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Abstract

Particle filters are Monte Carlo methods that aim to approximate the optimal filter of a
partially observed Markov chain. In this paper, we study the case in which the transition
kernel of the Markov chain depends on unknown parameters: we construct a particle
filter for the simultaneous estimation of the parameter and the partially observed Markov
chain (adaptive estimation) and we prove the convergence of this filter to the correct
optimal filter, as time and the number of particles go to infinity. The filter presented here
generalizes Del Moral’s Monte Carlo particle filter.
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1. Introduction

In stochastic filtering, the goal is to estimate the distribution of a stochastic process at any time
instant, given some partial information up to that time. This conditional distribution is usually
referred to as the optimal filter. The basic model consists of a Markov chain X (also called the
state variable) and possibly nonlinear observations Y with observational noise V independent
of the signal X. In this case, the optimal filter is completely determined by the observations,
the transition probability kernel, the distribution of the noise, and the initial distribution.

The two most important problems in stochastic filtering are how to treat unknown initial
conditions or unknown parameters and how to compute the optimal filter. A common approach
to dealing with unknown parameters in the system is to treat them as part of the state variable
(see [11] for a historical perspective). In this case, the Bayesian posterior distribution of the
parameters is a marginal of the optimal filter. It turns out that, under certain conditions on the
transition kernels and the prior distribution, the Bayesian estimator is asymptotically consistent
and, in addition, the optimal filter of the augmented system, i.e. the one in which the parameters
are included in the state variable, is asymptotically stable with respect to the initial conditions.
Thus, if we initialize the optimal filter with any prior distribution on the parameters, it will
eventually converge to the true optimal filter as long as the prior distribution satisfies some
condition; namely that the mass put by the prior in the neighborhood of the true value should
not disappear ‘too quickly’. For a more detailed discussion regarding the asymptotic stability
of the optimal filter of the augmented system, see [12].

In this paper, we discuss the problem of computing the optimal filter for the augmented
system. It is well known that, with the exception of very few cases (for example linear Gaussian
systems), an exact computation of the optimal filter is not possible and we must resort to
numerical methods. One of the most efficient schemes for the recursive computation of the
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1054 A. PAPAVASILIOU

optimal filter is the interacting particle filter (or sequential Monte Carlo method), first suggested
(independently) in [8] and [9]. The idea is to approximate the optimal filter by an empirical
distribution of particles that evolve in a way that imitates the evolution of the optimal filter.
It has been shown that, as the number of particles grows, the empirical distribution of these
particles converges to the optimal filter at every time instant (see, for example, [3], [6], or [2]).
Under suitable conditions, the uniform convergence of the particle filter has also been shown
(see [5]). However, the uniform convergence results assume some ergodicity conditions on the
transition kernel of the Markov chain that – it is clear – will not hold for the augmented system.
To the best of the author’s knowledge, the only particle filter that has been shown to converge
uniformly and with no assumption on the ergodicity of the transition kernel is the Monte Carlo
particle filter presented in [4]. Unfortunately, this algorithm is not practical, since it requires
the dense sampling of the path space of the Markov chain.

In fact, in the case of adaptive estimation, the standard particle filters are not going to converge
to the true optimal filter: there is a positive probability that the particles corresponding to the
best estimate of the parameter will be lost, and once they are lost they cannot be recovered.
Several variations of the interacting particle filter designed for the particular case of adaptive
estimation have been proposed (see, for example, [1], [7], or [13]). These algorithms try to avoid
this degeneracy by combining the particle filters with other methods of parameter estimation,
or by introducing some possibility of the ‘rebirth’ of a particle. As yet, there is no proof of
convergence for any of these filters. Here we study a variation of the particle filter suggested
in [7] and prove its convergence under suitable conditions.

As we mentioned above, most adaptive algorithms are based on the idea of treating the
estimation of the Markov chain and that of the parameter separately. We also follow a two-layer
approach. First we use a particle filter for the computation of the optimal filter for each fixed
value of the parameter. Then we use another particle filter to compute the posterior distribution
of the parameter given the observations, for a given prior distribution on the parameter space.
However, the computation of the posterior distribution of the parameter also involves the results
of the previous layer of computations, i.e. the optimal filters for fixed parameter values. Putting
these together, we end up computing the weighted average of the optimal filters as functions of
the parameter, with respect to the posterior distribution of the parameters (see [7]).

Note, however, that in this case pointwise convergence or convergence of pathwise average
approximation errors is not sufficient, since there is an additional error coming from the inexact
initialization of the parameter. We need particle filters that converge uniformly with respect to
time. Also note that, while we can assume the ergodicity of the transition kernel for the first
layer of computations, this is not possible for the second layer. These limitations lead us to
choose an algorithm that is a combination of the interacting particle filter (for the computation
of the optimal filter for fixed parameter value) and a variation of the Monte Carlo particle
filter described in [4] (for the computation of the posterior distribution of the parameter). The
computational inefficiency of the Monte Carlo particle filter is not going to be of any concern in
this case, since it is applied to the particles corresponding to the parameters, and their paths are
trivial (constant), since the parameters do not evolve. We prove that this algorithm will converge
uniformly, under certain stability conditions. When the system is linear and Gaussian, we can
actually take advantage of the existence of an exact solution for fixed parameter values and
construct a simpler particle filter that is a combination of the Kalman–Bucy filter and the
Monte Carlo particle filter.

