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Abstract

This paper concerns the asymptotic behavior of a random variable Wλ resulting from the
summation of the functionals of a Gibbsian spatial point process over windows Qλ ↑ R

d .
We establish conditions ensuring that Wλ has volume order fluctuations, i.e. they coincide
with the fluctuations of functionals of Poisson spatial point processes. We combine this
result with Stein’s method to deduce rates of a normal approximation for Wλ as λ → ∞.
Our general results establish variance asymptotics and central limit theorems for statistics
of random geometric and related Euclidean graphs on Gibbsian input. We also establish a
similar limit theory for claim sizes of insurance models with Gibbsian input, the number
of maximal points of a Gibbsian sample, and the size of spatial birth–growth models with
Gibbsian input.
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1. Introduction and main results

Functionals of large geometric structures on finite input X ⊂ R
d often consist of sums of

spatially dependent terms admitting the representation∑
x∈X

ξ(x, X), (1.1)

where the R
+-valued score function ξ , defined on pairs (x, X), represents the interaction of x

with respect to X. The sums (1.1) typically describe a global feature of an underlying geometric
property in terms of a sum of local contributions ξ(x, X).

A large and diverse number of functionals and statistics in stochastic geometry, applied
geometric probability, and spatial statistics may be cast in the form of (1.1) for appropri-
ately chosen ξ . The behavior of these statistics on random input X on windows Qλ :=
[−λ1/d/2, λ1/d/2]d ↑ R

d can be deduced from general limit theorems for (1.1), provided X is
either a Poisson or binomial point process; see [5], [6], [30], [31], [34], and [35]. This has led to
solutions of problems in random sequential packing [33], random graphs [30]–[32], [34], [40],
percolation models [22], analysis of data on manifolds [36], and convex hulls of independent
and identically distributed (i.i.d.) samples [8]–[10], for example.
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When X is neither Poisson nor binomial input, the statistics (1.1) are less well understood.
When X belongs to a restricted family of Gibbs point processes, then [38] shows that in the
low temperature regime the behavior of the statistics (1.1) closely parallels the behavior when
the input is Poisson or binomial. Our main purpose here is to build on this first step in ways
which will be described shortly.

For all λ ∈ [1, ∞), consider the functionals

Wλ :=
∑

x∈P
β�
λ

ξ(x, P
β�
λ \ {x}), (1.2)

where P
β�
λ is the restriction of a Gibbs point process P β� on R

d to Qλ. The process P β� has
a Hamiltonian (also known as an energy functional) �; it is locally absolutely continuous with
respect to a reference homogeneous Poisson point process P̃τ of intensity (activity) τ , and β

is the inverse temperature. In general, even for the simplest of score functions ξ , as λ → ∞,
the Gibbsian functional Wλ may neither enjoy asymptotic normality nor will Wλ have volume
order fluctuations, i.e. var Wλ may not be of order vol(Qλ); see [24]. On the other hand, as
shown in [38], if both the Gibbsian input and the score function have rapidly decaying spatial
dependencies, then one could expect that Wλ behaves like a sum of i.i.d. random variables.

We have three goals. The first is to show that given a Hamiltonian �, there is a range of inverse
temperature and activity parameters β and τ such that for any locally determined score function,
the Gibbsian functional Wλ has volume order fluctuations. In other words, the fluctuations for
Wλ coincide with those when P

β�
λ is replaced by Poisson or binomial input. This extends [38],

in which a normal approximation for Wλ was shown, but only under an assumption of volume
order fluctuations. However, [38] stops short of spelling out sufficient conditions guaranteeing
volume order fluctuations. This paper redresses this. Our second goal is to prove a rate of
convergence to the normal for (Wλ − EWλ)/

√
var Wλ for general score functions ξ , including

those which are nontranslation invariant. The setting of nontranslation invariant score functions
yields a normal approximation of maximal points of Gibbsian samples, which lies outside the
scope of [38]. Formal statements of these results are given in Theorems 1.1–1.3. Our third goal
is to show that the standard rates of normal convergence for some classical geometric statistics
on Poison input [5], [23], [30], [34], and [35] extend to the setting of Gibbsian input. This
includes showing rates of normal convergence for

(i) statistics of random geometric and Euclidean graphs on Gibbsian input;

(ii) the number of claims in an insurance model with claim locations and times given by
Gibbsian input;

(iii) the number of maximal points in a Gibbs sample;

(iv) functionals of spatial birth–growth models with Gibbsian input.

1.1. Notation and terminology

1.1.1. Gibbs point processes. We consider the class �∗ of Hamiltonians � defined on finite
point sets X ⊂ R

d which are

(i) monotonic: �(X) ≤ �(X′) for all X ⊂ X′;

(ii) translation invariant: �(X + x) = �(X) for all x ∈ R
d ;

(iii) rotation invariant: �(X) = �(X′) for all rotations X′ of X;
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(iv) nondegenerate: �({x}) < ∞ for all x ∈ R
d ∪ {∅};

(v) nonnegative.

Monotonicity (i) ensures that the interaction is repulsive; see, e.g. [27, Chapter 6]. The
nonnegativity condition (v) is, without loss, equivalent to the assumption �(∅) > −∞, which
must hold in every Gibbsian setup. The class �∗ contains Hamiltonians defined in terms of pair
potentials without negative part, area interaction Hamiltonians, hard-core Hamiltonians, and
Hamiltonians generating a truncated Poisson point process. See Appendix A for more details
on the Hamiltonians in the class �∗.

Define for � ∈ �∗ and finite X ⊂ R
d the local energy function

��(0, X) := �(X ∪ {0}) − �(X), 0 /∈ X.

Here 0 denotes a point at the origin of R
d . From [38, Proposition 2.1(i)], it follows that, for

X ⊂ R
d locally finite,

��(0, X) := lim
r→∞ ��(0, X ∩ Br(0)) (1.3)

is well defined, where Br(x) := {y : |x − y| ≤ r} is the Euclidean ball with center x and
radius r . Note that monotonicity of � implies nonnegativity of �� . The Hamiltonian � has
finite or bounded range if there is r� ∈ (0, ∞) such that for all finite X ⊂ R

d , we have
��(0, X) = ��(0, X ∩ Br� (0)). With the exception of the Hamiltonian defined by the pair
potential, all Hamiltonians in �∗ have finite range; see [38, Lemma 3.1]. For such �, we put

m�
0 := inf

X locally finite
��(0, X),

R� := {(τ, β) ∈ (R+)2 : τvd exp(−βm�
0 )(r� + 1)d < 1}, (1.4)

where vd := πd/2[	(1 + d/2)]−1 is the volume of the unit ball in R
d . The parameter τ is

called the activity or fugacity and 1/β the temperature. When � is a Hamiltonian with a pair
potential, then the factor (r� + 1)d in (1.4) is replaced by the moment of an exponentially
decaying random variable as in [38, Equation (3.7)].

Quantifying spatial dependencies of Gibbs point processes is difficult in general. However,
spatial dependencies readily become transparent when a Gibbs point process is viewed as an
algorithmic construct. As shown in [38], this is feasible whenever � belongs to the class �∗.
We review the algorithmic construction of Gibbs point processes developed in [38], and inspired
by [18]. Let (
(t))t∈R be a stationary homogeneous free birth and death process on R

d with
the following dynamics:

• a new point x ∈ R
d is born in 
t during the time interval [t − dt, t] with probability

τ dx dt ;

• an existing point x ∈ 
t dies during the time interval [t − dt, t] with probability dt, i.e.
the lifetimes of points of the process are independent standard exponential.

The unique stationary and reversible measure for this process is the law of the Poisson point
process P̃τ .

Following [38], for each � ∈ �∗, we use a dependent thinning procedure on (
(t))t∈R to
algorithmically construct a suitably rarified Gibbs point process P β� on R

d , one whose law is
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locally absolutely continuous with respect to the reference point process P̃τ . In Section 3 we
recall some of the salient properties of P β� .

For arbitrary (τ, β)∈ (R+)2 and arbitrary �, the asymptotic behavior of Wλ in (1.2) may
involve nonstandard scaling and nonstandard limits. However, if P β� is admissible in the sense
that (τ, β) ∈ R� and � ∈ �∗, then we shall show that Wλ behaves like a classical sum of i.i.d.
random variables. Without further mention, we shall always assume that P β� is admissible.
We remark that the class of admissible Gibbsian point processes P β�, � ∈ �∗, is restricted to
those having low activity as a function of temperature. As such, this paper, together with [38],
represent but a first step in extending the limit theory of geometric functionals of i.i.d. point
sets to more general Gibbsian point sets. It remains unclear, at least to the authors, whether the
limit theory of this paper may be extended to Gibbsian input significantly more general than
the admissible input considered here.

Recall that Qλ := [−λ1/d/2, λ1/d/2]d and let Q∞ := R
d . Given λ ∈ [1, ∞], � ∈ �∗, and

(τ, β) ∈ R� , we put
P

β�
λ := P β� ∩ Qλ. (1.5)

By convention, we have P
β�∞ := P β�.

1.1.2. Poisson-like point processes. A point process � on R
d is stochastically dominated by the

reference process P̃τ if for all Borel sets B ⊂ R
d and n ∈ N, we have P[card(� ∩ B) ≥ n] ≤

P[card(P̃τ ∩ B) ≥ n]. As in [38], we say that � is Poisson-like if (a) � is stochastically
dominated by P̃τ and (b) there exists c ∈ (0, ∞) and r1 ∈ (0, ∞) such that for all r ∈ (r1, ∞),
x ∈ R

d , and any point set Er (x) in Bc
r (x), the conditional probability of Br(x) not being hit by

�, given that � ∩ Bc
r (x) coincides with Er (x), satisfies

P[� ∩ Br(x) = ∅ | {� ∩ Bc
r (x) = Er (x)}] ≤ exp(−crd). (1.6)

Poisson-like processes have void probabilities analogous to those of homogeneous Poisson
processes, justifying the choice of terminology. In [38, Lemma 3.3] it was shown that admissible
Gibbs processes P β� are Poisson-like.

1.1.3. Translation invariance. The score function ξ is translation invariant if for all x ∈ R
d

and locally finite X ⊂ R
d , we have ξ(x, X) = ξ(x + y, X + y) for all y ∈ R

d .

1.1.4. Moment conditions. Let ‖X‖q denote the q norm of the random variable X. Say that ξ

satisfies the q-moment condition if

wq := sup
λ∈[1,∞]

sup
x∈Qλ

‖ξ(x, P
β�
λ ∪ {x})‖q < ∞. (1.7)

1.1.5. Stabilization. Given a locally finite point set X, write Xz for X ∪ {z} if z ∈ R
d and

Xz = X if z = ∅. The following definition of stabilization, used extensively in [38], is similar
to that in [4], [30], [31], [34], and [35], except now we consider Gibbsian input, instead of
Poisson or binomial input.

Definition 1.1. The score function ξ is a stabilizing functional with respect to the Poisson-like
process � if for all x ∈ R

d , all z ∈ R
d ∪ {∅}, and almost all realizations X of � there exists

R := Rξ (x, Xz) ∈ (0, ∞) (a ‘radius of stabilization’) such that

ξ(x, Xz ∩ BR(x)) = ξ(x, (Xz ∩ BR(x)) ∪ Y)

for all locally finite point sets Y ⊆ R
d \ BR(x).
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Stabilization of ξ on � implies that ξ(x, Xz) is wholly determined by the point configuration
Xz∩BRξ (x). It also yields ξ(x, Xz∩Br(x)) = ξ(x, Xz∩BRξ (x)) for r ∈ [Rξ , ∞). Stabilizing
functionals can thus be almost surely (a.s.) extended to the entire process �z, that is to say for
all x ∈ R

d and z ∈ R
d ∪ {∅}, we have

ξ(x, �z) := lim
r→∞ ξ(x, �z ∩ Br(x)) a.s.

Given s > 0 and any simple point process �, including Poisson-like processes, define the
conditional tail probability

t (�, s) := sup
x∈Rd

sup
z∈Rd∪{∅}

P[Rξ (x, �z) > s | �{x} = 1].

The conditional distribution of � given that �{x} = 1 is the Palm distribution of � at x

[21, Chapter 10] and the conditional probability can be intuitively interpreted as

P[Rξ (x, �z) > s | �{x} = 1] = lim
ε↓0

P

[
sup

y∈Bε(x)∩�

Rξ (y, �z) > s | �(Bε(x)) = 1
]
.

We say that ξ is stabilizing in the wide sense if for every Poisson-like process �, we have
t (�, s) → 0 as s → ∞; see [38, Section 2]. Furthermore, ξ is exponentially stabilizing in the
wide sense if for every Poisson-like process �, we have

lim sup
s→∞

ln t (�, s)

s
< 0. (1.8)

Exponential stabilization of ξ with respect to the augmented point set �z ensures that cov-
ariances of scores at points x and y, as given in (1.14), decays exponentially fast with |x − y|,
implying that Wλ has at most volume order fluctuations, as seen in the proof of Lemma 4.6.
Note that for large λ, we have Rξ (x, �z ∩Qλ) ≤ Rξ (x, �z) and, thus, (1.8) holds with t (�, s)

replaced by
lim sup
λ→∞

sup
x∈Qλ

sup
z∈Rd∪{∅}

P[Rξ (x, �z ∩ Qλ) > s | �{x} = 1]. (1.9)

The above definitions and terminology are part of the literature and are included for the
convenience of the reader. We now give two new definitions which, to the best of the authors’
knowledge, are new. As we shall see, they are central to showing volume order fluctuations
for Wλ. For a set E ⊂ R

d , let vold(E) denote the d-dimensional volume of E. For u ∈ (0, ∞),
we let Qu ⊂ R

d be the cube centered at the origin satisfying vold(Qu) = u.

