm vector and the orthogonal complement is taken is Hl.

According to the Tate conjecture one should expect that the codimension of this sub-

space in eClðX ½N�Þ �Z C is small. This leads us to the following

QUESTION 1. Is it true that rank PicðX ½N�Þð Þ � ljLjNl	2=48; N ! 1?

Let N be a positive integer. It is natural to define the principal congruence subgroup

of level N of G ¼ DðLÞ by GðNÞ ¼ DðLðNÞÞ.
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We now consider the Picard groups of the modular varieties XðNÞ ¼ Hl=GðNÞ. In

the same way as in [Fr] (chapter 2.6 Hilfssatz 6.5) it can be proved that for N5 3 the

group GðNÞ acts freely on Hl. Thus XðNÞ is smooth in this case.

To obtain an estimate for the rank of PicðXðNÞÞ we cannot argue as above. Since

LðNÞ does not split two hyperbolic planes over Z, we do not have the result of [Br1]

saying that the map Z (22) is injective.
However, we can still get an estimate for the rank of PicðXðNÞÞ in the following

way. There exists a lattice ~L, which is isomorphic to L½N� and contains

LðNÞ ¼ L0ðNÞ ? HðNÞ ? HðNÞ

as a sub-lattice. It is easily seen that

GðNÞ ¼ DðLðNÞÞ � Dð ~LÞ:

(In fact, taking the discriminant kernel of a lattice is functorial.) Therefore we may

view GðNÞ as a subgroup of G½N�. The natural projection XðNÞ ! X½N� induces an

injective map of Picard groups

PicðX ½N�Þ 	!PicðXðNÞÞ:

Thus Theorem 8 gives us a lower bound for rankðPicðXðNÞÞÞ, too. The asymptotic

bound of corollary 9 also holds.

It is clear that these bounds for the rank of PicðXðNÞÞ are probably not optimal.

Here it is natural to ask

QUESTION 2. What is the asymptotic behavior of the numbers rankðPicðXðNÞÞÞ for

N ! 1?

3.1. THE SIEGEL MODULAR GROUP OF GENUS 2

If R is a subring of C, then we denote by

Spð2;RÞ ¼ fM 2 GLð4;RÞ; MtIM ¼ Ig

the symplectic group of genus 2 with coefficients in R. Here I denotes the matrix�
0 E

	E 0

�
and E the 2� 2 identity matrix. The group Spð2;RÞ acts on the Siegel half

plane H2. Let N be a positive integer. The paramodular group GS½N� of level N is the

subgroup of Spð2;QÞ given by matrices of the form

� N� � �

� � � N	1�

� N� � �

N� N� N� �

0BB@
1CCA;

where the � are all integral. The quotient H2=GS½N� is the moduli space of Abelian

surfaces with a ð1;NÞ-polarization.

Let L be the lattice H ? H ? Zð	2Þ of signature ð2; 3Þ. It is well known that there

exists an isomorphism Spð2;RÞ=f�1g ! O0
ðL½N� � RÞ=f�1g, which commutes with
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the action of Spð2;RÞ on H2 and the action of O
0
ðL� RÞ on H3, and which induces

an isomorphism

GS½N�=f�1g	!G½N�=f�1g ¼ DðL½N�Þ=f�1g

(see [GN]). Hence Corollary 9 implies

COROLLARY 10. Let e > 0. Then there exist positive constants C1 ¼ C1ðeÞ and

C2 < 0:6 ðwhich can be easily determinedÞ such that

rank PicðH2=GS½N�Þð Þ5N=8	 C2 	 C1N
1=2þe

for all N 2 N.

Note that dimðSk;L½N�Þ can be computed explicitly in this case. By Lemma 2 the

quantities a1 and a2 can be expressed in terms of standard Gauss sums

Gðn; aÞ ¼
P

nðaÞ eðnn
2=aÞ. Moreover, a4 is equal to ½1þ b=2�, where b is the largest

integer whose square divides N. Finally, using Theorem 11 of the appendix, a5 can
be written as a sum of class numbers. Therefore we could obtain a sharper estimate

than in Theorem 8. However, in the asymptotic estimate Corollary 10 this would

only improve the constants C1 and C2.

Let GSðNÞ � Spð2;ZÞ be the principal congruence subgroup of level N, i.e. the

kernel of the reduction homomorphism Spð2;ZÞ ! Spð2;Z=NZÞ. Since

GSðNÞ � GS½N�, the above estimate also holds for the group GSðNÞ. (To see this we

could have also used the fact that the orthogonal principal congruence subgroup

GðNÞ is isomorphic to a group G with GSð2NÞ � G � GSðNÞ.)

