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Abstract

Using an estimate on the group velocity we give an independent proof
of the existence of time translations for a large class of short range
interactions. We demonstrate that these systems satisfy a strong form of
causal propagation and that space-time algebras in suitable space-like
directions are disjoint. Finally we derive criteria for dispersion of the
interaction in terms of the algebraic density of the orbit of local subalgebras
under the evolution or under the associated group of shifts. In this sense the
Heisenberg and X—Y models are dispersive but the Ising model is not.

1. Introduction

In this paper we analyze various properties of time translations of
quantum spin systems. This analysis falls into two parts. First we consider
various structural properties which follow from the fact that the system has a
finite group velocity, [1], i.e. high velocity components are virtually absent.
Secondly we investigate criteria for separating dispersive interactions from
non-dispersive interactions. In this respect it is apparently useful to consider
space-time algebras built from the orbits of local subalgebras. These algebras
are analogues of the partitions generated in classical ergodic theory by
translation of a fixed finite partition [2]. If these orbit subalgebras are 'large'
the system is in some sense dispersive.

2. Group velocity estimates

We use the notation and definitions of [1] and [3]. In particular an
interaction <t> is a function from the finite sets X CZ" to hermitian elements
<t>(X)C?(x. We consider those functions which satisfy the condition
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388 Derek W. Robinson [2]

||T = sup 2 N(X)N2NlX)eyDiX)\\<t>(X)\\< +oo

where N(X) is the number of points in the set X, D(X) is the diameter of this
set, N is the dimension of the vector space associated with each point x G Z",
and y >0 . These interactions form a Banach space By with respect to the
norm || - ||T.

For each ACZ" and A G 91 we introduce the notation

r ? A ( A ) = e " H - < A ) A e - " H * ( A ) , <t>*=By, ( E R

where

The following estimation is a generalization of that derived in [1] but we
present its proof in a slightly different form.

PROPOSITION 1. If A £ 9I,0) and B 6 91 then

\\[T?-*(A),B]mA\\ 2 sup ll[

/or eac/i <J> G BT.

PROOF. First define

CA
A.B(x,t)=[TxTTA(A),B]

then clearly one has

x, 0 = Ci.B(x,0) + | d5^- C1B(X, 5)

Next define

F(jc,r)= sup sup||Ci.a(x,r)||/||A||.
ACZ" A ap
ACZ"

From the integral relation for C\,B one then deduces the following integral
inequality for F.

f'"d[ssup||[T,Tf-A([*(X),A])>B]||/||/V||.
0J0 A.A

Now we use the methods of [1] to majorize the integrand in terms of F.
Let e(ix,jx), ix, j , = 1,2, • • • N be a set of matrix units for %(,), i.e.
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[3] Properties of propagation of quantum spin systems 389

e(ix, j,)e(kx,lx)= 8,,,kxe (ix, lx), e t c .

In terms of such units <i>(X) has a unique decomposition

<&(*)= 2 C*«U,{/x}) I I «('«/•)

with coefficients C* £ C satisfying

Substitution of this decomposition into the integrand of the above differential
inequality, use of the linearity properties of commutators, and the triangle
inequality give the new integral inequality

F(x,t)SF(x,0) + 2 2 2N2NiX)\\<t>(X)\\ I' dsF(x + y , s ) .
X30 y£X Jo

Introducing w by the definition

X 3 0

This integral inequality takes the final simple form

F(x,t)£F(x,0)+2 2 «(y)f '
y€Z" Jo

Iteration of this inequality then gives

where w is the Fourier transform of u>.
Finally one can proceed as in [1] and shift the integration to an

integration along Imfl = y and then one finds the bound

But choosing y = y, ^—. one has
| x - y |

2 2
X30 y£X

N(X)N2N(X)||cD(X)||e1'D<X)
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Thus

yez"

and the result of the proposition follows by use of the definition of F.

COROLLARY 1. If A,B G 9l,ol, <t> £ By then

| |[TXTTA(A ), B] || ̂  21| A || || B | |e-""-*«•«*.

The proof follows by noting that | | [ T X ( A ) , B ] | | =i2|| A || ||B||5X.O.

COROLLARY 2. / / A £ 91 Ao and B £ 21 (hen

\\[TT-A(A),B]\\^\\A\\ 2 sup
xez"Ae91io,

for each <£> £ By.

This corollary follows by expressing A in terms of matrix units of the type
used in the proof of the proposition and then using linearity properties of the
commutator and the triangle inequality.

3. Causal propagation

The commutator estimates given in the previous section can be used to
give information about the automorphisms T*'A and their limits as A—>°o.