1.1.6. Nondegeneracy with respect to P β� . Say that ξ satisfies nondegeneracy with respect to
P β� if there exists r ∈ (0, ∞) and b0 := b0(r) ∈ (0, ∞) such that given P β� ∩ Qc

r , the sum∑
x∈P β�∩Qt

ξ(x, P β�) has expected variability bounded below by b0, uniformly in t ∈ [r, ∞).
In other words, we have

inf
t∈[r,∞)

E var

[ ∑
x∈P β�∩Qt

ξ(x, P β�) | P β� ∩ Qc
r

]
≥ b0. (1.10)

As shown in Section 2, functionals of interest often satisfy (1.10). In fact, apart from scores ξ

which are identically 0 on P β� , it is difficult to find examples where (1.10) necessarily fails
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to hold. There is nothing special about using cubes Qr in (1.10) and, as can be seen from the
proofs, Qr could be replaced by any compact convex subset of R

d .
If f and g are two functions satisfying lim infλ→∞ f (λ)/g(λ) > 0 then we write f (λ) =

(g(λ)). If, in addition, we have f (λ) = O(g(λ)) then we write f (λ) = �(g(λ)).
From the standpoint of applications, it is useful to have a version of (1.10) for score functions

which are not translation invariant and for input

P̃
β�
λ := P β� ∩ S̃λ, (1.11)

where S̃λ ⊂ R
d satisfies vold(S̃λ) = (1). In all that follows, Q̃u ⊂ R

d denotes a cube with
vold(Q̃u) = u, but not necessarily centered at the origin.

1.1.7. Nondegeneracy with respect to P̃
β�
λ . Say that ξ satisfies nondegeneracy with respect to

P̃
β�
λ if there is r ∈ (0, ∞) and b0 := b0(r) ∈ (0, ∞) such that for large λ there is Q̃r ⊂ S̃λ

satisfying

E var

[ ∑
x∈P̃

β�
λ

ξ(x, P̃
β�
λ ) | P̃

β�
λ ∩ Q̃c

r

]
≥ b0. (1.12)

Given ρ ∈ (r, ∞), let C(ρ, r, S̃λ) be a maximal collection of d-dimensional volume r cubes
Q̃i,r , 1 ≤ i ≤ n(ρ, r, S̃λ), which are separated by 4ρ and which satisfy (1.12).

For all x and y in R
d , as in [38], we write

cξ (x) := Eξ(x,P β�) exp(−β�(x, P β�)) (1.13)

and

cξ (x, y) := cξ (x)cξ (y)−Eξ(x,P β�∪{y})ξ(y, P β�∪{x}) exp(−β�({x, y},P β�)). (1.14)

Let

σ 2(ξ, τ ) := cξ2
(0) − τ

∫
Rd

cξ (0, y) dy. (1.15)

1.2. Main results

The following are our main results. Applications follow in Section 2. Our first result
gives conditions under which the Gibbsian functional Wλ defined in (1.2) has volume order
fluctuations.

Theorem 1.1. Assume that ξ is translation invariant, exponentially stabilizing in the wide sense
(1.8), and satisfies (1.7) for some q ∈ (2, ∞). Then

lim
λ→∞

var Wλ

λ
= τσ 2(ξ, τ ) ∈ [0, ∞). (1.16)

If, in addition, ξ satisfies (1.10), then σ 2(ξ, τ ) > 0.

Recall that the Kolmogorov distance between the distributions of random variables X1 and
X2 is defined as

dK(X1, X2) := sup
t∈R

|P[X1 ≤ t] − P[X2 ≤ t]|.
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Theorem 1.2. Assume that ξ is exponentially stabilizing in the wide sense (1.8) and satisfies
(1.7) for some q ∈ (2, ∞). For all p ∈ (2, q), let p3 := p3(p) := min{p, 3}. Then

dK

(
Wλ − EWλ√

var Wλ

, N(0, 1)

)
= O((ln λ)d(p3−1)λ(var Wλ)

−p3/2). (1.17)

Furthermore, if ξ is translation invariant, satisfies (1.10), and the q-moment condition (1.7)
for some q ∈ (3, ∞), then

dK

(
Wλ − EWλ√

var Wλ

, N(0, 1)

)
= O

(
(ln λ)2d

√
λ

)
(1.18)

and, therefore,
(Wλ − EWλ)√

λ

d−→ N(0, τσ 2(ξ, τ )) as λ → ∞,

where ‘
d−→’ denotes convergence in distribution.

Remark 1.1. (Theorem 1.1.) The proof of volume order variance asymptotics is indirect. We
first show that var Wλ is of volume order up to a logarithmic term (Lemma 4.3). Putting

Ŵλ :=
∑

x∈P
β�
λ

ξ(x, P β�\{x}),

we then show in Lemma 4.6 the dichotomy that either var Ŵλ = (λ)or var Ŵλ = O(λ(d−1)/d).

Closeness of var Wλ and var Ŵλ, as shown in Lemma 4.5, completes the argument, whose full
details are in Section 3. Under condition (1.10), we obtain volume order variance asymptotics
when P β� is replaced by a homogeneous Poisson point process, which is of independent inter-
est. Verifying condition (1.10) for Gibbsian input is comparable to verifying the nondegeneracy
conditions of [32, Theorem 2.1] or [16, Theorem 1.2].

Remark 1.2. (Theorem 1.2.) The rate of convergence O((ln λ)3dλ−1/2) in (1.18) is shown
in [38, Theorem 2.3]. However this result assumes that var Wλ = �(λ), which may not
always hold, particularly when the scaling is not volume order. Theorem 1.2 contains no
such assumption and also provides a slight improvement in the rate. Theorem 1.2 extends
[5, Corollary 3.1] to Gibbsian input. We do not take up the question of laws of large numbers
for Wλ as this is addressed in [38].

Remark 1.3. (Point processes with marks.) Let (E , FE , μE ) be a probability space (the mark
space) and consider the marked reference Poisson point process {(x, a); x ∈ P̃τ , a ∈ E} in the
space R

d×E such that given a realization {xi} of P̃τ , their marks {ai} are independent and follow
the distribution μE [14, Definition 6.4.III]. Then the proofs of Theorems 1.1 and 1.2 go through
in this setting, where it is understood that in the algorithmic construction the process P

β�
λ

inherits the marks from P̃τ and the interactions in P
β�
λ depend only on the spatial positions

and not on the marks. Here the cubes Qr in (1.10) are replaced with cylinders Cr := Qr × E .
This generalization is used in Section 2.5 to deduce central limit theorems for spatial birth–
growth models with Gibbsian input.

Next we consider the analog of Wλ on input P̃
β�
λ defined in (1.11); namely,

W̃λ :=
∑

x∈P̃
β�
λ

ξ(x, P̃
β�
λ \ {x}).
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Say that ξ satisfies the q-moment condition with respect to P̃
β�
λ if

sup
λ∈[1,∞)

sup
x∈S̃λ

‖ξ(x, P̃
β�
λ ∪ {x})‖q < ∞. (1.19)

The following result does not assume that ξ is translation invariant. Recall the definition of
n(ρ, r, S̃λ) defined after (1.12).

Theorem 1.3. Assume that ξ is exponentially stabilizing in the wide sense (1.8) and satisfies
(1.19) for some q ∈ (2, ∞). For all p ∈ (2, q), let p3 := p3(p) := min{p, 3}. Then

dK

(
W̃λ − EW̃λ√

var W̃λ

, N(0, 1)

)
= O((ln λ)d(p3−1)vold(S̃λ)(var W̃λ)

−p3/2). (1.20)

Furthermore, if ξ satisfies (1.12) and ρ ∈ (c ln λ, ∞), then for large c,

var W̃λ ≥ b0n(ρ, r, S̃λ)

c
. (1.21)

If q ∈ (3, ∞), we thus have

dK

(
W̃λ − EW̃λ√

var W̃λ

, N(0, 1)

)
= O((ln λ)2dvold(S̃λ)n(ρ, r, S̃λ)

−3/2). (1.22)

Remark 1.4. The bound (1.21) shows volume order growth for var W̃λ, but only up to the
logarithmic factor (ln λ)d . When ξ is translation invariant we are able to remove this factor, as
described in Remark 1.1 following Theorem 1.2. However, for nontranslation invariant ξ , we
are unable to remove the logarithmic factor. Consequently, the bound (1.18) is smaller than the
bound (1.22) by a factor (ln λ)3d/2.

2. Applications

We deduce variance asymptotics and central limit theorems for six well-studied functionals
in geometric probability. Save for some special cases as noted below, the limit theory for these
functionals has, up to now, been largely confined to Poisson or binomial input. Our examples are
not exhaustive. For example, there is scope for treating the limit theory of coverage processes
on Gibbsian input and, more generally, the limit theory of functionals of germ-grain models
with germs given by the realization of P β� . One could also treat the limit theory of functionals
arising in percolation and nucleation models having Gibbsian input, extending [22] and [20],
respectively.

We first state three lemmas needed in order to show the nondegeneracy condition (1.10).
The proofs are deferred to Appendix A.

Lemma 2.1. For every Borel set B ⊂ R
d with vold(B) < ∞, and for any A ∈ GBc :=

σ(P β� ∩ Bc), we have

P[P β� ∩ B = ∅ | A] ≥ e−τvold (B).
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Lemma 2.2. Let m ≥ 1 be a finite integer, F1, . . . , Fm be bounded disjoint Borel subsets of
R

d , and F = ⋃m
i=1 Fi . For integers 0 ≤ li ≤ ki , 1 ≤ i ≤ m, we have

P

[ m⋂
i=1

{card(P β� ∩ Fi) = li} | σ(P β� ∩ Fc)

]

≥ e−τvold (F )
P

[ m⋂
i=1

{card(P β� ∩ Fi) = ki} | σ(P β� ∩ Fc)

]
a.s.

Lemma 2.3. For a random variable Y and Borel sets A1 and A2 of R, let d(A1, A2) :=
inf{|x1 − x2| : x1 ∈ A1, x2 ∈ A2}. If P[Y ∈ Ai] ≥ pi , i = 1, 2, then

var[Y ] ≥ 1
4d(A1, A2)

2(p1 ∧ p2).

2.1. Clique counts in random geometric graphs

Let X ⊂ R
d be locally finite and let s ∈ (0, ∞). The geometric graph on X, here denoted

by GGs(X), is obtained by connecting points x, y ∈ X with an edge whenever |x − y| ≤ s.
If there is a subset S := S(s, k) of X of size k + 1 with all points of S within a distance s of
each other, then the k-simplex formed by S has edges in GGs(X). The Vietoris–Rips complex
Rs(X), or Rips complex, is the simplicial complex arising as the union of all k-simplices
S(s, k) ⊂ GGs(X). The Vietoris–Rips complex and the closely related Čech complex (which
has a simplex for every finite subset of balls in GGs(X) with nonempty intersection) are used
to model the topology of ad hoc sensor and wireless networks and they are also useful in the
statistical analysis of high-dimensional data sets. Note that Cs

k(X) is the number of cliques of
order k + 1 in GGs(X). For X random, the number Cs

k(X) of k-simplices in GGs(X) is of
theoretical and applied interest; see, e.g. [29]. The limit theory for Cs

k(X) is well understood
when X is Poisson or binomial input on R

d [29] or on a manifold [36]. To the best of the
authors’ knowledge there is no limit theory for Cs

k(·) on Gibbsian input. For all k = 1, 2, . . . ,

and all s ∈ (0, ∞) let ξk(x, X) := ξ
(s)
k (x, X) be (k + 1)−1 times the number of k-simplices in

Rs(X) containing the vertex x.

Theorem 2.1. For all k = 1, 2, . . . , and all s > 0 satisfying P[card(P β� ∩Qsd ) ≥ k+1] > 0,
we have

lim
λ→∞

1

λ
var[Cs

k(P
β�
λ )] = τσ 2(ξk, τ ) > 0,

and

dK

(
Cs

k(P
β�
λ ) − ECs

k(P
β�
λ )√

var[Cs
k(P

β�
λ )]

, N(0, 1)

)
= O

(
(ln λ)2d

√
λ

)
.

Remark 2.1. If P β� is the hard-core Gibbs point process and s is bounded by the hard-core
radius, then ξk ≡ 0, the nondegeneracy of (1.10), as well as the claim in Theorem 2.1 clearly
fail. Note that if s is large enough, we always have P[card(P β� ∩ Qsd ) ≥ k + 1] > 0, since
otherwise P β� would be degenerate.

Proof. We have Cs
k(P

β�
λ ) = ∑

x∈P
β�
λ

ξk(x, P
β�
λ ). It suffices to show that ξk satisfies the

conditions of Theorems 1.1 and 1.2. Given x ∈ R
d and k = 1, 2, . . . , we note that ξk(x, P

β�
λ )

is generously bounded by (
∑

Xi∈P
β�
λ

1{(|x−Xi |≤s)})k , where 1 is the indicator function. As P
β�
λ

is stochastically dominated by P̃τ , this is in turn bounded by the kth power of a Poisson random
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variable with parameter τvold(Bs(x)). Since all moments of Poisson random variables are
finite, it follows that ξk satisfies (1.7) for all q ∈ (1, ∞). Clearly ξk is translation invariant and
exponentially stabilizing with stabilization radius equal to s. It remains to show that ξk satisfies
(1.10). With s fixed, let r := (3s)d . Let E′ be the event that P β�

λ puts no points in Qr \Qsd , E1
be the event that P

β�
λ puts k + 1 points in Qsd , and E2 be the event that P

β�
λ puts no points in

Qsd . On the eventE′∩E1 (respectivelyE′∩E2), we haveVr := ∑
x∈P

β�
λ ∩Qr

ξ
(s)
k (x, P

β�
λ ) = 1

(respectively 0). We apply the conditional analog of Lemma 2.3 with Ai as the range of
Vr(E

′ ∩ Ei), i = 1, 2, to obtain

var[Vr | P β� ∩ Qc
r ] ≥ 1

4 (P[E′ ∩ E1 | P β� ∩ Qc
r ] ∧ P[E′ ∩ E2 | P β� ∩ Qc

r ]).