The structure of the paper is as follows. We first describe our main assumptions and some
previous results, regarding the asymptotic stability of the optimal filter, that we will be using. In
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Section 3, we study the case in which the system is linear and Gaussian but depends on unknown
parameters. We describe an algorithm that is a combination of the Monte Carlo particle filter
and the Kalman–Bucy filter (or, in fact, any method that gives an exact computation of the
optimal filter for fixed values of the parameter – if such a method exists). We show that this
algorithm will actually converge uniformly with respect to time.

In Section 4, we describe the full algorithm, which is a combination of the interacting and
the Monte Carlo particle filters – once again, any algorithm that converges uniformly in time
for fixed parameter values can replace the interacting particle filter. Finally, in Section 5, we
show that such an algorithm will also converge uniformly with respect to time.

2. Setting

Let E be a Polish space, i.e. a complete, separable metric space, and let us denote by
B(E) its Borel σ -field. Below we construct a numerical scheme for the approximation of the
conditional distribution of a Markov chain {Xn} taking values in E, given some noisy partial
information, when the kernel depends on an unknown parameter θ from a parameter space �.
More specifically, we want to approximate the optimal filter of the following system.

Definition 1. (System 1.) Let {Xn} be a homogeneous Markov chain taking values in
(E, B(E)). Let µ be its initial distribution and Kθ its transition probability kernel, which
depends on a parameter θ ∈ �. Furthermore, we assume that, for each θ ∈ �, Kθ is Feller and
mixing, i.e. there exists a constant εθ , 0 < εθ ≤ 1, and a nonnegative measure λθ ∈ M+(E)

(M+(E) being the set of finite nonnegative measures on E) such that

εθλθ (A) ≤ Kθ(x, A) ≤ 1

εθ

λθ (A) for all x ∈ E and all A ∈ B(E). (1)

The observation process is defined by Yn = h(Xn)+Vn, where Vn are independent, identically
Gaussian(0, σ 2)-distributed, R

p-valued random variables independent of X, and h : E → R
p

is a bounded continuous function. We denote by g the Gaussian probability density function
of the observational noise.

In practice, we usually take the parameter space � to be a compact subset of Euclidean
space. More generally, we assume that it is a compact Polish space with metric d�(·, ·).

Most problems are given in the form of system 1. Following a standard Bayesian technique,
we rewrite the system so that the parameter becomes part of the Markov chain, whose transition
probability kernel is now completely known. Note, however, that since we do not know the
value of the parameter, we assign to it some prior distribution u. The new system constructed
in this way can be formally defined as follows.

Definition 2. (System 2.) Suppose that {X̃n = (Xn, θn)} is an (E × �)-valued homogeneous
Markov chain with transition probability

K̃((x′, θ ′), dx ⊗ dθ) = Kθ(x
′, dx) ⊗ δθ ′(dθ)

and initial distribution µ ⊗ u, where Kθ is Feller and mixing in the sense of (1). As usual,
δθ ′(·) denotes the Dirac measure on θ ′. The observation process is defined by

Yn = h̃(X̃n) + Vn,

where h̃(x̃) = h(x) and x̃ = (x, θ).
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System 2 can be thought of as a generalization of system 1 and will be the main object of
study in this paper: our goal is to construct a particle filter that converges to the optimal filter
of system 2 uniformly with respect to time.

The canonical space of the Markov chain X with kernel Kθ and initial distribution µ is
denoted by (�1 = EN, (F (X)

n )n≥0, Pµ,θ ), where F (X)
n = σ(X0, X1, . . . , Xn) is the σ -algebra

constructed from the random variables X0, X1, . . . , Xn. Similarly, the observation process is
defined on the canonical space (�2 = (Rp)N, (F (Y )

n )n≥0, Qµ,θ ), where F (Y )
n =σ(Y1, . . . , Yn).

The law of the observation process, Qµ,θ , is given by

Qµ,θ (dyk1 , . . . , dykn) =
∫

E⊗n

n∏
i=1

g(yki
− h(xki

))Pµ,θ (dxk1 , . . . , dxkn) dyk1 · · · dykn

for any n ≥ 0 and k1, . . . , kn ∈ R+, where E⊗n = E ×· · ·×E is the product space of n copies
of E. By Qn

µ,θ we denote the restriction of Qµ,θ to the σ -algebra F (Y )
n . Then we can define

the pair process (X, Y ) on the space

(� = �1 × �2, (Fn = F (X)
n × F (Y )

n )n≥0, Pµ,θ ),

where the measure Pµ,θ is such that its marginal distributions with respect to X and Y are Pµ,θ

and Qµ,θ , respectively. It is not hard to show that this measure exists (see, for example, [4]).
We will denote the expectation with respect to Pµ,θ by Eµ,θ .

Similarly, we define the triplet (X, Y, θ) on the space

(�̃ = � × �3, (F̃n = Fn × σ(θ))n≥0, P̃µ,u),

where θ is a �-valued random variable defined on (�3, σ (θ), u) and �3 is some set that
is homeomorphic to �. The marginals of P̃µ,u on (X, Y ) and θ are

∫
�

Pµ,θ u(dθ) and u,
respectively. We will denote the expectation with respect to P̃µ,u by Ẽµ,u.