THEOREM 1. / / A £ 9(A(1, where 0 £ Ao, and 4> £ By then

I r?HA, - Tt'iA,|| S ||A

Further, if 4>,, <t>2G By then

w/iere ||<&||T = min, = ,.2

PROOF. T O prove the first statement we use the integral relation

T^TTA'(A)-A = - i f dsT*?*([H9(\2)- H*(A2),TfA'(A)]).
Jo

Thus

|g 2 £ f'"
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[5] Properties of propagation of quantum spin systems 391

Using the decomposition of <t>(X) introduced in Section 2 and exploiting the
linearity of the commutators in the same manner one finds

\A\\ 2 2 N"HI*WH 2 f "dsF (y, - 5)

1A || 2 2 N2~(X)||*(X)||---
xGA2\A| X 3 i

2 2 2 e"Tly-"fl"dse2"*1-1.
ySX jeAo JO

But - | y - z | g - | x - z | + | x - y | a n d | x - y | g D ( X ) for x, y £ X. The
first result follows immediately.

A similar argument yields the inequality

for i' = l or 2. The second statement follows by application of the same
estimation procedure.

The first statement of the above theorem establishes the existence of the
group of automorphisms of 91, which corresponds to time translations, and is
defined by the limits

T?(A) = lim T?A(A) A £ ? ( , (GR.

The second statement establishes the continuity of this group on 01 x By. The
above limits exist in the uniform topology of the C* algebra ?J whenever
A—>oo in the sense that A eventually contains each compact A' C Z". This proof
is independent of that previously known [3] [4] and gives much better
approximations for TT when f is real. It fails, however, to give information
about the analyticity of t —> rf for complex t. These estimates give the
following statement about the causal propagation of the system.

THEOREM 2. Take A0CZ", <t>£By, and define V*= 2\\<t>\\y/y,

AR — \ x; x £ Z", min | x — y \ > R \.

There is a polynomial f\,-i, of order v — 1, independent of <t> and t, such that

sup \\T?(A)- e""»<Av,,,.D>A<r..".,<Av,,Ko>||/||,4 ||

g 2| 11 eHr| (V-v«JPl,.1(y( V| 11 + D))e-yD/y".
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In particular for e > 0, and V > V*, there is a D such that

sup \\T?(A)- e"H«'<Av^D)y4e""H*<Av|i|*E>>||/|| A || < e

for all t G R.

PROOF. The first statement follows from Theorem 1 by using the
definition of rf, the fact that

and the estimate

x6Z",|i|0>R

The last bound simply follows by majorising the sum with an integral over R".
The second statement is deduced by noting (1) for any a > 0 there is a Ca such
that P,_,(x)< Cae", (2) one can choose 1 > a >0 such that (1 - a)V > V*,
and (3) the function x ER—>| x | e'1'1 is uniformly bounded.

The result of this theorem can be interpreted in two physically equivalent
ways. One could interpret the T?(A ), A G ?lA() and t > 0, as the observables in
the region Ao at time t and one then sees that these observables are
determined, up to e, by the observables in the region AV,+D at time zero, i.e.
there is a causal propagation with a maximum velocity Vi = minT 2||<t>||Y/-y.
Alternatively one could say that the effects of an operation A in Ao at time
zero only propagate in the cone | x | ̂  Vt + D. Thus Vi is an upper bound on
the velocity of propagation, i.e. the group velocity.

4. Space-time algebras

The subalgebras ?(A of 9( are interpretable as the algebra of observables
in the region ACZ" at time t = 0. It is natural to interpret the algebras ?{*.<
defined for <t>£BT by

WZ.,= {T?(A); A<E?tA},

as the algebra of observables in A at time /. The foregoing estimates allow one
to conclude that the algebras 2l?,.i, and 21A2.,2 commute approximately
whenever the distance d(A1;A2) between A, and A2 is large compared to
11, - t2\. A different statement of this independence is given as follows.

THEOREM 3. Adopt the above notation and take <J>E By. It follows that
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[7] Properties of propagation of quantum spin systems 393

where 1 is the identity of 91 and A £ C, whenever

y y

where C(A,, A2)e R -is independent of <$>.

PROOF. If A|E9{*,,ri and A 2 £ 9 ( A 2 . , 2 then the proposition of section 2
gives the estimate

Now take B = B+ £ 91*,,, n 9l?2.,2 with B £ A 1. Thus B £ ?l^,,,,. Next we
will construct a B', with the same properties as B, and an A £ 91?,,M such that

To do this let U £ ?(*,.„ be a unitary matrix which brings B into diagonal
form. Let AM, Am be the largest and smallest eigenvalues of B. Then we have
the following matrix representation

B" =
AM ~ Am

with | A, | g 1. Now choose A to be given by

A ' =

0 1

i o 0

0 0

- 1 0

A,

A2

It is readily checked that A ' and B" have the desired properties.
Finally if

B'= U'lB"U, A = LJ-'A'U

then B ' and A have the desired properties. But we also have

2
B ' =

A M A B

r
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Thus

21| A || | | 0 ' | | S 2 | | A | | ||B'||N(A1)NN<A')e-'<(A-A»)1'+2"'-'llw».