Since P[card(P β� ∩ Qsd ) ≥ k + 1] > 0, there exists a k1 ≥ k + 1 such that P[card(P β� ∩
Qsd ) = k1] > 0. Using Lemma 2.2 with m = 2, k1 as above, l1 = k + 1 for E′ ∩ E1, and
l1 = 0 for E′ ∩ E2, F1 = Qsd , k2 = l2 = 0, F2 = Qr \ Qsd , we have

P[E′ ∩Ei | P β� ∩Qc
r ] ≥ e−τr

P[E′ ∩ {card(P β� ∩Qsd ) = k1} | P β� ∩Qc
r ], i = 1, 2,

which implies

E var[Vr | P β� ∩ Qc
r ]

≥ 1
4 e−τr

EP[E′ ∩ {card(P β� ∩ Qsd ) = k1} | P β� ∩ Qc
r ]

= 1
4 e−τr

P[E′ ∩ {card(P β� ∩ Qsd ) = k1}]
= 1

4 e−τr
P[E′ | {card(P β� ∩ Qsd ) = k1}]P[{card(P β� ∩ Qsd ) = k1}]

> 1
4 e−2τr

P[{card(P β� ∩ Qsd ) = k1}]
=: b0,

where the last inequality is due to Lemma 2.1. This ensures the nondegeneracy (1.10).

2.2. Functionals of Euclidean graphs

Many functionals of Euclidean graphs on Gibbsian input satisfy (1.16) and (1.17), as shown in
[38]. However, [38] left open the question of showing variance lower bounds, which is essential
to showing that (1.17) is meaningful. We now redress this and assert that the functionals in [38]
satisfy (1.10) and, thus, σ 2(ξ, τ ) > 0. We illustrate this for select functionals in [38], leaving
it to the reader to verify this assertion for the remaining functionals; namely, those arising in
random sequential adsorption, component counts in random geometric graphs, and Gibbsian
loss networks.

2.2.1. The k-nearest neighbors graph. The k-nearest neighbors (undirected) graph on the vertex
set X, denoted NG(X), is the graph obtained by including {x, y} as an edge whenever y is
one of the k points nearest to x and/or x is one of the k points nearest to y. The k-nearest
neighbors (directed) graph on X, denoted by NG′(X), is obtained by placing a directed edge
between each point and its k-nearest neighbors. In case X = {x} is a singleton, x has no nearest
neighbor and the nearest neighbor distance for x is set by convention to 0.

2.2.2. Total edge length of the k-nearest neighbors graph. Given x ∈ R
d and a locally finite

point set X ⊂ R
d , the nearest neighbors length functional ξNG(x, X) is one half the sum of

the edge lengths of edges in NG(X ∪ {x}) that are incident to x. The total edge length of
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NG(P β� ∩ Qλ) is given by

Wλ :=
∑

x∈P
β�
λ

ξNG(x, P
β�
λ \{x}).

It was shown in [38, Theorem 5.2] that Wλ satisfies the rate of convergence to the normal
in (1.17). This follows since ξNG is translation invariant, exponentially stabilizing in the wide
sense, and satisfies (1.7) for all q ∈ (2, ∞). However, that theorem leaves open the question
of variance lower bounds for var Wλ and, thus, the rate of convergence is possibly useless. The
next result resolves this question and also gives a slightly better bound than that in [38].

Theorem 2.2. We have limλ→∞ λ−1 var Wλ = τσ 2(ξNG, τ) > 0 and

dK

(
Wλ − EWλ√

var Wλ

, N(0, 1)

)
= O

(
(ln λ)2d

√
λ

)
.

Proof. We show that (1.10) holds and then apply Theorem 1.1 to deduce the variance
asymptotics, and we apply (1.18) to deduce the rate of a normal approximation. We do this by
modifying the proof of [32, Lemma 6.3]. This proceeds as follows. Let C0 := κdQ1, where Q1
is the unit cube centered at the origin, and where κ is a constant. The annulus Q(4κ)d \ C0 will
be called the moat; note that Q(4κ)d has edge length 4κ . Partition the annulus Q(6κ)d \ Q(4κ)d

into a finite collection U of cubes of edge length κ . Now define the following events. Let E′
be the event that there are no points of P

β�
λ in the moat, E2 be the event that there are exactly

k + 1 points of P
β�
λ in each of the subcubes in U. Let E1 be the intersection of E2 and the

event that there is 1 point in C0; let E0 be the intersection of E2 and the event that there are no
points in C0.

Let F1 = C0, F2 = Q(4κ)d \ C0, F3, . . . , Fm enumerating all cubes in U. Since P β� is
nondegenerate when κ is large enough, we have

P

[ m⋂
i=1

{card(P β� ∩ Fi) ≥ k + 1}
]

> 0,

which ensures that there exist ki ≥ k + 1, 1 ≤ i ≤ m, such that

P

[ m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

> 0.

Define Qr := Q(6κ)d , i.e. put r = (6κ)d . Given any configuration P β� ∩Qc
r , then conditional

on the event that E0 ∩ E′ occurs, the sum

Vr :=
∑

x∈P
β�
λ ∩Qr

ξNG(x, P
β�
λ \{x})

is strictly less than the same sum Vr , conditional on the event E1 ∩ E′, by at least 1.5kκ . This
is because on the event E1 ∩ E′ there are k additional edges crossing the moat, each of length
at least 1.5κ .

We apply the conditional analog of Lemma 2.3 with Ai as the range of Vr(E
′ ∩ Ei−1],

i = 1, 2, to obtain

var[Vr | P β� ∩ Qc
r ] ≥ 1

4 (1.5kκ)2
P[E′ ∩ E0 | P β� ∩ Qc

r ] ∧ P[E′ ∩ E1 | P β� ∩ Qc
r ]. (2.1)
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However, using Lemma 2.2 with m, Fi , and ki as above and with l1 = 1 for E′ ∩E1 and l1 = 0
for E′ ∩ E0, l2 = 0, l3 = · · · = lm = k + 1, we have

P[E′ ∩ Ei | P β� ∩ Qc
r ]

≥ e−τr
P

[
E′ ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki} | P β� ∩ Qc
r

]
, i = 0, 1,

which, together with (2.1), yields

E var[Vr | P β� ∩ Qc
r ]

≥ 1

4
(1.5kκ)2e−τr

EP

[
E′ ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki}
∣∣∣∣ P β� ∩ Qc

r

]

= 1

4
(1.5kκ)2e−τr

P

[
E′ ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

= 1

4
(1.5kκ)2e−τr

P

[
E′

∣∣∣∣
m⋂

i=1

{card(P β� ∩ Fi) = ki}
]

× P

[ m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

>
1

4
(1.5kκ)2e−2τr

P

[ m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

=: b0,

where the last inequality is from Lemma 2.1. This satisfies (1.10).

2.2.3. Gibbs–Voronoi tessellations. Given X ⊂ R
d and x ∈ X, the set of points in R

d closer
to x than to any other point of X is the interior of a possibly unbounded convex polyhedral cell
C(x, X). The Voronoi tessellation induced by X is the collection of cells C(x, X), x ∈ X.
When X is the realization of the Poisson point set Pτ , this generates the Poisson–Voronoi
tessellation of R

d . Here, given the Gibbs point process P β� , consider the Voronoi tessellation
of this process, sometimes called the Ord process [27].

2.2.4. Total edge length of Gibbs–Voronoi tessellations. Given X ⊂ R
2, let ξVor(x, X) denote

one half the total edge length of the finite length edges in the cell C(x, X∪{x}) (thus we do not
take infinite edges into account). The total edge length of the Voronoi graph on P β� is given
by

Wλ :=
∑

x∈P
β�
λ

ξVor(x, P
β�
λ \{x}).

One may show (see [38]) that ξVor is exponentially stabilizing in the wide sense (1.8), that
it satisfies (1.7) for q ∈ (2, ∞), and, as in [38, Theorem 5.4], that Wλ satisfies the rate of
convergence to the normal as in (1.17).

However, that theorem leaves open the question of variance lower bounds for var Wλ and,
thus, the rate of convergence is possibly useless. The next result resolves this question and
provides a better rate than that in [38].
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Theorem 2.3. We have limλ→∞ λ−1 var Wλ = τσ 2(ξVor, τ ) > 0 and

dK

(
Wλ − EWλ√

var Wλ

, N(0, 1)

)
= O

(
(ln λ)2d

√
λ

)
.

Proof. We need show only that (1.10) is satisfied and then apply Theorem 1.1 and (1.18).
We do this by modifying the proof of [32, Lemma 8.2]. This proceeds as follows. Consider
the construction used in the proof of Theorem 2.2. Let E′ be the event that there are no points
of P

β�
λ in the moat and E2 the event that there is exactly one point of P

β�
λ in each of the

subcubes in U. Fix ε small (< 1
100 ). Choose points x1, x2, x3 ∈ R

2 forming an equilateral
triangle of side length 0.5κ , centered at the origin. Let E0 be the intersection of E2 and the
event that there is exactly one point of P

β�
λ in each of Bεκ(xi), and the event that there is no

other point in C0\(⋃3
i=1 Bεκ(xi)), except for a point z in the ball Bεκδ(0), where δ ∈ (0, 1) will

be chosen shortly. Let E1 be the intersection of E2, the event that there is exactly one point of
P

β�
λ in each of Bεκδ(δxi), and the event that there is no other point in C0\(⋃3

i=1 Bδεκ(δxi)),
except for the point z in the ball Bεκδ(0).

On the event E0 ∩E′, the presence of z near the origin leads to three edges; namely, the edges
of a (nearly equilateral) triangular cell T around the origin. It removes the parts of the three
edges of the Voronoi graph (on all points except z) that intersect T . The difference between the
sum of the lengths of the added edges and the sum of the lengths of the three removed edges
exceeds ακ for some fixed positive number α (the reason is this: given an equilateral triangle
T and a point P inside it, the sum of the lengths of the three edges joining P to the vertices of
T is strictly less than the perimeter of T since the length of each of the three edges is less than
the common length of the side of T . If T is nearly equilateral (our case) this is still true).

On the other hand, on the event E1 ∩ E′, the presence of z cannot increase the total edge
length by more than the total edge length of the triangular cell around the origin, and this
increase is bounded by a constant δ′ multiple of δκ , which is less than ακ if δ is small enough.
Thus, if δ is small enough, the events E0 ∩ E′ and E1 ∩ E′ give rise to values of Vr :=∑

x∈P
β�
λ ∩Qr

ξVor(x, P
β�
λ \{x}) which differ by at least (α − δ′δ)κ .

Using the conditional analog of Lemma 2.3 with Ai as the range of Vr(E
′ ∩Ei−1), i = 1, 2,

yields

var[Vr | P β� ∩ Qc
r ]

≥ 1
4 (α − δ′δ)2κ2(P[E′ ∩ E0 | P β� ∩ Qc

r ] ∧ P[E′ ∩ E1 | P β� ∩ Qc
r ]). (2.2)

Let F1 = Bεκδ(0), l1 = 1, F2 = Bεκ(x1) (respectively Bεκδ(δx1)), l2 = 1, F3 = Bεκ(x2)

(respectively Bεκδ(δx2)), l3 = 1, F4 = Bεκ(x3) (respectively Bεκδ(δx3)), l4 = 1, F5 =
C0\(⋃4

i=1 Fi), l5 = 0, F6 = Q(4κ)d \ C0, l6 = 0, F7, . . . , Fm enumerating all cubes in U, and
l7 = · · · = lm = 1. It is obvious that when κδ is sufficiently large

P

[ m⋂
i=1

{card(P β� ∩ Fi) ≥ 1}
]

> 0,

which ensures that there exist ki ≥ 1, 1 ≤ i ≤ m such that

P

[ m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

> 0. (2.3)
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Hence, from Lemma 2.2 with the above Fi , ki , and li , it follows that

P[E′ ∩ Ei | P β� ∩ Qc
r ]

≥ e−τr
P

[
E′ ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki}
∣∣∣∣ P β� ∩ Qc

r

]
, i = 0, 1,

which, together with (2.2), ensures that

E var[Vr | P β� ∩ Qc
r ]

≥ 1

4
(α − δ′δ)2κ2e−τr

EP

[
E′ ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki}
∣∣∣∣ P β� ∩ Qc

r

]

= 1

4
(α − δ′δ)2κ2e−τr

P

[
E′ ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

= 1

4
(α − δ′δ)2κ2e−τr

P

[
E′

∣∣∣∣
m⋂

i=1

{card(P β� ∩ Fi) = ki}
]

× P

[ m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

≥ 1

4
(α − δ′δ)2κ2e−2τr

P

[ m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

=: b0,

where the last inequality is from Lemma 2.1. Combining with (2.3) yields the nondegener-
acy (1.10).

2.3. Insurance models

The modeling of insurance claims has been of considerable interest in the literature. The
thrust of the modeling is to set up a claim process {Nt, t ≥ 0} to record the number and
time of claims and a sequence of random variables {Xi, i ≥ 1} representing the claim sizes.
The aggregate claim size by time t can then be represented as St = ∑Nt

i=1 Xi . Most of the
literature assumes that {Xi, i ≥ 1} are i.i.d. random variables, and are independent of the claim
process {Nt, t ≥ 0} [17]. When {Nt, t ≥ 0} is a Poisson process, the process {St , t ≥ 0}
becomes a compound Poisson process and is also known as the Cramér–Lundberg model; see
[17, p. 22]. Significant effort has been devoted to generalize the model so that it represents real
situations more closely, e.g. making the claim process a more general counting process such as
a renewal process, a negative binomial process, or a stationary point process [37]. To address
the interdependence of claim sizes, [5] introduced a strictly stationary process {Yt , t ≥ 0}
representing a random environment of the claims and a simple point process H on [0, T ] × N

recording the times and sizes of clusters of claims. The total claim amount Xa for a = (t, n)

is assumed to be the sum of n i.i.d. random variables with distribution determined by the value
of Yt . Assuming that {Yt } is independent of H and both {Yt } and H are locally dependent with
a ‘uniform dependence radius h0’ such that for all 0 < t1 < t2 < ∞, Y |[t1,t2] is independent of
Y |R+\(t1−h0,t2+h0) and H |[t1,t2]×N is independent of H |(R+\(t1−h0,t2+h0))×N, [5] proved that the
aggregate claim size WT := ∫

a=(t,n): t≤T
XaH(da) when standardized, can be approximated

in distribution by the standard normal with an approximation error of order O(T −1/2).
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In disastrous events, insurance claims may involve dependence amongst the time, size, and
environment of the claims. In applications, local dependence with a uniform dependence radius
may be violated. In this section we aim to address these issues. To this end, let the time and
spatial location of insurance claims be represented by a Gibbs point process in R

+ × R
d−1.