Furthermore, we denote by �θ
n(µ) and 	n(µ ⊗ u) the optimal filters for systems 1 and 2,

with respective initial distributions µ and µ ⊗ u defined as the posterior distributions of the
state variable, given the observations. The name ‘optimal filter’ is due to the fact that they
are the best estimators adapted to the available information (the σ -algebra constructed by the
observations), with respect to the L2-norm. They are random measures on the spaces E and
E × �, respectively, defined as follows. For every f ∈ Cb(E × �), i.e. every real-valued
continuous bounded function defined on E × �,

	n(µ ⊗ u)(f ) = Ẽµ,u[f (Xn, θ) | Yn, . . . , Y1]

=
∫
�

∫
E⊗n f (xn, θ)

∏n
k=1 g(yk − h(xk))Pµ,θ (dx1, . . . , dxn)u(dθ)∫

�

∫
E⊗n

∏n
k=1 g(yk − h(xk))Pµ,θ (dx1, . . . , dxn)u(dθ)

.

Similarly, for every f ′ ∈ Cb(E),

�θ
n(µ)(f ′) = Eµ,θ [f ′(Xn) | Yn, . . . , Y1]

=
∫
E⊗n f ′(xn)

∏n
k=1 g(yk − h(xk))Pµ,θ (dx1, . . . , dxn)∫

E⊗n

∏n
k=1 g(yk − h(xk))Pµ,θ (dx1, . . . , dxn)

.
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Clearly �α
n (µ) is the marginal of 	n(µ ⊗ δα) with respect to the state variable X, since

	n(µ ⊗ δα)(f ) = �α
n (µ)(fα) (where fα(x) = f (x, α)). Similarly, we define �u

n(µ) as the
marginal of 	n(µ ⊗ u) with respect to X, i.e.

�u
n(µ)(dx) =

∫
�

	n(µ ⊗ u)(dx, dθ).

The mixing condition (1) implies ergodicity of the signal. We denote by µθ the limiting
distribution of the Markov chain whose transition kernel is Kθ . The measure µθ is uniquely
defined in this way as a result of the ergodicity property of the signal. This property is
also transferred to the observation process: its limiting distribution is uniquely defined by
νθ = (µθ ◦ h−1) ∗ g.

It has been shown that the optimal filters will be asymptotically stable with respect to the
initial conditions in the setting of system 2, under suitable conditions on the prior distribution
and the kernels (see [12]):

lim
n→∞ Eµ,α[‖�u

n(µ′) − �α
n (µ)‖TV] = 0.

Here, µ and µ′ are arbitrary initial distributions and, as usual, we denote by ‖ · ‖TV the total
variation norm.

In this paper, we need the slightly stronger result

lim
q→∞ sup

n≥q
Eµ,α[‖�̃u

n−q,n(µ
′) − �α

n (µ)‖TV] = 0, (2)

where

�̃u
n−q,n(µ

′)(dx) =
∫

�

�θ
n(µ′)(dx) P�θ

n−q (µ′),u(dθ | Yn, . . . , Yn−q+1).

This definition is consistent with the way we approximate the posterior distribution of the
parameter θ in (5) and (9), below.

Lemma 1. Let Y be as in system 1. We make the following assumptions.

• The prior distribution u on the parameter space is such that there exist a sequence εn ↓ 0
and a function p : N → [1, ∞) with the following properties:

p(n)

n
→ 0 as n → ∞,

sup
n↑∞

Eµ,α

[( supθ∈Nεn (α) dQn
µ,α(Yn, . . . , Y1)/dQn

µ′,θ
u(Nεn(α))

)1/p(n)]
< ∞.

• For each η > 0, there exist an ε > 0 and an Iη > 0 such that

lim sup
n→∞

sup
k≥0

1

n
log

∫
Nη(α)c

Eµ,α[Pµ′
k,θ

(Ln(Y ) ∈ Bε(να))]u(dθ) ≤ −Iη < 0, (3)

where Ln(Y ) is the empirical measure of the observation process up to time n, i.e.
Ln(Y ) = (1/n)

∑n
k=1 δYk

, and µ′
k,θ = Pµ′,θ (X0 ∈ dx | Y0, . . . , Y−k+1).

• The optimal filters are uniformly continuous, i.e.

lim
θ→α

sup
n>0

Eµ′,α[‖�θ
n(µ) − �α

n (µ)‖TV] = 0. (4)
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Then
lim

q→∞ sup
n≥q

Eµ,α[‖�̃u
n−q,n(µ

′) − �α
n (µ)‖TV] = 0

for any initial distributions µ, µ′ ∈ P (E), where P (E) is the set of probability measures on
E. Note that we have used the notation Nρ(α) to denote the ball of radius ρ and center α with
respect to the metric d�, for any ρ > 0. Similarly, by Bε(να) we denote the ball of radius ε

and center να with respect to the Lévy–Prohorov metric.

The proof is exactly the same as in [12], except that we now need the large deviation estimate
(3) to hold uniformly. In [12], there is a lengthy discussion on how to verify assumptions (3)
and (4) using only the properties of the kernel. The assumption on the prior quantifies how
much mass the prior should have on the true parameter, so that it is possible to recover it. In
the case of a finite parameter space, for example, it is sufficient that the prior assigns a positive
probability to all the parameters (i.e. εn ≡ 0 and p(n) ≡ 1).