This inequality gives a contradiction if

) | 2 |

and the theorem is proved.

5. Orbits, shifts and dispersion

The properties of propagation discussed in the previous sections, follow
from the effective suppression of high velocities. This phenomenon is a direct
effect of the short range interaction and these results are valid for all
interactions of the class By independently of their detailed structure. In this
concluding section we wish to make several remarks about dispersive and
non-dispersive propagation.

The space By contains interactions of a 'classical' nature which lead to an
oscillatory time behaviour and also interactions of a more 'quantum mechani-
cal' type which give rise to dispersive phenomena. The principal problem is to
isolate, and characterize, the latter interactions. One property which has been
suggested as a characterization of a dispersive interaction is the property of
asymptotic abelianness, i.e.

lim \\[A,TT(B)]\\ = 0, A , B G l
i i i — =

Although this condition is both natural and useful it is apparently very
difficult to verify for any given <J>. Thus it is logical to search for other
characterizations.

Various possibilities can be formulated in terms of the space-time
algebras of Section 4. If, for example, T* leaves certain elements A G ?lA
invariant (with Af£\l) then ?lA,,, D ?JA.,2 is non-trivial for all 1,,/jeR. If,
alternatively, T*(A) is oscillatory in nature then ?tA.,, H ?lA,,, will be non-
trivial for certain tu hE. R. These properties are verified for classical interac-
tions of the Ising type and are characteristic of non-dispersion. In these cases
algebras of the type H,?IA.,, tend to be small, consisting only of elements
localized in A. The behaviour is quite different for non-dispersive interac-
tions. To formulate this alternative behaviour it is useful to define various
generalizations of the space-time algebras of Section 4.

Let G = {A, B, C, • • •} be a subset of a C*-algebra 91 and let T denote a
strongly continuous one-parameter group of '-automorphisms of ?I. We
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[9] Properties of propagation of quantum spin systems 395

introduce a C*-subalgebra 21,(G) of 21 parametrized by the intervals / CR as
follows.

The algebra 21,(G) is denned to be the C*-algebra generated by the set

{T,(A); A G G , S G / } .

Thus 21,(G) corresponds to the algebra generated by the orbits of the set G
corresponding to the interval /.

Next note that for each l £ R w e may define a shift T, acting on 21 by

r , (A)=T,(A),

T",(A)=Tn,(A), AC 21.

We will associate with each such shift and the set G a second subalgebra
%,(G) of 21 as follows.

The algebra 21,(G) is defined to be the C*-algebra generated by the set

Thus 21,(G) is really the algebra generated by the orbits of G under the shift
T,.

A third useful algebra is denned in terms of the generator 8 of 21, i.e. the
derivation given by

8(A) = lim(T,(A)-A)/f

where D(5) is the set of A such that the limit exists. If G is a finite subset of
21 and each A G G is such that A G D(5n) then we define 21(8; G) as the
C*-algebra generated by

{5"(A); A f=G,n =0,1,2 , - - -} .

These algebras have a tendency to be equal. We next give a general result of
this nature. First recall that A G D(S) is bounded, or geometric, with respect
to 5 if A G D(S") for all n and

for some 0 < r6 (A) < + °° and all n = 1,2, • • •.

THEOREM 4. Adopt the above assumptions and definitions.
It follows that

21,(G)D 21(8; G), 730.

Next assume that all elements AEG are bounded with respect to 8 and

introduce rs(G) by

re(G)= sup rs(A).
AEG
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396 Derek W. Robinson [10]

// follows for 0 < 111 < l/rs(G) and 1/ (f> that

In particular SI, is independent of I and SI, is independent of t (in the range
0<\t\<l/ry(G)).

PROOF. The first statement of the theorem is straightforward to prove.
As / 3 0 one has

S(A)= lim (T,(A)-A)/t G ?
l — O

and the result follows by iteration. The proof of the second statement is
longer and we relegate it to the appendix.

Now we give some examples of applications of this type of criterion. For
simplicity we consider a one-dimensional spin - \ system, i.e. the vector space
Xx, associated with each point x £ Z, is two-dimensional. The C*-algebra
?((»), of SI, can be parametrized in terms of Pauli matrices o-[l\ a™, <T(?\ and
the identity 1. The algebra o-s then corresponds to the polynomial algebra
generated by {1, ax; x £ A}.