In practice, we have d ∈ {3, 4} and the space is typically restricted to a compact convex
set D ⊂ R

d−1 with vold−1(D) > 0. Consequently, we consider the restriction of P β� to
[0, T ] × D; namely, we set P̃

β�
T := P β� |[0,T ]×D. Let ξ((t, s), P̃

β�
T ) be the value of the

claim at (t, s) with t ∈ R
+ and s ∈ R

d . The aggregate claim size in the time interval
[0, T ] is W̃T := ∫

[0,T ]×D
ξ((t, s), P̃

β�
T )P̃

β�
T (dt, ds). The proof of the next result makes use of

Lemma 4.2 and is thus deferred to Section 4.

Theorem 2.4. Assume that ξ is exponentially stabilizing in the wide sense (1.8), translation
invariant in the time coordinate t , and satisfies (1.19) for some q ∈ (3, ∞). If there exists an
ε > 0 such that for all large T there is an interval I ⊂ (εT , (1 − ε)T ) of length �(1) such
that the conditional distribution W̃T | P̃

β�
T ∩ {([0, T ] \ I ) × D} is nondegenerate, then

dK

(
W̃T − EW̃T√

var W̃T

, N(0, 1)

)
= O

(
(ln T )3.5

√
T

)
.

Corollary 2.1. Assume that the distribution of ξ((t, s), P̃
β�
T ) is determined by the k-nearest

neighbors of (t, s) and satisfies (1.19) for some q ∈ (3, ∞). If there exists an ε > 0 such that
for all large T there is an interval I ⊂ (εT , (1 − ε)T ) of length �(1) such that the conditional
distribution W̃T | P̃

β�
T ∩ {([0, T ] \ I ) × D} is nondegenerate, then

dK

(
W̃T − EW̃T√

var W̃T

, N(0, 1)

)
= O

(
(ln T )3.5

√
T

)
.

Proof. Using the argument of Section 2.2.1, one can easily verify that ξ satisfies all the
conditions of Theorem 2.4; hence, the conclusion follows.

2.4. Maximal points of Gibbsian samples

Let K := [0, ∞)d . Given X ⊂ R
d locally finite, x ∈ X is called K-maximal, or simply

maximal, if (K ⊕ x) ∩ X = {x}. A point x = (x1, . . . , xd) ∈ X is maximal if there is no
other point (z1, . . . , zd) ∈ X with zi ≥ xi for all 1 ≤ i ≤ d. The maximal layer mK(X) is the
collection of maximal points in X. Let MK(X) := card(mK(X)).

Consider the region

A := {(v, w) : v ∈ D, 0 ≤ w ≤ F(v)},

where F : D → R has continuous negative partials Fi, 1 ≤ i ≤ d − 1, bounded away from 0
and −∞, D ⊂ [0, 1]d−1, and |F | ≤ 1. We are interested in showing asymptotic normality
for MK([λ−1/dP

β�
λ ⊕ ( 1

2 , . . . , 1
2 )] ∩ A) with P

β�
λ as in (1.5). Maximal points are invariant

with respect to scaling and translations and it suffices to prove a central limit theorem for
MK(P β� ∩ λ1/dA).

The asymptotic behavior and central limit theorem for MK(X) with X either Poisson or
binomial input has been studied in [2]–[5], [15], and [41]; the next theorem extends these results
to Gibbsian input.
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Theorem 2.5. We have

dK

(
MK(P β� ∩ λ1/dA) − EMK(P β� ∩ λ1/dA)√

var MK(P β� ∩ λ1/dA)
, N(0, 1)

)

= O((ln λ)(7d−1)/2λ−(d−1)/2d).

Proof. We shall show this is a consequence of Theorem 1.3 for an appropriate S̃λ. For
any subset E ⊂ R

d and ε > 0 let Eε := {x ∈ R
d : d(x,E) < ε}, where d(x, E) denotes

the Euclidean distance between x and the set E. Let ∂A := {(v, F (v)) : v ∈ D}, S̃λ :=
(λ1/d∂A)c ln λ for a suitable constant c and in accordance with (1.11), we set P̃ β�

λ := P β� ∩S̃λ.
We first show that it is enough to prove Theorem 2.5 with P β� ∩λ1/dA replaced by the smaller
set P̃

β�
λ ∩ λ1/dA.

Define

ζ(x, X) := ζ(x, X; λ1/dA) :=
{

1 if ((K ⊕ x) ∩ λ1/dA) ∩ (X ∪ {x}) = {x},
0 otherwise.

Given any L ∈ [1, ∞), we observe that if c is large then the event

G := {MK(P β� ∩ λ1/dA) = MK(P̃
β�
λ ∩ λ1/dA)}

may be bounded below by

P[G] ≥ 1 − E

∑
x∈P β�∩(λ1/dA−S̃λ)

ζ(x, P β�)

≥ 1 − E

∫
λ1/dA−S̃λ

P[P β� ∩ Bα(x)c ln λ(θx) = ∅ | x ∈ P β� ]P β�(dx)

≥ 1 − λ−L.

Here, θx is the center of the largest ball contained in (K ⊕ x) ∩ λ1/dA and α(x) is a constant
depending on x; by the assumptions on the partials Fi , α(x) is bounded away from 0 uniformly
in x and λ. The last inequality is due to (1.6) along with the fact that the integration domain
has volume at most cλ. Since P

β�
λ is stochastically dominated by P̃τ , the third moment of

MK(P β� ∩ λ1/dA) is bounded by O(λ3). This implies that

0 ≤ E[MK(P β� ∩ λ1/dA)2 − MK(P̃
β�
λ ∩ λ1/dA)2]

≤ E[MK(P β� ∩ λ1/dA)2 1Gc ]
≤ E[MK(P β� ∩ λ1/dA)3]2/3

E[1Gc ]1/3

≤ O(λ2−L/3)

and

0 ≤ E[MK(P β� ∩ λ1/dA) − MK(P̃
β�
λ ∩ λ1/dA)]

≤ E[MK(P β� ∩ λ1/dA) 1Gc ]
≤ E[MK(P β� ∩ λ1/dA)3]1/3

E[1Gc ]2/3

≤ O(λ1−2L/3).
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This guarantees that var MK(P β� ∩λ1/dA) and var MK(P̃
β�
λ ∩λ1/dA) have the same asymp-

totic behavior and, thus, it is enough to prove Theorem 2.5 with P β� ∩ λ1/dA replaced by
P̃

β�
λ ∩ λ1/dA.
Note that ζ is not translation invariant and that

MK(P̃
β�
λ ∩ λ1/dA) =

∑
x∈P̃

β�
λ ∩λ1/dA

ζ(x, P̃
β�
λ ).

To prove Theorem 2.5, it suffices to show that ζ satisfies exponential stabilization in the wide
sense (1.8), the moment condition (1.19), nondegeneracy (1.12), and then apply Theorem 1.3.
This goes as follows.

2.4.1. Exponential stabilization in the wide sense (1.8). Given x ∈ S̃λ ∩ λ1/dA, let D1(x) :=
D1(x, P̃

β�
λ ) be the distance between x and the nearest point in (K ⊕ x) ∩ λ1/dA ∩ P̃

β�
λ ,

if there is such a point; otherwise, we let D1(x) be the maximal distance between x and
(K ⊕ x) ∩ λ1/d∂A, denoted here by D(x). By the smoothness assumptions on ∂A, it follows
that (K ⊕ x) ∩ λ1/dA ∩ Bt(x) has volume at least c1t

d for all t ∈ [0, D(x)]. It follows from
the Poisson domination of P

β�
λ that uniformly in x ∈ S̃λ ∩ λ1/dA and λ ∈ [1, ∞),

P[D1(x) > t] ≤ exp(−c1t
d ), 0 ≤ t ≤ D(x). (2.4)

For t ∈ (D(x), ∞), this inequality holds trivially and so (2.4) holds for all t ∈ (0, ∞).
Let R(x) := R(x, P̃

β�
λ ) := D1(x). We claim that R := R(x) is a radius of stabilization

for ζ at x. Indeed, if D1(x) ∈ (0, D(x)) then x is not maximal, so

ζ(x, P̃
β�
λ ∩ BR(x)) = 0

and inserting points Y outside BR(x) does not modify the score ζ . If D1(x) ∈ [D(x), ∞) then

ζ(x, P̃
β�
λ ∩ BR(x)) = 1.

Keeping the realization P̃
β�
λ ∩ BR(x) fixed, we note that inserting points Y outside BR(x)

does not modify the score ζ , since maximality of x is preserved. Thus, R(x) is a radius of
stabilization for ζ at x and it decays exponentially fast, as demonstrated above.

2.4.2. Moment condition (1.19). This condition is clearly satisfied since ζ is bounded by 1.

2.4.3. Nondegeneracy (1.12). We now show that ζ satisfies (1.12) for a large number of cubes
of volume at least c2r . We do this for d = 2, but the proof extends to higher dimensions.

Fix r ∈ [1, ∞) with a value to be decided later. Let Q̃r ⊂ S̃λ be such that Q̃r ∩λ1/d∂A �= ∅.

We also assume that λ1/dA contains only the lower left corner of Q̃r , but that
vol(Q̃r ∩ λ1/dA) ≥ c3r .

Referring to Figure 1, we consider the event E1 that card(P̃
β�
λ ∩S1) = card(P̃

β�
λ ∩S2) = 1

and P̃
β�
λ ∩ S3 = ∅, where S1, S2, and S3 are the congruent squares in Figure 1. Let E be the

event that P̃
β�
λ puts no points in Q̃r\(S1 ∪ S2 ∪ S3). On E ∩ E1, we have that

Vr :=
∑

x∈P̃
β�
λ ∩Q̃r

ζ(x, P̃
β�
λ )

contributes a value of 2 to the total sum
∑

x∈P̃
β�
λ

ζ(x, P̃
β�
λ ). Let E2 be the event that card(P̃

β�
λ ∩

S1) = card(P̃
β�
λ ∩ S2) = card(P̃

β�
λ ∩ S3) = 1. On E ∩ E2, we have Vr contributes a value

of 3 to the total sum
∑

x∈P̃
β�
λ

ζ(x, P̃
β�
λ ).
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Figure 1: The square Q̃r and the subsquares S1, S2, S3.

Using the notation of Lemma 2.2, let m = 4, Fi = Si , ki = 1, 1 ≤ i ≤ 3, and F4 =
Q̃r \ (F1 ∪ F2 ∪ F3). When r is large there is positive probability that each of the six squares
in Figure 1 contains one or more points, even if the input arises from the hard-core model. It
follows that, for large r ,

P

[ 4⋂
i=1

{card(P β� ∩ Fi) ≥ 1}
]

> 0.

This implies that there exist ki ≥ 1, 1 ≤ i ≤ m, such that

P

[ 4⋂
i=1

{card(P β� ∩ Fi) = ki}
]

> 0. (2.5)

Using the conditional analog of Lemma 2.3 with Ai as the range of Vr(E ∩ Ei), i = 1, 2,
we obtain

var[Vr | P β� ∩ Qc
r ] ≥ 1

4 (P[E ∩ E1 | P β� ∩ Qc
r ] ∧ P[E ∩ E2 | P β� ∩ Qc

r ]). (2.6)

Now apply Lemma 2.2 with m, Fi, and ki as above, l1 = l2 = 1, and l4 = 0. Let l3 = 0 for
E ∩ E1 and l3 = 1 for E ∩ E2. This yields

P[E ∩ Ei | P β� ∩ Qc
r ]

≥ e−τr
P

[
E ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki}
∣∣∣∣ P β� ∩ Qc

r

]
, i = 1, 2.

Combining with (2.6) and applying Lemma 2.1 for the second inequality, we obtain

E var[Vr | P β� ∩ Qc
r ]

≥ 1

4
e−τr

EP

[
E ∩

4⋂
i=1

{card(P β� ∩ Fi) = ki}
∣∣∣∣ P β� ∩ Qc

r

]

= 1

4
e−τr

P

[
E ∩

4⋂
i=1

{card(P β� ∩ Fi) = ki}
]

= 1

4
e−τr

P

[
E

∣∣∣∣
4⋂

i=1

{card(P β� ∩ Fi) = ki}
]
P

[ 4⋂
i=1

{card(P β� ∩ Fi) = ki}
]
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≥ 1

4
e−2τr

P

[ 4⋂
i=1

{card(P β� ∩ Fi) = ki}
]

=: b0. (2.7)

This and (2.5) ensure that (1.12) holds. Since the surface area of λ1/d∂A is �(λ(d−1)/d),
the number of cubes Q̃r having these properties is of order �((λ1/d/ln λ)d−1), whenever
ρ = �(ln λ). Thus, we have n(ρ, r, S̃λ) = �((λ1/d/ln λ)d−1).

Applying Theorem 1.3, we obtain Theorem 2.5. Noting that vold(S̃λ) = �(λ(d−1)/d ln λ),
the bound (1.22) yields the rate of convergence to the normal

O

(
(ln λ)2dλ(d−1)/d ln λ

(
λ(d−1)/d

(ln λ)d−1

)−3/2)
= O((ln λ)7d/2−1/2λ−(d−1)/2d),

which was to be shown.

2.5. Spatial birth–growth models

Consider the following spatial birth–growth model on R
d . Seeds appear at random locations

Xi ∈ R
d at i.i.d. times Ti, i = 1, 2, . . . , according to a spatial-temporal point process P :=

{(Xi, Ti) ∈ R
d × [0, ∞)}. When a seed is born, it has initial radius 0 and then forms a cell

within R
d by growing radially in all directions with a constant speed v > 0. Whenever one

growing cell touches another, it stops growing in that direction. If a seed appears at Xi and
if Xi belongs to any of the cells existing at the time Ti , then the seed is discarded. We assume
that the law of Xi, i ≥ 1, is independent of the law of Ti, i ≥ 1.