Below we construct a particle filter that approximates �u
n(µ) uniformly with respect to time.

With this, it is an obvious corollary of Lemma 1 that the particle filter will converge to the true
one as time n and the number of particles N go to infinity, i.e. (n, N) → (∞, ∞).

3. Adaptive estimation of linear Gaussian systems

We will first construct a particle filter for the adaptive estimation of a linear Gaussian system,
i.e. a system of the form

Xn = F(θ)Xn−1 + c(θ) + G(θ)Wn, Yn = HXn + d + Vn,

where, for every θ ∈ �, the coefficients F(θ), c(θ), G(θ), H , and d are deterministic and
belong to the Euclidean spaces R

p×p, R
p, R

p×p, R
q×p, and R

q , respectively. In addition,
both the state and the observation noises, Wn ∈ R

p and Vn ∈ R
q , are mean-zero, independent,

identically Gaussian-distributed sequences, with covariance cov(Wn) = Q and cov(Vn) = �,
independent of each other and of the initial distribution L(X0) of X0. Moreover, we assume
that the initial distribution of X0 is also Gaussian, with mean E(X0) = X̄0 and covariance Q0.

Then, for a fixed θ , the optimal filter of this system is the Kalman–Bucy filter, which can be
computed exactly. However, once we introduce the parameter to the system (as in system 2),
linearity is lost and the Kalman–Bucy filter cannot be applied. Below we construct an algorithm
which is a combination of the Kalman–Bucy filter for the state variables and the Monte Carlo
particle filter for the parameters, and show that this filter will converge uniformly with respect
to time. In fact, both the algorithm and the theorem are given in the more general formulation
of system 1, under the assumption that, for each fixed value of the parameter θ , the optimal
filter can be computed exactly.

3.1. The algorithm

The following algorithm is based on the Monte Carlo particle filter presented in [4], where
the role of the state variable is played by the optimal filters.

Time n = 0 (initialization). At time n = 0, the particle system consists of M independent
particles {θj }j=1,...,M with common law u. The weights W

j,M
0,0 of the parameters are set to be

equal to 1/M , i.e. W
j,M
0,0 = 1/M . Then the particle filter is defined as

�
u,M
0 (µ) :=

M∑
j=1

W
j,M
0,0 �

θj

0 (µ) = 1

M

M∑
j=1

µ = µ,
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where µ is the initial distribution of the Markov chain (which is Gaussian in the case that �θ
n

is the Kalman–Bucy filter).
Time n ≥ 0 (evolution). At time n ≥ 0, we compute the new weights W

j,M

(n−q(M))+,n
, for a

nondecreasing function q such that limM↑∞ q(M) = ∞, as follows:

W
j,M

(n−q(M))+,n
= Z(n−q(M))+,n((�̂

θj

� (µ))n�=1, Y )∑M
k=1 Z(n−q(M))+,n((�̂

θk

� (µ))n�=1, Y )
. (5)

Here,

�̂θ
n (µ)(dx) := Pµ,θ (Xn ∈ dx | yn−1, . . . , y1)

is the optimal one-step predictor for a fixed θ (the Kalman–Bucy predictor, in the case of the
linear Gaussian system) and, for each j = 1, . . . , M ,

Z(n−q(M))+,n((�̂
θj

� (µ))n�=1, Y ) :=
n∏

k=(n−q(M))++1

∫
E

√
2πσg(Yk − h(zk))�̂

θj

k (µ)(dzk). (6)

We use the notation a+ = max{a, 0} for all a ∈ R. Also, σ is the standard deviation of
the Gaussian distribution (note that, for the sake of simplicity, we set the dimension of the
observation variables, p, equal to 1). The particle filter is defined by

�u,M
n (µ) :=

M∑
j=1

W
j,M

(n−q(M))+,n
�

θj
n (µ). (7)

It is crucial for the convergence of the algorithm to consider a finite window of information:
even though the denominator is always positive, it converges to 0 very quickly since it is a product
of numbers less than 1. Note that multiplying g by

√
2πσ in (6) only simplifies notation, since

it cancels out in the computation of the weights (5). Thus, considering a window of information
of length q(M) allows us to control the way this converges to 0 (see also [4]).

In practice, things are worse: numbers below some threshold are treated as equal to 0 in
computer arithmetic and, consequently, only a series of ‘unlikely’ observations with respect to
some θ can set the corresponding weight equal to 0. This weight will of course remain 0 for
ever, so we are back to the problem of ‘losing’ particles. To remedy this, we can set the weights
to be max{Wj,M

(n−q(M))+,n
, ε}, for some very small ε.

In order to account for the additional randomness in the choice of θ̄M = (θ1, . . . , θM), we
define a new probability space

(�̃′ = �̃ × �M
3 , (F̃ ′

n = F̃n × σ(θ1, . . . , θM))n≥0, P̃
′
µ,u = P̃µ,u ⊗ uM)

and the corresponding expectation Ẽ
′
µ,u. Similarly, we define the probability space

(�′ = � × �M
3 , (F ′

n = Fn × σ(θ1, . . . , θM))n≥0, P′
µ,θ,u = Pµ,θ ⊗ uM)

and the corresponding expectation E′
µ,θ,u.
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The following theorem is an extension of the main theorem of [4].