Appendix

In Section 2 we saw that the quantities a1; a2; a4 can all be expressed in terms of
Gauss sums. We now indicate, how the idea of the proof of Lemma 5 can sometimes

be used to obtain a closed formula for a05 (and thereby for a3) in terms of class num-
bers.

Let L be the negative definite lattice of rank r given by

L ¼ Zð	2NÞ ? � � � ? Zð	2NÞ:

Define

ArðNÞ ¼
X

n1;...;nr ðNÞ

B
n21
N

þ � � � þ
n2r
N

� �
;

where n1; . . . ; nr run through a set of representatives of Z=NZ. Then for our parti-

cular lattice L we have a05 ¼ 	 1
2Arð4NÞ.

We denote by HðaÞ for a 6¼ 	3;	4 the class number of positive definite binary

quadratic forms of discriminant a and put Hð	3Þ ¼ 1=3, Hð	4Þ ¼ 1=2. Then

HðaÞ ¼ 0, if a > 0 or a 6� 0; 1 ðmod 4Þ. Moreover, we write wa for the Dirichlet char-
acter defined by the Kronecker symbol x 7! a

x

� �
.
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THEOREM 11. Suppose that r is odd. Then

ArðNÞ ¼ 	w	4ðrÞN
r	1

X
ajN

a�	1 ð4Þ

a
1	r
2 Hð	aÞ 	 w	8ðrÞ

ffiffiffi
2

p
N

� �r	1 X
ajN

a�0 ð4Þ

a
1	r
2 Hð	aÞ:

Here the sums run through the positive divisors of N satisfying the indicated conditions.

Proof. If n 2 Z and a 2 N, then we denote by Gðn; aÞ ¼
P

nðaÞ eðnn
2=aÞ the stan-

dard Gauss sum. By means of the Fourier expansion (20) of the function B, we can

rewrite ArðNÞ as a Dirichlet series:

ArðNÞ ¼ 	
1

2pi

X
n2Z	f0g

1

n
Gðn;NÞ

r
¼ 	

1

p

X
n5 1

1

n
=ðGðn;NÞ

r
Þ:

Using the fact Gðn;NÞ ¼ aGðn=a;N=aÞ for ajðn;NÞ, we find

ArðNÞ ¼ 	
Nr	1

p

X
ajN

X
m5 1
ðm;aÞ¼1

1

m
a1	r=ðGðm; aÞrÞ:

If we insert the explicit formula for Gðm; aÞ (cf. [La] chapter 4.3), we obtain by a

lengthy but straightforward calculation

ArðNÞ ¼ 	
Nr	1

p

X
ajN

a1	r=2Lðw	a; 1Þ �
0; if a � 1; 2 ðmod 4Þ,
w	4ðrÞ; if a � 	1 ðmod 4Þ,
2ðr	1Þ=2w	8ðrÞ; if a � 0 ðmod 4Þ.

8<:
Here Lðwa; sÞ denotes the Dirichlet series associated to the Dirichlet character wa.
Since Lðw	a; 1Þ ¼ pHð	aÞ=

ffiffiffi
a

p
(cf. [Za] §8), this implies the assertion. &

By virtue of the above argument, Ar can also be evaluated for even r. In this case,

class numbers do not show up. For instance for r � 0 ðmod 4Þ one finds that

ArðNÞ ¼ 0. More generally a05 can be computed for any lattice of the form

Zð	2N1Þ ? � � � ? Zð	2NrÞ with N1; . . . ;Nr 2 N. Note that for r ¼ 1 the above for-

mula is already contained in the book [EZ] in §10 (but with a different proof).

Acknowledgements

I would like to thank M. Bundschuh, E. Freitag, and R. Weissauer for several help-

ful conversations.

References

[Bo1] Borcherds, R. E.: Automorphic forms with singularities on Grassmannians, Invent.
Math. 132 (1998), 491–562.

[Bo2] Borcherds, R. E.: The Gross–Kohnen–Zagier theorem in higher dimensions, Duke

Math. J. 97 (1999), 219–233.
[Bo3] Borcherds, R. E.: Reflection groups of Lorentzian lattices, Duke Math. J. 104 (2000),

319–366.

62 JAN HENDRIK BRUINIER

https://doi.org/10.1023/A:1016357029843 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016357029843


[Br1] Bruinier, J. H.: Borcherds Products on Oð2; lÞ and Chern Classes of Heegner Divisors,

Lecture Notes in Math. 1780, Springer-Verlag, New York, 2002.
[Br2] Bruinier, J. H.: Borcherds products and Chern classes of Hirzebruch–Zagier divisors,

Invent. Math. 138 (1999), 51–83.

[BF] Bruinier, J. H. and Freitag, E.: Local Borcherds products, Ann. Inst. Fourier 51

(2001), 1–27.
[EZ] Eichler, M. and Zagier, D.: The Theory of Jacobi Forms, Progr. in Math. 55,
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