Such growth models have received considerable attention with mathematical contributions
given in [11]–[13], [20], and [28]. First and second order characteristics for Johnson–Mehl
growth models on homogeneous Poisson points on R

d are given in [25] and [26]. Using the
general Theorem 1.2, we may extend many of these results to growth models with Gibbsian
input. We illustrate with the following theorem in which P̂ denotes a marked Gibbs point
process such that the Gibbsian positions are endowed with identically distributed time marks
which are independent of each other and of the positions.

Given a compact subset K ′ of R
d , let N(P ; K ′) be the number of seeds accepted in K ′. We

shall deduce the following result from Remark 1.3. We let P̂
β�
λ denote the process of marked

points {(Xi, Ti) : Xi ∈ P
β�
λ , Ti ∈ [0, ∞)}. Given a marked point set X ⊂ R

d × [0, ∞),
define the score

ν(x, X) :=
{

1 if the seed at x is accepted,

0 otherwise.

Theorem 2.6. We have limλ→∞ λ−1 var N(P̂
β�
λ ; Qλ) = τσ 2(ν, τ ) > 0 and

dK

(
N(P̂

β�
λ ; Qλ) − EN(P̂

β�
λ ; Qλ)√

var N(P̂
β�
λ ; Qλ)

, N(0, 1)

)
= O

(
(ln λ)2d

√
λ

)
.

Proof. Note by the definition of ν, we have

N(P̂
β�
λ ; Qλ) =

∑
x∈P̂

β�
λ ∩Qλ

ν(x, P̂
β�
λ ).
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Figure 2: Space-time cylinder Cr .

Let K denote the downward right circular cone with apex at the origin of R
d . Then

ν(x, X) =
{

1 if (K ⊕ x) ∩ (X ∪ {x}) = x,

0 otherwise.

We now aim to show that ν satisfies all the conditions of Theorem 1.2. Clearly ν is translation
invariant in R

d . The moment condition (1.7) is satisfied since |ν| ≤ 1. We claim that ν satisfies
exponential stabilization in the wide sense. This, however, follows from the above proof that ζ

is exponentially stabilizing in the wide sense (the proof is easier now because the boundary
of A corresponds to the hyperplane R

d ).
We claim that nondegeneracy (1.10) holds. But this too follows from simple modifications

of the proof of nondegeneracy of ζ . As in Remark 1.3, we need to show that (1.10) holds with
the cube Qr replaced by a space-time cylinder Cr := [−r1/d , r1/d ]d ×[0, ∞). For simplicity of
exposition only, we show nondegeneracy for d = 1, but the approach extends to all dimensions.

Referring to Figure 2, we consider the event E1 that card(P̂
β�
λ ∩S1) = card(P̂

β�
λ ∩S2) = 1

and P̃
β�
λ ∩ S3 = ∅. Let E be the event that P̂

β�
λ puts no points in ([−r, r] × [0, r/v])\(S1 ∪

S2 ∪S3) (we do not care about the point configuration in the set [−r, r]×(r/v, ∞)). On E∩E1,
we have that

Vr :=
∑

x∈P̂
β�
λ ∩Cr

ν(x, P̂
β�
λ )

contributes a value of 2 to the total sum
∑

x∈P̂
β�
λ ∩Ct

ν(x, P̂
β�
λ ). Let E2 be the event that

card(P̂
β�
λ ∩ S1) = card(P̂

β�
λ ∩ S2) = card(P̂

β�
λ ∩ S3) = 1. On E ∩ E2, we have Vr

contributes a value of 3 to the total sum
∑

x∈P̂
β�
λ ∩Ct

ν(x, P̂
β�
λ ).

Referring to Lemma 2.2, we let m = 4, Fi = Si , ki = 1, 1 ≤ i ≤ 3, F4 = ([−r, r] ×
[0, r/v])\(S1 ∪ S2 ∪ S3). When r is large, we note that vold(Fi) are large for all 1 ≤ i ≤ 4, so

P

[ 4⋂
i=1

{card(P β� ∩ Fi) ≥ 1}
]

> 0.

Thus, there exist ki ≥ 1, 1 ≤ i ≤ 4, such that (2.5) holds. Repeating the argument from

https://doi.org/10.1239/aap/1449859795 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1449859795


954 • SGSA A. XIA AND J. E. YUKICH

(2.5)–(2.7), we obtain

E var[Vr | P β� ∩ Qc
r ] ≥ 1

4
e−2τr

P

( 4⋂
i=1

{card(P β� ∩ Fi) = ki}
)

=: b0.

Hence, (2.5) ensures that (1.10) holds. Thus, ν satisfies all conditions of Theorem 1.2 and so
Theorem 2.6 follows.

3. Auxiliary results

Before proving our main theorems and to keep our presentation as self-contained as possible,
we recall some relevant concepts developed in [38].

3.1. Control of spatial dependencies of Gibbs point processes

Recall that P β� is an admissible point process, i.e. � ∈ �∗ and (τ, β) ∈ R� . As shown
in the perfect simulation techniques of [38], the process has spatial dependencies which can be
controlled by the size of the so-called ancestor clans. The ancestor clans are backwards in time
oriented percolation clusters, where two nodes in space time are linked with a directed edge if
one is the ancestor of the other. The acceptance status of a point at x depends on points in the
ancestor clan.

As seen in [38, Equation (3.6)], the perfect simulation is designed to ensure that the ancestor
clans have exponentially decaying spatial diameter. In fact, one of the main points is to use
perfect simulation on the cube Qλ to first show the existence of P

β�
λ for any λ ∈ [1, ∞) and

to then extend the definition of P
β�
λ to a point process on all of R

d , thus arriving at P β� .
The technical details of the perfect simulation are not relevant here. More relevant is that the
ancestor clans give us control on the spatial dependencies of P β� ; control of these spatial
dependencies together with exponential stabilization of score functions allows control of the
spatial dependency of ξ(x, P

β�
λ ) as seen in the next paragraphs.

More precisely, let A
β�
B (t) be the ancestor clan in P β� of the set B ⊂ R

d at time t , i.e. it is
the union of ancestor clans of all points x ∈ P β� ∩B. If B1 and B2 are subsets of R

d such that
A

β�
B1

(t) ∩ A
β�
B2

(t) = ∅, then statistics of P β� ∩ B1 and P β� ∩ B2 are independent random
variables. The size of A

β�
B (t) is controlled as follows. For all (τ, β) ∈ R� , there is a constant

c := c(τ, β) ∈ (0, ∞) such that for all t ∈ (0, ∞), M ∈ (0, ∞), and B ⊂ R
d , we have

P[diam(A
β�
B (t)) ≥ M + diam(B)] ≤ c(1 + vol(B)) exp

(
−M

c

)
. (3.1)

Let A
β�
B,λ be the ancestor clan in P

β�
λ of the set B. Since diam(A

β�
B,λ(t)) ≤ diam(A

β�
B (t)),

the bound (3.1) also holds for A
β�
B,λ, i.e. for all λ ∈ [1, ∞), B ⊂ Qλ, we have

P[diam(A
β�
B,λ(t)) ≥ M + diam(B)] ≤ c(1 + vol(B)) exp

(
−M

c

)
.

We have, for all ρ ∈ (0, ∞),

d(ρ) := lim sup
λ→∞

sup
B⊂Qλ, diam(B)≤ρ/2

P[diam(A
β�
B,λ) ≥ ρ].

Then, we have

d(ρ) ≤ c

(
1 +

(
ρ

2

)d

vd

)
exp

(
− ρ

2c

)
. (3.2)
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3.2. Score functions with a deterministic range of dependency

Given the radius of stabilization Rξ (x, P
β�
λ ), let D(x, P

β�
λ ) be the diameter of the ancestor

clan of the stabilization ball B
Rξ (x,P

β�
λ )

(x). For all ρ ∈ (0, ∞), consider score functions on
points having ancestor clan diameter at most ρ:

ξ(x, P
β�
λ \{x}; ρ) := ξ(x, P

β�
λ \{x}) 1

(D(x,P
β�
λ )≤ρ)

.

We study the following functional, the analog of W(ρ) of [5, p. 704]:

Wλ(ρ) :=
∑

x∈P
β�
λ

ξ(x, P
β�
λ \{x}; ρ). (3.3)

When sets A and B are separated by a Euclidean distance greater than 2ρ, then the random
variables

∑
x∈P

β�
λ ∩A

ξ(x, P
β�
λ \{x}; ρ) and

∑
x∈P

β�
λ ∩B ξ(x, P

β�
λ \{x}; ρ) depend on disjoint

and, hence, independent portions of the birth and death process (
(t))t∈R in the construction
of P

β�
λ . We make heavy use of this in the proofs of Theorems 1.2 and 1.3.

It is also useful to consider sums of scores with respect to the global point process P β� ;
namely,

Ŵλ :=
∑

x∈P
β�
λ

ξ(x, P β�\{x}), Ŵλ(ρ) :=
∑

x∈P
β�
λ

ξ(x, P β�\{x}; ρ).

3.3. Wide sense stabilization of ξ on P
β�
λ

If ξ is a stabilizing functional in the wide sense then

Q(ρ) := lim sup
λ→∞

sup
x∈Qλ

P[Rξ (x, P
β�
λ ) > ρ | P

β�
λ {x} = 1] −→ 0 as ρ → ∞.

If ξ is exponentially stabilizing in the wide sense (1.8) then by (1.9) there is a constant c ∈ (0, ∞)

such that

Q(ρ) ≤ c exp

(
−ρ

c

)
. (3.4)

Note that for any ρ ∈ (0, ∞), we have

P[D(x, P
β�
λ ) ≥ ρ | P

β�
λ {x} = 1] ≤ P

[
D(x, P

β�
λ ) ≥ ρ, Rξ (x, P

β�
λ ) ≤ ρ

2

∣∣∣∣ P
β�
λ {x} = 1

]

+ P

[
Rξ (x, P

β�
λ ) ≥ ρ

2

∣∣∣∣ P
β�
λ {x} = 1

]
.

Bounding the first term on the right-hand side by (3.2) and the second by (3.4), we obtain
whenever ρ ∈ [c′ ln λ, ∞) and c′ is large that there is c1 such that

P[D(x, P
β�
λ ) ≥ ρ | P

β�
λ {x} = 1] ≤ c1 exp

(
− ρ

c1

)

whenever ρ ∈ [c′ ln λ, ∞). Thus, for any L ∈ [1, ∞), there is c large enough so that if
ρ ∈ [c ln λ, ∞) then

P[Ŵλ �= Ŵλ(ρ)] ≤ λ−L (3.5)

and
P[Wλ �= Wλ(ρ)] ≤ λ−L. (3.6)
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4. Variance and moment bounds

Let r satisfy nondegeneracy (1.10) and let ρ ∈ [r, ∞). Find a maximal collection of
disjoint cubes Qi,r := Qi,r,ρ ⊂ Qλ, i ∈ I, with voldQi,r = r , and which are separated by
a distance at least 4ρ and which are at least a distance 2ρ from ∂Qλ. Note that n(ρ, Qλ) :=
card(I ) = �c′λ/ρd�, c′ a constant. Let Fi be the smallest sigma algebra making the mappings
P β� �→ card(P β� ∩ �) for all Borel sets � ⊂ Qc

i,r , measurable; see [21, p. 12].

Lemma 4.1. Let q ∈ [1, ∞). If ξ satisfies the moment condition (1.7) for some q ′ ∈ (q, ∞)

then there are constants λ0 ∈ (0, ∞) and c ∈ (0, ∞) such that for all λ ≥ λ0 and ρ ∈ [1, ∞),

max{‖Wλ‖q, ‖Wλ(ρ)‖q} ≤ cλ (4.1)

and
sup
i∈I

max{‖E[Wλ | Fi]‖q, ‖E[Wλ(ρ) | Fi]‖q} ≤ cλ.

Identical bounds hold if Wλ is replaced by Ŵλ.

Proof. Fix q ∈ [1, ∞). We shall prove only ‖Wλ‖q ≤ cλ as the other inequalities follow
similarly. Let N := card(P

β�
λ ). From Minkowski’s inequality, we obtain

‖Wλ‖q ≤
∞∑

j=0

∥∥∥∥ ∑
x∈P

β�
λ

ξ(x, P
β�
λ \{x}) 1{λτ2j ≤N≤λτ2j+1}

∥∥∥∥
q

≤
∞∑

j=0

∥∥∥∥ ∑
x∈P

β�
λ , N≤λτ2j+1

ξ(x, P
β�
λ \{x}) 1{N≥λτ2j }

∥∥∥∥
q

.

Let s ∈ (1, ∞) be such that qs < q ′. Let 1/s + 1/t = 1, i.e. s and t are conjugate exponents.
From Hölder’s inequality, we obtain

‖Wλ‖q ≤
∞∑

j=0

[
E

( ∑
x∈P

β�
λ , N≤λτ2j+1

ξ(x, P
β�
λ \{x})

)qs]1/qs

(P[N ≥ λτ2j ])1/qt .

Since P
β�
λ is Poisson-like, it follows that N is stochastically dominated by a Poisson random

variable Po(λτ) with parameter λτ . Recalling the definition of wq in (1.7), we obtain

‖Wλ‖q ≤
∞∑

j=0

∥∥∥∥ ∑
x∈P

β�
λ ,N≤λτ2j+1

ξ(x, P
β�
λ \{x})

∥∥∥∥
qs

(P[Po(λτ) ≥ λτ2j ])1/qt

≤ 6λτwqs +
∞∑

j=2

λτ2j+1wqs(P[Po(λτ) − λτ ≥ λτ(2j − 1)])1/qt

using Minkowski’s inequality once more. For j ≥ 2, it follows that

P[Po(λτ) − λτ ≥ λτ(2j − 1)]
decays exponentially fast in 2j by standard tail probabilities for the Poisson random variable.
This shows that the infinite sum is O(λτ), concluding the proof.
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Let
W̃λ(ρ) :=

∑
x∈P̃

β�
λ

ξ(x, P̃
β�
λ \ {x}; ρ).

Lemma 4.2. Given a set G ⊂ R
d , we let GG (respectively G̃G) be the sigma algebra generated

by P β� ∩ G (respectively P̃
β�
λ ∩ G). Assume that ξ satisfies (1.8).