Theorem 1. Suppose that (2) holds and that

sup
n

Eµ,α[h(Xn)]2 < ∞,

sup
n,θ

Eµ,α[Eµ,θ [h(Xn) | Yn, . . . , Y1]2] < ∞.

(This holds trivially in the case that h is bounded, but we include this condition to also cover
linear Gaussian systems with unknown parameters.) Then there exists a nondecreasing function
q : N → N (for example q(M) = 1

2 (log M)1/2) for which the error made by the particle filter
�

u,M
n (µ) given by (7) will converge to 0 uniformly with respect to time, i.e.

lim
M↑∞ sup

n≥0
E′

µ,α,u

[∣∣∣∣
M∑

j=1

W
j,M

(n−q(M))+,n
�

θj
n (µ)(f ) − �u

n(µ)(f )

∣∣∣∣
]

= 0. (8)

Proof. The theorem can be proved by following the arguments of the proof of uniform
convergence for the Monte Carlo particle filter (see [4]).

4. The full algorithm

In [5], Del Moral and Guionnet demonstrated the uniform convergence of the interacting
particle filter, but under some strong ergodicity conditions that are not satisfied by our system 2.
In [4], Del Moral proved the uniform convergence of the Monte Carlo particle filter under weaker
conditions. However, the Monte Carlo particle filter is not very efficient computationally; it is
a weighted sum over independent paths and, thus, requires a dense sampling of the path space.

Below we present a combination of the interacting particle filter and the Monte Carlo particle
filter: we use the interacting particle filter to compute the posterior distribution of the first
component of system 2, the Markov chain {Xn}, while we fix the second component, the
parameter. Since, for each fixed value of the parameter, the kernels Kθ are mixing, we expect
that the interacting particle filter will converge uniformly to the marginal of the optimal filter
with respect to the first component.

In order to compute the posterior distribution of the parameter, we use the Monte Carlo
particle filter. Since the parameters do not evolve, their path space is trivial and its dimension
is the dimension of the parameter space. Thus, in this case, the two filters are computationally
equivalent. On the other hand, it is crucial that we relax the ergodicity assumptions on the
transition kernel – in this case, the kernel for the evolution of the parameter is δθ ′(dθ), which is
obviously not ergodic! We have already seen, in Theorem 1, that the Monte Carlo particle filter
for the parameters will converge uniformly with respect to time given the posterior distribution
of {Xn}. We will show that this will also be the case for the combination of the two particle
filters: they will converge uniformly with respect to time.

Intuitively, the reasoning is the following. The interacting particle filter resamples the
particles. Thus, an unlikely observation can result in the loss of the ‘good particles’, i.e. those
that are close to the correct value of the parameter. Instead, the Monte Carlo particle filter
computes the weighted average. So, no particles are lost and the weight depends on several
past observations rather than on just the last one.

Below we give a detailed description of the algorithm (by q we denote a nondecreasing
function such that limN↑∞ q(N) = ∞).
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Time n = 0 (initialization). At time n = 0, the particle system consists of M independent
particles {θj }j=1,...,M with common law u, and N ∗ M independent particles

{ξ0
i (θj )}i=1,...,N, j=1,...,M

with common law µ. The weights of the parameters are set to be equal, i.e. W
j,M,N
0,0 = 1/M .

Then

�
u,M,N
0 (µ) :=

M∑
j=1

W
j,M,N
0,0 �

θj ,N

0 (µ) = 1

NM

N,M∑
i,j=1

δξ0
i (θj ),

where �
θj ,N

0 (µ) is the interacting particle filter at time n = 0 corresponding to parameter
value θj , i.e.

�
θj ,N

0 (µ) = 1

N

N∑
i=1

δξ0
i (θj ).

Time n ≥ 0 (evolution). 1. Each particle ξn
i (θj ), i = 1, . . . , N evolves according to the

kernel Kθj
, for j = 1, . . . , M , i.e. ξ̂ n

i (θj ) ∼ Kθj
(ξn

i (θj ), ·). We set

�̂
θj ,N
n (µ) := 1

N

N∑
i=1

δ
ξ̂n
i (θj )

.

Note that the particles (ξ̂ n
i (θj ))i,j are such that �̂

θj ,N
n approximates the one-step predictor

Pµ,θj
(Xn+1 | Yn, . . . , Y1) for every j .

2. We compute the new weights W
j,M,N

(n−q(M))+,n
as follows:

W
j,M,N

(n−q(M))+,n
= Z(n−q(M))+,n((�̂

θj ,N

� (µ))n�=1, Y )∑M
k=1 Z(n−q(M))+,n((�̂

θk,N
� (µ))n�=1, Y )

. (9)

Here

Z(n−q(M))+,n((�̂
θj ,N

� (µ))n�=1, Y ) :=
n∏

k=(n−q(M))++1

∫
E

g(Yk − h(zk))�̂
θj ,N

k (µ)(dzk)

=
n∏

k=(n−q(M))++1

(
1

N

N∑
i=1

g(Yk − h(ξ̂ k
i (θj )))

)
(10)

for each j = 1, . . . , M .