THEOREM 5. Consider the one-dimensional generalized Heisenberg
model, i.e. a spin — | system with interaction

and <t>(X) = 0 if X / {x, x + 1} for some x £ Z.

Let S I" denote the C* algebra generated by the set of elements

{TT(A); tE[-e,e], A G?l{M+1,}.

It follows that

either two J, ^ 0 and then

SI" =21 e > 0

or at most one J, / 0 and then

PROOF. One has that
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[11] Properties of propagation of quantum spin systems 397

By explicit calculation one finds that there is an A G 21 '•' such that

8(<T[") = A + 2(/,o-?», a?- 72of2, a?).

Therefore

The assumption that two /, ̂  0 then implies that two of the tri'l, G 91". The
third component is then obtained, up to a factor, as the product of the first
two and is itself an element of 91". Therefore 21" D 2l(«-i,»+i). Iteration of this
argument then yields the first statement of the theorem.

The second statement of the theorem follows by explicit computation of
the TT.

REMARK. It is also possible to add an external field interaction 3>({x}) =
her,31 or consider more general range interactions combined with larger
subalgebras of observables to obtain a similar division of interactions into two
classes.

The moral of this last theorem is that the Heisenberg interactions are
divided into two species. Either only one 7 , /0 (the Ising model) and the
algebra generated by the translates {T?(?1(X,X+1(); t G [ - e, e]} is small or two
J,^ 0 (the X-Y model, Heisenberg model) and the corresponding algebra is
large, ? l" = 9t. In the first case the interaction does not mix the system, i.e.
cause dispersion, but in the latter case there obviously must be some form of
dispersion. This form of phenomenon is similar to that encountered in
relativistic field theory which gives rise to the Reeh-Schlieder theorem (see
for example [5]). Thus the algebras introduced in this section have a tendency
to be equal (Theorem 4) and a tendency to be either large if the interaction
has a dispersive character or small if there is no such effect.

Finally we mention without explicit proof that the conditions of Theorem
4 can be completely verified for the X-Y model (two J, ^ 0); the shift algebra
91,(G) with G = 91,,.,,,, has the property that ?I,(G) = % for 0 < 111 < tc and
?(,(G)^ 91 for | f | > tc. The initial value tc is related to the group velocity V of
the system by V = Mtc.

Appendix

This appendix is devoted to the proof of the second statement of
Theorem 4.

Lemma 2. Adopt all the assumptions of Theorem 4.
// follows that
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for all / C R ( / / < ^ ) and all ( £ R .

Proof. The algebra 91,(G) will contain the elements 8(T,(A)),

82(T,(A)),••• for all AEG and f £ / because these elements can be
uniformly approximated by elements of 91,(G). As A is bounded, and hence
T,(A) is bounded, one may construct TST,(A) by a uniformly convergent sum
(note that 8 is closed). Hence T , ( . 4 ) G 9l,(G) for all I E R and A G G.
Repeating the first step of this process around the point t = 0 we conclude
that 5 (A), 82(A), ••• G9l,(G). Hence 9l , (G)D 91(5; G).

The reverse inclusion is also evident because T,(A) may be constructed
within 91(5; G). This also shows that 91,(G)C 91,(G). To prove the reverse
inclusion for small / we first need the following:

Lemma 2. Let 8 be the infinitesimal generator of a group T of automorph-
isms of 91. Let A be bounded for 8.

If follows that

Proof. Let FB be defined by

Therefore with tn = f/2" one has

Taking B G D(8) one may pass to the limit n —>°° and one then finds

FB(t)S\t\\\8(B)\\.

Thus

^(rs(A)\t\r\\A\\

by recursion.

Lemma 3. Adopt the assumptions of Lemma 2.
It follows that for \t\< l/rs(A) one has
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[13] Properties of propagation of quantum spin systems 399

Proof. Consider the power series given in the Lemma. Using Lemma 2
the n-th term of this series is bounded by (rs(A)| /1)" || A \\ln and hence the
series converges uniformly for | /1 < l/rs (A). The value of the series at t = 0 is
zero and

= S(A).

All higher derivatives vanish at t — 0 and hence we may identify the series
with t8(A). This completes the proof of the lemma.

Let us return to the proof of the theorem. From Lemma 3 it follows that
5(/ \ )e9l , (G) whenever | r | < l/rs(G) and A G G. Further one may deduce
that SM(A)£?(,(G) for the same range of / by application of this lemma.
Hence

for | / | < l / r s ( G ) and this result together with Lemma 1 establishes the
statement of the theorem.
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