(i) If ξ satisfies (1.7) for some q ∈ (2, ∞), then there exist constants λ0 and c such that for
all λ ∈ [λ0, ∞), ρ ∈ [c ln λ, ∞) and all Borel sets G ⊂ R

d ,

|E var[Ŵλ(ρ) | GG] − E var[Ŵλ | GG]| ≤ 1

λ
(4.2)

and

|E var[Wλ(ρ) | GG] − E var[Wλ | GG]| ≤ 1

λ
. (4.3)

(ii) If ξ satisfies the moment condition (1.19) for some q ∈ (2, ∞) then there exist constants
λ0 ∈ (0, ∞) and c ∈ (0, ∞) such that for all λ ∈ [λ0, ∞), ρ ∈ [c ln λ, ∞) and all Borel
sets G ⊂ S̃λ,

|E var[W̃λ(ρ) | G̃G] − E var[W̃λ | G̃G]| ≤ 1

λ
.

Proof. (a) Using the generic formula var[X | A] = E[X2 | A]− (E[X | A])2 valid for any
random variable X and sigma algebra A, we have

E var[Ŵλ(ρ) | GG] = E[E[Ŵ 2
λ (ρ) | GG] − (E[Ŵλ(ρ) | GG])2],

E var[Ŵλ | GG] = E[E[Ŵ 2
λ | GG] − (E[Ŵλ | GG])2].

If both differences

|E[E[Ŵ 2
λ (ρ) | GG] − E[Ŵ 2

λ | GG]]|, (4.4)

|E[E[Ŵλ(ρ) | GG]2 − E[Ŵλ | GG]2]]| (4.5)

are less than λ−1/2, then E var[Ŵλ(ρ) | GG] differs from E var[Ŵλ | GG] by less than λ−1.
Note that (4.4) may be bounded by (2λ)−1 since it can be expressed as E[Ŵ 2

λ (ρ) − Ŵ 2
λ ],

which by Hölder’s inequality is bounded by the product of ‖Ŵ 2
λ (ρ) − Ŵ 2

λ‖q/2 and a power
of P[Ŵλ �= Ŵλ(ρ)]. The first term is O(λ2) by (4.1) whereas the latter is small by (3.5), the
choice of ρ, and the arbitrariness of L.

Likewise (4.5) can be bounded by λ−1/2 since

|E[E[Ŵλ(ρ) | GG]2 − E[Ŵλ | GG]2]|
= |E[E[Ŵλ(ρ) | GG] + E[Ŵλ | GG]](E[Ŵλ(ρ) | GG] − E[Ŵλ | GG])|
≤ Cλ‖E[Ŵλ(ρ) | GG] − E[Ŵλ | GG]‖2

≤ Cλ

√
E[E[(Ŵλ(ρ) − Ŵλ)2 | GG]]

= Cλ

√
E[Ŵλ(ρ) − Ŵλ]2,

where the first inequality follows by the Cauchy–Schwarz inequality and Lemma 4.1, and where
the second inequality follows by the conditional Jensen inequality. Using Hölder’s inequality
and the bound (3.5), it follows that (4.5) is bounded by λ−1/2, concluding the proof of (4.2).
The proofs of (4.3) and Lemma 4.2(ii) follow the proof of (4.2) verbatim.
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Proof of Theorem 2.4. We take S̃T := [0, T ] × D in Theorem 1.3 and let r be the length
of I . Let n(ρ, r, S̃T ) be the maximum number of subsets Si ⊂ S̃T of the form (I + ti )×D, ti ∈
R

+, in S̃T which are separated by 4ρ with ρ = �(ln T ). Then vold+1(S̃T ) = �(T ) and
n(ρ, r, S̃T )= �(T (ln T )−1). Let P̃

β�
T := P β� ∩ S̃T in accordance with (1.11). We show that

(1.12) is satisfied for all Si , 1 ≤ i ≤ n(ρ, r, S̃T ) and then apply Theorem 1.3 to P̃
β�
T . Since

the conditional distribution W̃T | P̃
β�
T ∩ {([0, T ] \ I ) × D} is nondegenerate, we have

E var[W̃T | P̃
β�
T ∩ {([0, T ] \ I ) × D}] := d0 > 0.

Recalling the definition of D in Section 3.2, for J ⊂ [0, T ] × D, we define

M(J) :=
∫

J

ξ((t, s), P̃
β�
T ) 1

(D((t,s),P̃
β�
T )≤ρ)

P̃
β�
T (dt, ds).

Then

E var[M(S̃T ) | P̃
β�
T ∩ {S̃T \Si}]

= E var[M(S
2ρ
i ) | P̃

β�
T ∩ {S̃T \Si}]

= E var[M((I × D)2ρ) | P̃
β�
T ∩ {([0, T ] \ I ) × D}] (by translation invariance of ξ )

= E var[M(S̃T ) | P̃
β�
T ∩ {([0, T ] \ I ) × D}]

≥ d0 − O

(
1

T

)
,

where the inequality is due to Lemma 4.2(ii). Using Lemma 4.2(ii) again, we conclude that for
large T ,

E var[W̃T | P̃
β�
T ∩ {S̃T \Si}] ≥ d0 − O

(
1

T

)
=: b0.

All conditions of Theorem 1.3 are satisfied and it follows from (1.22) that

dK

(
W̃T − EW̃T√

var W̃T

, N(0, 1)

)
= O((ln T )2vol(S̃T )n(ρ, r, S̃T )−3/2) = O

(
(ln T )3.5

√
T

)
,

completing the proof.

Lemma 4.3. Assume that ξ is translation invariant and the moment condition (1.7) holds for
some q ∈ (2, ∞). Under conditions (1.8) and (1.10) there exist constants λ0 ∈ (0, ∞) and
c ∈ (0, ∞) such that for all λ ∈ [λ0, ∞) and all ρ ∈ [c ln λ, ∞), we have

var[Wλ(ρ)] ≥ b0λρ
−d

c
, var[Ŵλ(ρ)] ≥ b0λρ

−d

c
. (4.6)

Proof. We prove only the first inequality as the second follows from identical methods. Let
c ≥ 2/c′ such that Lemma 4.2(i) holds, where c′ is the constant such that the cardinality of I is
�c′λ/ρd�. Let F be the sigma algebra generated by P β� ∩ (

⋃
i∈I Qi,r )

c. By the conditional
variance formula

var[Wλ(ρ)] = var[E[Wλ(ρ) | F ]] + E var[Wλ(ρ) | F ] ≥ E var[Wλ(ρ) | F ].
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Let Ci := {x ∈ R
d : d(x, Qi,r ) ≤ ρ}. Then the Ci are separated by 2ρ because the Qi,r are

separated by at least 4ρ (this is the reason why we chose the 4ρ separation in the first place).
Also, the Ci are contained in Qλ.

For each i ∈ I the sum
∑

x∈P
β�
λ ∩Ci

ξ(x, P
β�
λ \{x}; ρ) depends on points distant at most

ρ from Ci . Thus, the random variable E[Wλ(ρ) | F ] is a sum of conditionally independent
random variables since the Ci are separated by 2ρ. Thus, we obtain

E var[Wλ(ρ) | F ] = E var

[ ∑
x∈P

β�
λ

ξ(x, P
β�
λ \{x}; ρ) | F

]

= E

∑
i∈I

var

[ ∑
x∈P

β�
λ ∩Ci

ξ(x, P
β�
λ \{x}; ρ) | F

]
. (4.7)

Recall that Eε = {x ∈ R
d : d(x, E) < ε} for any set E and ε > 0. For all i ∈ I , the

restrictions of F and Fi to C
ρ
i coincide. For x ∈ Ci , we have that ξ(x, P

β�
λ ; ρ) depends only

on points in C
ρ
i and so we may thus replace F with Fi . Since P

β�
λ and P β� coincide on

C
ρ
i , we may also replace ξ(x, P

β�
λ ; ρ) with ξ(x, P β�; ρ). Also, we may replace the range of

summation x ∈ P
β�
λ ∩ Ci by x ∈ P

β�
λ because the conditional sum∑

x∈P β�∩Cc
i ∩Qλ

ξ(x, P β�\{x}; ρ) | Fi

is constant (indeed, if x ∈ Cc
i then ξ(x, P β�\x; ρ) will not be affected by points in Qi,r ).

This yields

E var[Wλ(ρ) | F ] = E

∑
i∈I

var

[ ∑
x∈P

β�
λ

ξ(x, P β�\x; ρ) | Fi

]
. (4.8)

By Lemma 4.2(i), for all i ∈ I ,

E var

[ ∑
x∈P

β�
λ

ξ(x, P β� \ x; ρ) | Fi

]
≥ b0

2
.

Thus,

var[Wλ(ρ)] ≥ E var[Wλ(ρ) | F ] ≥ E

∑
i∈I

b0

2
≥ b0λρ

−d

c
.

Roughly speaking, the factor λρ−d in (4.6) is the cardinality of I , the index set of cubes of
volume r , separated by 4ρ, and having the property that the total score on each cube has positive
variability. For score functions which may not be translation invariant and/or are defined on a
subset S̃λ of R

d , we have the following analog of Lemma 4.3. Recall the definition of n(ρ, r, S̃λ)

immediately after (1.12).

Lemma 4.4. Assume the moment condition (1.19) holds for some q ∈ (2, ∞). Under
conditions (1.8) and (1.12) there exist constants λ0 ∈ (0, ∞) and c ∈ (0, ∞) such that for all
λ ∈ [λ0, ∞) and all ρ ∈ [c ln λ, ∞), we have

var[W̃λ(ρ)] ≥ b0n(ρ, r, S̃λ)

c
.
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Proof. We follow the proof of Lemma 4.3. We write {Q̃i,r : i ∈ Ĩ } := C(ρ, r, S̃λ), the
collection of cubes defined after (1.12). Let F̃λ be the sigma algebra generated by P̃

β�
λ ∩

(
⋃

i∈Ĩ
Q̃i,r )

c. By the conditional variance formula

var[W̃λ(ρ)] = var[E[W̃λ(ρ) | F̃λ]] + E var[W̃λ(ρ) | F̃λ] ≥ E var[W̃λ(ρ) | F̃λ].
For i ∈ Ĩ , let C̃i := {x ∈ S̃λ : d(x, Q̃i,r ) ≤ ρ}. Then the C̃i are separated by 2ρ because the
Q̃i,r are separated by at least 4ρ. Also, the C̃i are contained in S̃λ.

For each i ∈ Ĩ , the sum
∑

x∈P̃
β�
λ ∩C̃i

ξ(x, P̃
β�
λ \{x}; ρ) depends on points distant at most ρ

from C̃i . Thus, E[W̃λ(ρ) | F̃λ] is a sum of conditionally independent random variables since
the C̃i are separated by 2ρ. Thus, we obtain the analog of (4.7); namely,

E var[W̃λ(ρ) | F̃λ] = E

∑
i∈Ĩ

var

[ ∑
x∈P̃

β�
λ ∩C̃i

ξ(x, P̃
β�
λ \{x}; ρ) | F̃λ

]
.

Let F̃λ,i be the sigma algebra generated by P̃
β�
λ ∩ Q̃i,r . For all i ∈ Ĩ , the restrictions of F̃λ

and F̃λ,i to C̃
ρ
i ∩ S̃λ coincide.

As in the proof of Lemma 4.3, we obtain the analog of (4.8); namely,

E var[W̃λ(ρ) | F̃λ] = E

∑
i∈Ĩ

var

[ ∑
x∈P̃

β�
λ

ξ(x, P̃ β�\{x}; ρ) | F̃λ,i

]
.

If λ ∈ [λ0, ∞) and if λ0 is large enough, then by Lemma 4.2(ii), for all i ∈ Ĩ ,

E var

[ ∑
x∈P̃

β�
λ

ξ(x, P̃ β�\{x}; ρ) | F̃λ,i

]
≥ b0

2
.

Thus,

var[W̃λ(ρ)] ≥ E var[W̃λ(ρ) | F̃λ] ≥ E

∑
i∈Ĩ

b0

2
≥ b0card(Ĩ )

2
.

Lemma 4.5. If the moment condition (1.7) holds for some q ∈ (2, ∞) then |var Wλ−var Ŵλ| =
o(λ).

Proof. Put ρ = c ln λ, large c. By (4.3) and (4.2) with G = ∅, we have |var Wλ(ρ) −
var Wλ| = o(1) and |var Ŵλ(ρ) − var Ŵλ| = o(1), respectively. So it is enough to prove
|var Wλ(ρ) − var Ŵλ(ρ)| = o(λ). We have

|var Wλ(ρ) − var Ŵλ(ρ)| ≤ var(Wλ(ρ) − Ŵλ(ρ)) + 2cov(Wλ(ρ) − Ŵλ(ρ), Ŵλ(ρ)).

The scores ξ(x, P
β�
λ ;ρ) and ξ(x, P β�;ρ) coincide when x ∈ Qλ is distance at least ρ from

∂Qλ. Thus, Wλ(ρ) − Ŵλ(ρ) = Uλ − Vλ, where

Uλ :=
∑

x∈P
β�
λ ∩(∂Qλ)ρ

ξ(x, P
β�
λ ; ρ), Vλ :=

∑
x∈P β�∩(∂Qλ)ρ

ξ(x, P β�; ρ).

Lemma 4.1 with q = 2 and q ′ > 2 ensures that var Uλ and var Vλ are both of order
O((vol(∂Qλ)

ρ)2). These bounds and var[Uλ − Vλ] = var Uλ + var Vλ − 2cov[Uλ, Vλ] show
that var[Uλ − Vλ] = o(λ). By the Cauchy–Schwarz inequality and Lemma 4.1, we obtain
cov[Wλ(ρ) − Ŵλ(ρ), Ŵλ(ρ)] = o(λ) as well.
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We need one more lemma. It shows that if fluctuations of Ŵλ are not of volume order then
they are necessarily at most of surface order and vice versa. A version of this dichotomy appears
in the statistical physics literature [24] and also in [7]. We do not have any natural examples of
Ŵλ that are defined on all of Qλ and which have fluctuations at most of surface order. However,
when ancestor clans and stabilization radii have slowly decaying tails we expect that var Ŵλ

behaves less like a sum of i.i.d. random variables and more like a sum of random variables with
very long range dependencies, presumably giving rise to smaller fluctuations. When the score
at x is allowed to depend on nearby point configurations as well as on nearby scores, then [24]
established conditions for surface order fluctuations.