3. For each j = 1, . . . , M , we resample the particles {ξ̂ n
i (θj )}i=1,...,N according to weights

g(Yn − h(ξ̂n
i (θj )))∑N

i=1 g(Yn − h(ξ̂n
i (θj )))

to obtain {ξn+1
i (θj )}i=1,...,N .
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The particle filter is then defined by

�u,M,N
n (µ) :=

M∑
j=1

W
j,M,N

(n−q(M))+,n
�

θj ,N
n (µ),

where �
θj ,N
n (µ) is the interacting particle filter corresponding to parameter value θj , i.e.

�
θj ,N
n (µ) = 1

N

N∑
i=1

δξn
i (θj ).

Once again, we must consider a new probability space that will also capture the additional
randomness in the evolution of the particle filters. We denote by (�ξ , F

ξ
n , Pξ

µ,u) the canonical
space for the particle system

{(ξ i,N
n (θj ), θj )}i=1...,N, j=1,...,M, n>0,

which is assumed to be independent of the state observation pair (X, Y ). Then the new
probability space will be

(�̂ = � × �ξ , (F̂n = Fn × F ξ
n )n≥0, P̂µ,θ,u = Pµ,θ ⊗ Pξ

µ,u).

The expectation with respect to P̂µ,θ,u will be denoted by Êµ,θ,u. To simplify our notation, we
will often drop the u when its meaning is clear.

5. Uniform convergence of the full algorithm

The following lemma describes the conditions for the uniform convergence of the interacting
particle filter. The proof can be found in [5] or [6]. We alter the statement, however, to better
fit the present context.

Lemma 2. Suppose that

lim
q→∞ sup

µ,µ′∈P (E)

sup
n≥q

|�θ
n−q,n(µ)(f ) − �θ

n−q,n(µ
′)(f )| = 0

for all θ ∈ � and all f ∈ Cb(E), where �θ
n−q,n(µ) = Pµ,θ (Xn | Yn, . . . , Yn−q+1). Then, for

all f ∈ Cb(E),
lim

N→∞ sup
n≥0

Êµ,α[|�θ,N
n (µ)(f ) − �θ

n(µ)(f )|] = 0,

where �
θ,N
n is the interacting particle filter applied to system 1, for a fixed parameter value θ .

In fact, if system 1 is exponentially asymptotically stable for each θ ∈ �, i.e. there exist a
γθ > 0 and a q0,θ > 0 such that

sup
n≥q

|�θ
n−q,n(µ)(f ) − �θ

n−q,n(µ
′)(f )| ≤ e−γθ q for all µ, µ′ ∈ P (E) and all q ≥ q0,θ ,

then there exists an N0,θ > 0 such that

sup
n≥0

Êµ,α[|�θ,N
n (µ)(f ) − �θ

n(µ)(f )|] ≤ Cθ eγ ′

Naθ/2

for all N ≥ N0,θ , where Cθ is some constant, γ ′ = 1− log(2πσ 2), and aθ = γθ/(γθ + γ ) > 0.
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We will prove the following result under the general assumption that the particle filter
approximating the optimal filter for a fixed parameter value converges uniformly, with respect
to time and parameter, with rate p(N). Such a particle filter could be the interacting particle
filter, under the appropriate conditions described above, or some other particle filter (for example
the regularized particle filter described in [10]) if, in addition, the parameter space is compact
and the optimal filters uniformly continuous with respect to the parameter.

Theorem 2. Suppose that (2) holds and, in addition, that the interacting particle filter used
to approximate the optimal filter for any fixed parameter value converges uniformly with rate
p(N), i.e. that it satisfies

sup
n≥0

Êµ,α[‖�θ,N
n (µ) − �θ

n(µ)‖TV] ≤ p(N) for all θ ∈ �, (11)

where p(N) is independent of θ and limN↑∞ p(N) = 0. Then there exists a function M ≡
M(N) such that limN↑∞ M(N) = ∞ and the following holds for all f ∈ Cb(E):

lim
N↑∞ sup

n≥0
Êµ,α[|�u,M(N),N

n (µ)(f ) − �u
n(µ)(f )|] = 0. (12)

Proof. For simplicity of notation, we assume that p = 1, i.e. the observations take values
in R. We first show that

lim
N↑∞ sup

M>0
sup
n≥0

Êµ,α

[∣∣∣∣�u,M,N
n (µ)(f ) −

M∑
j=1

W
j,M,N

(n−q(M))+,n
�

θj
n (µ)(f )

∣∣∣∣
]

= 0 (13)

for all f ∈ Cb(E). We note that

Êµ,α

[∣∣∣∣�u,M,N
n (µ)(f ) −

M∑
j=1

W
j,M,N

(n−q(M))+,n
�

θj
n (µ)(f )

∣∣∣∣
]

= Êµ,α

[∣∣∣∣
M∑

j=1

W
j,M,N

(n−q(M))+,n
�

θj ,N
n (µ)(f ) −

M∑
j=1

W
j,M,N

(n−q(M))+,n
�

θj
n (µ)(f )

∣∣∣∣
]

≤ Êµ,α

[ M∑
j=1

W
j,M,N

(n−q(M))+,n
|�θj ,N

n (µ)(f ) − �
θj
n (µ)(f )|

]

≤ sup
j

Êµ,α[|�θj ,N
n (µ)(f ) − �

θj
n (µ)(f )|]

≤ ‖f ‖∞p(N), (14)

where ‖ · ‖∞ denotes the L∞-norm.
Thus, (13) follows from (11). Note that, in order to simplify our notation, we have suppressed

the dependence of M on N ; it will only be shown when relevant. We next show that

lim
N↑∞ sup

n≥0
Êµ,α

[∣∣∣∣
M∑

j=1

W
j,M,N

(n−q(M))+,n
�

θj
n (µ)(f ) −

M∑
j=1

W
j,M

(n−q(M))+,n
�

θj
n (µ)(f )

∣∣∣∣
]

= 0,
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where W
j,M

(n−q(M))+,n
is the likelihood function for parameter value θj , i.e.

W
j,M

(n−q(M))+,n
= Z(n−q(M))+,n((�̂

θj

� (µ))n�=1, Y )∑M
k=1 Z(n−q(M))+,n((�̂

θk

� (µ))n�=1, Y )
= P̃µ,uM (θj | Yn, . . . , Y(n−q(M))++1),

with Z(n−q(M))+,n as defined in (10). Clearly,

Êµ,α

[∣∣∣∣
M∑

j=1

W
j,M,N

(n−q(M))+,n
�

θj
n (µ)(f ) −

M∑
j=1

W
j,M

(n−q(M))+,n
�

θj
n (µ)(f )

∣∣∣∣
]

≤ Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
| |�θj

n (µ)(f )|
]

≤ ‖f ‖∞ Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
|
]
.

Thus, it is sufficient to show that

lim
N↑∞ sup

n≥0
Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
|
]

= 0.

We follow the approach used in [4] to bound the denominator away from 0. We define the
following quantity for all n > 0, where the expectation Ēµ,θ is with respect to the measure
�̂θ (µ) = ⊗∞

k=0 �̂θ
k (µ):

V
q(M)
n (Y, θ) = 1

2σ 2

n∑
k=(n−q(M))++1

Ēµ,θ [(Yk − h(Xk))
2]

= 1

2σ 2

n∑
k=(n−q(M))++1

((Yk − Ēµ,θ [h(Xk)])2 + Ēµ,θ [h(Xk) − Ēµ,θ [h(Xk)]]2).

By the boundedness of h, we obtain

sup
n≥0

[(h(Xn) − Ēµ,θ [h(Xn)])2] ≤ 4‖h‖2∞ < ∞

for all θ ∈ �. Then

Eµ,α[V q(M)
n (Y, θ)] ≤ 1

2σ 2 q(M)
[
sup
k

Eµ,α[Vk + h(Xk) − Ēµ,θ [h(Xk)]]2 + 4‖h‖2∞
]

≤ 1

2σ 2 q(M)(8‖h‖2∞ + 4σ‖h‖∞ + σ 2)

= V (h)q(M)

< ∞,

where we have used the notation

V (h) = 8‖h‖2∞ + 4σ‖h‖∞ + σ 2

2σ 2 .
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Now consider the set

�Y (n, r, q(M)) =
{
ω ∈ �2 : sup

θ∈�

V
q(M)
n (Y (ω), θ) ≤ r(q(M))

}
,

for some nondecreasing function r : N → R
+ to be identified later. It follows that

Pµ,α(�2 − �Y (n, θ, q(M))) ≤ V (h)
q(M)

r(q(M))

(see [4]) and, consequently,

Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
|(1�Y (n,θ,q(M)) + 1�2−�Y (n,θ,q(M)))

]

≤ Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
| 1�Y (n,θ,q(M))

]
+ 2V (h)

q(M)

r(q(M))
,

where 1A denotes the indicator function of the set A. The second term on the right-hand side
will vanish as M ↑ ∞, for any choice of r satisfying limq↑∞ q/r(q) = 0. It remains to show
that

lim
N↑∞ sup

n≥0
Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
| 1�Y (n,θ,q(M))

]
= 0.

We define U
M,N
n by

UM,N
n =

∑M
i=1 Z(n−q(M))+,n((�̂

θi ,N
� (µ))n�=1, Y )∑M

k=1 Z(n−q(M))+,n((�̂
θk

� (µ))n�=1, Y )
.

Then we observe that

Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
|UM,N

n 1�Y (n,θ,q(M))

]

= Êµ,α

[∑M
j=1 |Z(n−q(M))+,n((�̂

θi ,N
� (µ))n�=1, Y ) − Z(n−q(M))+,n((�̂

θi

� (µ))n�=1, Y )U
M,N
n |∑M

k=1 Z(n−q(M))+,n((�̂
θk

� (µ))n�=1, Y )

× 1�Y (n,θ,q(M))

]

≤ Êµ,α

[∑M
j=1 |Z(n−q(M))+,n((�̂

θi ,N
� (µ))n�=1, Y ) − Z(n−q(M))+,n((�̂

θi

� (µ))n�=1, Y )|∑M
k=1 Z(n−q(M))+,n((�̂

θk

� (µ))n�=1, Y )

× 1�Y (n,θ,q(M))

]

+ Êµ,α[|1 − UM,N
n | 1�Y (n,θ,q(M))]