Lemma 4.6. Let ξ be translation invariant. Either var Ŵλ = (λ) or var Ŵλ = O(λ(d−1)/d).

Proof. Recall the definitions of cξ (x) and cξ (x, y) in (1.13) and (1.14), respectively. Similar
to the proof of [38, Theorem 2.2], by the integral characterization of Gibbs point processes, as
in [27, Chapter 6.4], from the Georgii–Nguyen–Zessin formula, it follows that

var Ŵλ = var
∑

x∈P
β�
λ

ξ(x, P β�\{x}) = τ

∫
Qλ

cξ2
(x) dx − τ 2

∫
Qλ

∫
Qλ

cξ (x, y) dy dx.

Note that cξ (x, y) decays exponentially fast with |x−y|, as shown in [38, Lemmas 3.4 and 3.5].
By translation invariance of ξ and stationarity of P β� , we obtain

var Ŵλ = τcξ2
(0)λ − τ 2

∫
Qλ

∫
Rd

cξ (0, y − x) 1(y∈Qλ) dy dx

= τcξ2
(0)λ − τ 2

∫
Qλ

∫
Rd

cξ (0, y) 1(x+y∈Qλ) dy dx

:= Iλ + IIλ. (4.9)

Now
IIλ

λ
= −τ 2

λ

∫
Qλ

∫
Rd

cξ (0, y) 1(x∈Qλ−y) dy dx

and by writing 1(x∈Qλ−y) as 1 − 1(x∈(Qλ−y)c), we obtain

IIλ

λ
= −τ 2

∫
Rd

cξ (0, y) dy + τ 2

λ

∫
Rd

∫
Qλ

cξ (0, y) 1(x∈Rd\(Qλ−y)) dx dy.

As in [24], for all y ∈ R
d , put γQλ(y) := vold(Qλ ∩ (Rd \ (Qλ − y))). Then

var Ŵλ

λ
= Iλ

λ
+ IIλ

λ
= τcξ2

(0) − τ 2
∫

Rd

cξ (0, y) dy + τ 2

λ

∫
Rd

cξ (0, y)γQλ(y) dy. (4.10)

Now, we assert that

lim
λ→∞

1

λ

∫
Rd

cξ (0, y)γQλ(y) dy = 0. (4.11)

Indeed, by [24, Lemma 1], we have λ−1γQλ(y) → 0 and since λ−1cξ (0, y)γQλ(y) is dominated
by cξ (0, y), which decays exponentially fast, the result follows by the dominated convergence
theorem. Collecting terms in (4.9)–(4.11) and recalling (1.15), we obtain

lim
λ→∞

1

λ
var Ŵλ = τcξ2

(0) − τ 2
∫

Rd

cξ (0, y) dy = τσ 2(ξ, τ ) ∈ [0, ∞), (4.12)
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where we note that σ 2(ξ, τ ) is finite by the exponential decay of cξ (0, y) as shown
in [38, Lemma 3.5].

It follows that if var Ŵλ is not of volume order then we have τcξ2
(0)−τ 2

∫
Rd cξ (0, y) dy = 0.

Substituting this identity into (4.10), multiplying (4.10) by λ1/d , and taking limits, we have

lim
λ→∞ λ−(d−1)/d var Ŵλ = lim

λ→∞ τ 2λ−(d−1)/d

∫
Rd

cξ (0, y)γQλ(y) dy. (4.13)

Now as in [24], we have λ−(d−1)/dγQλ(y) ≤ C|y|, showing that the integrand in (4.13) is
dominated by an integrable function. By [24, Lemma 1], there is a function γ : R

d → R
+ such

that
lim

λ→∞ λ−(d−1)/dγQλ(y) = γ (y).

By dominated convergence we obtain the desired result:

lim
λ→∞ λ−(d−1)/d var Ŵλ = τ 2

∫
Rd

cξ (0, y)γ (y) dy < ∞,

where once again the integral is finite by the exponential decay of cξ (0, y).

5. Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1. Combining (4.12) and Lemma 4.5 we obtain limλ→∞ λ−1 var Wλ =
τσ 2(ξ, τ ),giving (1.16). Now assume nondegeneracy (1.10) and putρ = c ln λ. By Lemma 4.3,
we have

lim
λ→∞ λ−(d−1)/d var Ŵλ(ρ) = ∞

and, therefore, by (4.2) with G = ∅, we have limλ→∞ λ−(d−1)/d var Ŵλ = ∞. By Lemma 4.6,
we have var Ŵλ = (λ) and from Lemma 4.5, we have σ 2(ξ, τ ) > 0, as desired.

Proof of Theorem 1.2. We use a result based on the Stein method to derive rates of normal
convergence. We follow the setup of [5], as this yields rates which are a slight improvement
over the methods of [38]. Given an admissible Gibbs point process P

β�
λ with both β and

� fixed, we shall simply write Pλ for P
β�
λ . Our first goal is to obtain the rates of normal

convergence for Wλ(ρ) defined in (3.3). Then we use this to obtain rates for Wλ. Without loss
of generality, we assume that p ∈ (2, q) and we show that, for all ρ ∈ (0, ∞),

dK

(
Wλ(ρ) − EWλ(ρ)√

var(Wλ(ρ))
, N(0, 1)

)
= O

(
(var Wλ(ρ))−p/2λw

p
q ρd(p−1) + wqρd

√
var Wλ(ρ)

)
(5.1)

and, if (1.10) holds and if (1.7) holds for some q ∈ (3, ∞),

dK

(
Wλ(ρ) − EWλ(ρ)√

var(Wλ(ρ))
, N(0, 1)

)
= O

(
ρ2d

√
λ

)
. (5.2)

The proof proceeds as follows. The local dependence condition [5, condition (LD3)] requires
for each x ∈ Qλ three nested neighborhoods Ax , Bx , and Cx which satisfy Br(x) ⊂ Ax ⊂
Bx ⊂ Cx as r ↓ 0 and such that the sum of scores over points in Br(x) (respectively Ax , Bx)
are independent of the sum of scores over points in (Ar

x)
c (respectively Bc

x, C
c
x). We claim that

Wλ(ρ) satisfies the local dependence condition [5, condition (LD3)] with the neighborhoods
Ax := B2ρ(x), Bx := B4ρ(x), and Cx := B6ρ(x), x ∈ Qλ. Indeed, this follows immediately
since ξ(·, P β�

λ \ {·}; ρ) enjoys spatial independence over sets separated by more than 2ρ, as
already noted in the discussion after (3.3).
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From [5, Corollary 2.2], It follows that

dK

(
Wλ(ρ) − EWλ(ρ)√

var(Wλ(ρ))
, N(0, 1)

)
≤ 48ε3 + 160ε4 + 2ε5,

where, with R(dx) := |ξ(x, Pλ; ρ)|Pλ(dx), N(Cx) := B10ρ(x), and p ∈ (2, ∞),

ε3 := (var Wλ(ρ))−p/2
E

∫
Qλ

R(N(Cx))
p−1R(dx),

ε4 := (var Wλ(ρ))−p/2
∫

Qλ

ER(N(Cx))
p−1

ER(dx),

ε5 := (var Wλ(ρ))−1/2 sup
x∈Qλ

ER(N(Cx)).

We write Gx,λ := {D(x, Pλ) ≤ ρ}. For ε3, we have, by definition of R(dx),

E

∫
Qλ

R(N(Cx))
p−1R(dx)

= E

∫
Qλ

(∫
N(Cx)

|ξ(z, Pλ\{z})| 1Gz,λ Pλ(dz)

)p−1

|ξ(x, Pλ\{x})| 1Gx,λ Pλ(dx)

≤ E

∫
Qλ

(∫
N(Cx)

|ξ(z, Pλ\{z})|Pλ(dz)

)p−1

|ξ(x, Pλ\{x})|Pλ(dx).

From Hölder’s inequality we obtain (
∫
D

|f |μ(dx))p−1 ≤ ∫
D

|f |p−1μ(dx)μ(D)p−2, giving

E

∫
Qλ

R(N(Cx))
p−1R(dx)

≤ E

∫
Qλ

∫
N(Cx)

|ξ(z, Pλ\{z})|p−1Pλ(dz)Pλ(N(Cx))
p−2|ξ(x, Pλ\{x})|Pλ(dx)

≤ E

∫
Qλ

|ξ(x, Pλ\{x})|pPλ(N(Cx))
p−2Pλ(dx)

+ E

∫
Qλ

∫
N(Cx)\{x}

|ξ(z, Pλ\{z})|p−1Pλ(dz)Pλ(N(Cx))
p−2|ξ(x, Pλ\{x})|Pλ(dx),

where we write
∫
N(Cx)

· · ·Pλ(dz) as
∫
{x} · · ·Pλ(dz)+∫

N(Cx)\{x} · · ·Pλ(dz). From the inequality
|a‖b|p−1 ≤ |a|p + |b|p, we obtain

E

∫
Qλ

R(N(Cx))
p−1R(dx)

≤ E

∫
Qλ

|ξ(x, Pλ\{x})|pPλ(N(Cx))
p−2Pλ(dx)

+ E

∫
Qλ

∫
N(Cx)\{x}

(|ξ(z, Pλ\{z})|p + |ξ(x, Pλ\{x})|p)Pλ(N(Cx))
p−2Pλ(dz)Pλ(dx).
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Splitting the last integral into two integrals, we have

E

∫
Qλ

R(N(Cx))
p−1R(dx)

≤ E

∫
Qλ

|ξ(x, Pλ\{x})|pPλ(N(Cx))
p−2Pλ(dx)

+ E

∫
Qλ

∫
N(Cx)\{x}

|ξ(z, Pλ\{z})|pPλ(N(Cx))
p−2Pλ(dz)Pλ(dx)

+ E

∫
Qλ

|ξ(x, Pλ\{x})|pPλ(N(Cx))
p−1Pλ(dx).

The inequality can be further bounded by

E

∫
Qλ

R(N(Cx))
p−1R(dx)

≤ E

∫
Qλ

Pλ(N(Cx))
p−2|ξ(x, Pλ\{x})|pPλ(dx)

+ E

∫∫
0<d(x,z)≤10ρ

|ξ(z, Pλ\{z})|pPλ(N(Cx))
p−2Pλ(dx)Pλ(dz)

+ E

∫
Qλ

Pλ(N(Cx))
p−1|ξ(x, Pλ\{x})|pPλ(dx).

Now by integrating the double integral, we obtain

E

∫
Qλ

R(N(Cx))
p−1R(dx) ≤ E

∫
Qλ

Pλ(N(Cx))
p−2|ξ(x, Pλ\{x})|pPλ(dx)

+ E

∫
Qλ

|ξ(z, Pλ\{z})|pPλ(B20ρ(z))p−1Pλ(dz)

+ E

∫
Qλ

Pλ(N(Cx))
p−1|ξ(x, Pλ\{x})|pPλ(dx).

Combining integrals and using Hölder’s inequality for p1 ∈ (1, q/p), we obtain

E

∫
Qλ

R(N(Cx))
p−1R(dx) ≤ 3E

∫
Qλ

|ξ(z, Pλ\{z})|pPλ(B20ρ(z))p−1Pλ(dz)

≤ 3

{
E

∫
Qλ

Pλ(B20ρ(z))(p−1)p1/(p1−1)Pλ(dz)

}(p1−1)/p1

×
{

E

∫
Qλ

|ξ(z, Pλ\{z})|pp1Pλ(dz)

}1/p1

. (5.3)

Since P
β�
λ is a Gibbs point process, we apply the Georgii–Nguyen–Zessin integral character-

ization of Gibbs point processes [27] to see that the conditional probability of observing an
extra point of P

β�
λ in the volume element dz, given that configuration without that point, can

be expressed as exp(−β��({z}, P β�
λ )) dz ≤ dz, where ��({z}, P β�

λ ) is defined in (1.3).
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Using the fact that EP
β�
λ (dx) ≤ τ dx, from (5.3), we have

E

∫
Qλ

R(N(Cx))
p−1R(dx) ≤ 3τ

{
E

∫
Qλ

(Pλ(B20ρ(z)) + 1)(p−1)p1/(p1−1) dz

}(p1−1)/p1

×
{

E

∫
Qλ

|ξ(z, Pλ ∪ {z})|pp1 dz

}1/p1

. (5.4)

Note that Pλ(B20ρ(x)) is stochastically bounded by Po(τM) with M := vol(B20ρ(0)). From
[5, Lemma 4.3], we have E{Pλ(B20ρ(x))+1}(p−1)p1/(p1−1) ≤ c1ρ

d(p−1)p1/(p1−1), from which

ε3 ≤ 3τ var(Wλ(ρ))−p/2c1
(p1−1)/p1ρd(p−1)λ(p1−1)/p1

{
E

∫
Qλ

|ξ(x, Pλ ∪ {x})|pp1 dx

}1/p1

.

Then, since wpp1 ≤ wq , we have

ε3 ≤ 3τλ var(Wλ(ρ))−p/2c1
(p1−1)/p1w

p
q ρd(p−1). (5.5)

Next, we bound ε4. To this end, let p2 := pp1/(p − 1), we again replace the indicator
function with 1 and then apply Hölder’s inequality to obtain

∫
Qλ

ER(N(Cx))
p−1

ER(dx)

=
∫

Qλ

E

(∫
N(Cx)

|ξ(z, Pλ\{z})| 1Gz,λ Pλ(dz)

)p−1

E|ξ(x,Pλ\{x})| 1Gx,λ Pλ(dx)

≤
∫

Qλ

E

(∫
N(Cx)

|ξ(z, Pλ\{z})|Pλ(dz)

)p−1

E|ξ(x,Pλ\{x})|Pλ(dx)

≤
∫

Qλ

E

{∫
N(Cx)

|ξ(z, Pλ\{z})|p−1Pλ(dz)Pλ(N(Cx))
p−2

}
E|ξ(x,Pλ\{x})|Pλ(dx).