≤ 2 Êµ,α

[∑M
j=1 |Z(n−q(M))+,n((�̂

θi ,N
� (µ))n�=1, Y ) − Z(n−q(M))+,n((�̂

θi

� (µ))n�=1, Y )|∑M
k=1 Z(n−q(M))+,n((�̂

θk

� (µ))n�=1, Y )

× 1�Y (n,θ,q(M))

]
.

https://doi.org/10.1239/jap/1134587816 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1134587816


1066 A. PAPAVASILIOU

Similarly,

Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
|(1 − UM,N

n ) 1�Y (n,θ,q(M))

]

≤ 2 Êµ,α

[∑M
j=1 |Z(n−q(M))+,n((�̂

θi ,N
� (µ))n�=1, Y ) − Z(n−q(M))+,n((�̂

θi

� (µ))n�=1, Y )|∑M
k=1 Z(n−q(M))+,n((�̂

θk

� (µ))n�=1, Y )

× 1�Y (n,θ,q(M))

]
.

However, for all ω ∈ �Y (n, θ, q(M)), we see that

1

M

M∑
k=1

Z(n−q(M))+,n((�̂
θk

� (µ))n�=1, Y (ω))

= 1

M

M∑
k=1

Ēθk

[
exp

{
− 1

2σ 2

n∑
j=(n−q(M))++1

(Yj (ω) − h(Xj ))
2
}]

≥ 1

M

M∑
k=1

exp{−V
q(M)
n (Y (ω), θk)}

≥ exp

{
− 1

M

M∑
k=1

V
q(M)
n (Y (ω), θk)

}

≥ exp{−r(q(M))},
by applying Jensen’s inequality twice. By putting everything together, we find that

Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
| 1�Y (n,θ,q(M))

]

≤ 4er(q(M))

M
Êµ,α

[ M∑
j=1

|Z(n−q(M))+,n((�̂
θi ,N
� (µ))n�=1, Y ) − Z(n−q(M))+,n((�̂

θi

� (µ))n�=1, Y )|
]

≤ 4er(q(M)) sup
θ∈�

Êµ,α[|Z(n−q(M))+,n((�̂
θ,N
� (µ))n�=1, Y ) − Z(n−q(M))+,n((�̂

θ
� (µ))n�=1, Y )|].

If we set gj (x) = exp{−(Yj − h(x))2/(2σ 2)}, then

|Z(n−q(M))+,n((�̂
θ,N
� (µ))n�=1, Y ) − Z(n−q(M))+,n((�̂

θ
� (µ))n�=1, Y )|

=
∣∣∣∣

n∏
j=(n−q(M))++1

�̂θ,N
n (µ)(gj ) −

n∏
j=(n−q(M))++1

�̂θ
n (µ)(gj )

∣∣∣∣

≤
n∑

j=(n−q(M))++1

|�̂θ,N
n (µ)(gj ) − �̂θ

n (µ)(gj )|

≤ q(M) sup
n>0

|�̂θ,N
n (µ)(gj ) − �̂θ

n (µ)(gj )|,
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which follows from the fact that ‖gj‖∞ ≤ 1 for all j > 0. Consequently,

sup
n≥0

Êµ,α

[ M∑
j=1

|Wj,M,N

(n−q(M))+,n
− W

j,M

(n−q(M))+,n
|
]

≤ 4er(q(M))q(M)p(N) + 2V (h)
q(M)

r(q(M))
.

(15)
The above estimate will converge to 0 as N ↑ ∞, for the appropriate choice of r = r(q),
q = q(M), and M = M(N) (for example, take r(q) = q2, q(M) = ( 1

2 log M)1/2, and
M(N) = p(N)−1).

Finally, we must show that

lim
M↑∞ sup

n≥0
Êµ,α

[∣∣∣∣
M∑

j=1

W
j,M

(n−q(M))+,n
�

θj
n (µ)(f ) − �u

n(µ)(f )

∣∣∣∣
]

= 0.

However, this is exactly the result of Theorem 1. Thus, the proof is complete.

We can also obtain an estimate for the rate of convergence of (12). However, this will depend
on the rate of convergence of (2). Let us say that this is o(q), i.e.

sup
n≥q

Eµ,α[‖�̃u
n−q,n(µ

′) − �u
n(µ)‖TV] ≤ o(q),

where limq→∞ o(q) = 0. Then we can work out the rate of convergence of (8) by arguments
similar to those in [4]:

sup
n≥0

E′
µ,α,u

[∣∣∣∣
M∑

j=1

W
j,M

(n−q(M))+,n
�

θj
n (µ)(f ) − �u

n(µ)(f )

∣∣∣∣
]

≤ 6‖f ‖∞
er(q(M))

√
M

+ 2‖f ‖∞V (h)
q(M)

r(q(M))
+ ‖f ‖∞o(q(M)).

The above, together with (14) and (15), gives us an estimate for the rate of convergence of (12),
i.e. of the full algorithm.

We have described an algorithm for the adaptive computation of the optimal filter of a
partially observed Markov chain whose transition kernel depends on an unknown parameter θ .
This can also be seen as a uniformly convergent particle filter for a nonergodic system in which
the interacting particle filters converge uniformly within every ergodic class.
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