This ensures that

∫
Qλ

ER(N(Cx))
p−1

ER(dx)

≤
∫

Qλ

E

{∫
N(Cx)

|ξ(z, Pλ\{z})|p−1Pλ(B20ρ(z))p−2Pλ(dz)

}
E|ξ(x,Pλ\{x})|Pλ(dx)

≤
∫

Qλ

{
E

∫
N(Cx)

|ξ(z, Pλ\{z})|p2(p−1)Pλ(dz)

}1/p2

×
{

E

∫
N(Cx)

Pλ(B20ρ(z))(p−2)p2/(p2−1)Pλ(dz)

}(p2−1)/p2

× E|ξ(x,Pλ\{x})|Pλ(dx). (5.6)
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With the same reasoning as for (5.4), from (5.6), we obtain∫
Qλ

ER(N(Cx))
p−1

ER(dx)

≤
∫

Qλ

{∫
N(Cx)

E|ξ(z,Pλ ∪ {z})|p2(p−1)τ dz

}1/p2

×
{∫

N(Cx)

E(Pλ(B20ρ(z)) + 1)(p−2)p2/(p2−1)τ dz

}(p2−1)/p2

E|ξ(x,Pλ\{x})|Pλ(dx)

≤ τ 2w
p−1
pp1 c2

(p2−1)/p2ρd(p−2)

∫
Qλ

{∫
N(Cx)

dz

}1/p2
{∫

N(Cx)

dz

}(p2−1)/p2

wpp1 dx

≤ w
p
pp1c3λρd(p−1).

Hence,
ε4 ≤ (var Wλ(ρ))−p/2w

p
q c3λρd(p−1), (5.7)

which shows that the bounds for ε3 and ε4 coincide. Turning to ε5, we have

ε5 ≤ (var Wλ(ρ))−1/2 sup
x∈Qλ

E

(∫
N(Cx)

|ξ(z, Pλ\{z})|Pλ(dz)

)

≤ (var Wλ(ρ))−1/2 sup
x∈Qλ

(∫
N(Cx)

E|ξ(z,Pλ ∪ {z})|τ dz

)

≤ (var Wλ(ρ))−1/2 sup
x∈Qλ

(∫
N(Cx)

{E|ξ(z,Pλ ∪ {z})|pp1}1/(pp1)τ dz

)

≤ (var Wλ(ρ))−1/2wqc4ρ
d. (5.8)

Combining (5.5), (5.7), and (5.8), we obtain (5.1).
Assuming (1.7) holds, using (4.3) with G = ∅ and Theorem 1.1, we have var[Wλ(ρ)] ≥ c5λ.

When p = 3, this, together with (5.1), gives (5.2).
To complete the proof, we need to replace Wλ(ρ) with Wλ. We rely heavily on Lemma 4.2

for this. Note that for all ε1 ∈ R and ε2 > −0.6,

dK(N(0, 1), N(ε1, 1 + ε2)) ≤ dK(N(0, 1), N(ε1, 1)) + dK(N(ε1, 1), N(ε1, 1 + ε2))

≤ |ε1|√
2π

+ |ε2|√
2eπ

. (5.9)

Now dK(X, N(0, 1)) = dK(aX, N(0, a2)) = dK(aX + b, N(b, a2)) holds for X with
EX = 0 and all constants a and b. Hence,

dK

(
Wλ − EWλ√

var Wλ

, N(0, 1)

)

= dK

(
Wλ − EWλ(ρ)√

var Wλ(ρ)
, N

(
EWλ − EWλ(ρ)√

var Wλ(ρ)
,

var Wλ

var Wλ(ρ)

))

≤ dK

(
Wλ − EWλ(ρ)√

var Wλ(ρ)
, N(0, 1)

)
+ dK

(
N(0, 1), N

(
EWλ − EWλ(ρ)√

var Wλ(ρ)
,

var Wλ

var Wλ(ρ)

))
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by the triangle inequality for dK . Now for any random variables Y and Y ′, we have

dK(Y, N(0, 1)) ≤ dK(Y ′, N(0, 1)) + P[Y �= Y ′] (5.10)

which follows from |P[Y ≤ t] − �(t)| ≤ |P[Y ′ ≤ t] − �(t)| + |P[Y ′ ≤ t] − P[Y ≤ t]|. We
have, by (5.10) and (5.9),

dK

(
Wλ − EWλ√

var Wλ

, N(0, 1)

)
≤ P[Wλ �= Wλ(ρ)] + dK

(
Wλ(ρ) − EWλ(ρ)√

var Wλ(ρ)
, N(0, 1)

)

+ 1√
2π

∣∣∣∣EWλ − EWλ(ρ)√
var Wλ(ρ)

∣∣∣∣ + 1√
2eπ

∣∣∣∣var Wλ − var Wλ(ρ)

var Wλ(ρ)

∣∣∣∣.
(5.11)

However, the Cauchy–Schwarz inequality ensures that

|EWλ − EWλ(ρ)| ≤ ‖Wλ − Wλ(ρ)‖2P[Wλ �= Wλ(ρ)]1/2 ≤ 1

λ
,

where the last inequality is due to (4.1), (3.6), and the arbitrariness of L. Hence, from (5.11),
it follows that

dK

(
Wλ − EWλ√

var Wλ

, N(0, 1)

)
≤ 1

λ2 + O((var Wλ)
−p/2λ(ln λ)d(p−1)),

where we use (3.6) with L = 2, (5.1), and (4.3) with G = ∅.

Proof of Theorem 1.3. The bound (1.21) follows from Lemma 4.4 and Lemma 4.2(ii) with
G = ∅. The proof of (1.20) follows by replacing Qλ with S̃λ in the proof of (1.17), whereas
(1.22) follows by combining (1.20) and (1.21).

Appendix A

A.1. Gibbs point processes with Hamiltonians � in the class �∗

Here we describe some Hamiltonians contained in the class �∗ described in Section 1.1.
We follow nearly verbatim the description in [38].

A.1.1. Point processes with a pair potential function. A large class of Gibbs point processes,
known as pairwise interaction point processes [39], has Hamiltonian

�(X) :=
∑
i<j

φ(‖xi − xj‖), X := {xi}ni=1

with pair potential φ : [0, ∞) → [0, ∞) and where ‖ · ‖ denotes the Euclidean norm. Such
processes clearly do not include pair potentials with a negative part, but they do include, e.g.
the Strauss process, which involves perturbing a Poisson process according to an exponential
of the number of pairs of points closer than a fixed cutoff r0, with φ(u) = α 1{u≤r0} for some
α > 0; see [1], [39], and [14, Section 10.4 of Vol. II] for details.

A.1.2. Area interaction point processes. These are Gibbs-modified germ-grain processes, where
the grain shape is a fixed compact convex set K; see [1], [14, Section 10.4 of Vol. II], and
[19, p. 9] for details. As in [14], these processes have Hamiltonian

�(X) = ν

( n⋃
i=1

(xi ⊕ K)

)
+ α1n + α2, X =: {xi}ni=1,

where ν is a totally finite positive Borel regular measure.
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A.1.3. Point processes given by the hard-core model. The hard-core model conditions a Poisson
point process to contain no two points at distance less than 2r0, with r0 > 0 denoting a parameter
of the model. The hard-core point process has Hamiltonian

�(X) = α1n + α2, X := {xi}ni=1

if no two points of X are within distance 2r0 and otherwise �(X) = ∞.

A.1.4. Truncated Poisson processes. The hard-core model is a particular example of a truncated
Poisson process. In general, a truncated Poisson process arises by conditioning a Poisson point
process on a constraint event. For example, we may fix k ∈ N and r0 ∈ (0, ∞) and require that
no ball of radius r0 contain more than k points from the process. In this case

�(X) =
{

∞ if there is x ∈ R
d such that card(X ∩ Br0(x)) > k,

0 otherwise.

A.2. Proofs of lemmas in Section 2

Proof of Lemma 2.1. We first assume that τvold(B) < 1. The Georgii–Nguyen–Zessin
formula for Gibbs point processes [27] states that the conditional probability of observing an
extra point of P β� in the volume element dz, given that configuration without that point, is
exp(−β��({z}, P β�)) dz, where ��({z}, P β�) is defined in (1.3). Hence, for any A ∈ GBc ,
we have

P[P β� ∩ B �= ∅, A] ≤ E

∫
B

1A P β�(dz)

= τE

∫
B

1A exp(−β��({z}, P β�)) dz

≤ τE

∫
B

1A dz

= τvold(B)P[A],
where the first equality follows from the Georgii–Nguyen–Zessin formula. The inequality can
be written as P[P β� ∩ B �= ∅ | A] ≤ τvold(B), which ensures that

P[P β� ∩ B = ∅ | A] ≥ 1 − τvold(B). (A.1)

Now, for general B with vold(B) < ∞, we take an integer k > τvold(B) and partition B

into B1, . . . , Bk such that vold(Bi) = vold(B)/k, 1 ≤ i ≤ k. For any set A ∈ GBc , setting
B0 = ∅, we have

P[P β� ∩ B = ∅ | A]
= P[P β� ∩ B1 = ∅, . . . , P β� ∩ Bk = ∅ | A]

=
k−1∏
i=0

P[P β� ∩ Bi+1 = ∅ | P β� ∩ B0 = ∅, . . . , P β� ∩ Bi = ∅, A]

≥
(

1 − τvold(B)

k

)k

,

where the inequality follows from (A.1). The proof is completed by letting k → ∞.
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Proof of Lemma 2.2. Recall that F := ⋃m
i=1 Fi . It suffices to prove that

P

[
Gm ∩

m⋂
i=1

{card(P β� ∩ Fi) = li}
]

≥ e−τvold (F )
P

[
Gm ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki}
]

(A.2)

for Gm ∈ σ(P β� ∩ Fc).
We first assume that m = 1. If l1 = 0 then (A.2) follows from Lemma 2.1 with the

substitution A := Gm. It remains to show (A.2) for 0 < l1 ≤ k1. For a positive integer n, we
partition F1 into n disjoint subsets Anj such that vold(Anj ) = vold(F1)/n, 1 ≤ j ≤ n. Let
n := ⋂

1≤j≤n{card(Anj ∩ P β�) ≤ 1}. Then

P[c
n] ≤

n∑
j=1

P[card(Anj ∩ P β�) ≥ 2] ≤
n∑

j=1

P[card(Anj ∩ P̃τ ) ≥ 2] = O

(
1

n

)
, (A.3)

where the second inequality follows since P β� is stochastically dominated by the reference
process P̃τ . Let Hn := {I : I ⊂ {1, 2, . . . , n}, card(I ) = l1}, and for I ∈ Hn, define
AnI := ⋃

j∈I Anj and

EnI := {P β� ∩ (F1 \ AnI ) = ∅}, E′
nI :=

⋂
j∈I

{card(P β� ∩ Anj ) = 1}.

Note that the event EnI ∩ E′
nI happens if and only if card(P β� ∩ F1) = l1 and each of

Anj , j ∈ I , hosts exactly one Gibbs point. We now claim that

P[G1 ∩ E′
nI ] ≤ eτvold (F1)P[EnI ∩ G1 ∩ E′

nI ]. (A.4)

If P[G1 ∩E′
nI ] = 0 then clearly (A.4) holds. For P[G1 ∩E′

nI ] > 0, applying Lemma 2.1 again,
we have

P[EnI | G1 ∩ E′
nI ] ≥ e−τvold (F1\AnI ) ≥ e−τvold (F1),

which implies (A.4). Now,

P[G1 ∩ n ∩ {card(P β� ∩ F1) = k1}] ≤
∑

I∈Hn

P[G1 ∩ E′
nI ]

≤ eτvold (F1)
∑

I∈Hn

P[EnI ∩ G1 ∩ E′
nI ]

≤ eτvold (F1)P[G1 ∩ {card(P β� ∩ F1) = l1}], (A.5)

where the second inequality holds by (A.4). Letting n → ∞ in (A.5) and recalling (A.3), we
obtain (A.2) when m = 1.

For m ≥ 2, we apply induction on m and assume that (A.2) holds for m − 1. That is, for
every Gm−1 ∈ σ(P β� ∩ (

⋃m−1
i=1 Fi)

c),

P

[
Gm−1 ∩

m−1⋂
i=1

{card(P β� ∩ Fi) = li}
]

≥ e−τvold (
⋃m−1

i=1 Fi)P

[
Gm−1 ∩

m−1⋂
i=1

{card(P β� ∩ Fi) = ki}
]
. (A.6)
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For Gm ∈ σ(P β� ∩ Fc), write G1 := Gm ∩ ⋂m−1
i=1 {card(P β� ∩ Fi) = li} and Gm−1 :=

Gm ∩ {card(P β� ∩ Fm) = km}. Note that Gm−1 ∈ σ(P β� ∩ (
⋃m−1

i=1 Fi)
c). Then

P

[
Gm ∩

m⋂
i=1

{card(P β� ∩ Fi) = li}
]

= P[G1 ∩ {card(P β� ∩ Fm) = lm}]
≥ e−τvold (Fm)

P[G1 ∩ {card(P β� ∩ Fm) = km}]

= e−τvold (Fm)
P

[
Gm−1 ∩

m−1⋂
i=1

{card(P β� ∩ Fi) = li}
]

≥ e−τvold (Fm)e−τvold (
⋃m−1

i=1 Fi)P

[
Gm−1 ∩

m−1⋂
i=1

{card(P β� ∩ Fi) = ki}
]

= e−τvold (F )
P

[
Gm ∩

m⋂
i=1

{card(P β� ∩ Fi) = ki}
]
,

where the first inequality is from (A.2) with m = 1 and the second inequality is from the
induction assumption (A.6).

Proof of Lemma 2.3. Let E := {Y ∈ A1 ∪ A2}, G = σ {E}, and FE(x) be the conditional
distribution function of Y given E. Without loss of generality, we assume that

inf{|x − E(Y | E)| : x ∈ A1} ≥ 1
2d(A1, A2).

By the conditional variance formula

var(Y ) = var(E(Y | G)) + E var(Y | G)

≥ var(Y | E)P[E]
=

∫
A1∪A2

(x − E(Y | E))2 dFE(x)P[E]

≥ 1
4d(A1, A2)

2
P[Y ∈ A1]

≥ 1
4d(A1, A2)

2(p1 ∧ p2)

as required.
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