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Diffraction of planetary waves

by an infinite strip

S. Asghar and M.A. Rashid

In this paper we construct the Wiener-Hopf equation for

diffraction of a planetary wave by an infinite strip and obtain

its solution in the form of an integral representation. We also

discuss the asymptotic character of the diffracted wave using

the saddle point method.

1. Introduction

In what seems to be the first attempt to discuss diffraction of a

planetary wave, Siew and Hurley [I] have recently studied diffraction of

planetary waves by a half plane. This is a two part boundary value problem

which is usually easy to handle. We discuss a similar three part boundary

value problem, namely the diffraction of a planetary wave by an infinite

strip. We follow the analysis of Siew and Hurley [7] and obtain the Wiener-

Hopf equation relevant to our problem in the Fourier transformed plane.

This equation can be split up very easily into two involved integral

equations which for large X take the form of two algebraic equations.

These two are then solved and next the stream function is obtained

taking the inverse Fourier transform. Finally the diffracted wave is

obtained by considering the large R behaviour of the stream function.

2. Basic equation

We consider the planetary waves produced in a thin layer of liquid of

depth h on the surface of a rotating sphere. The well known 3 plane

approximation holds for the planetary waves, provided that the wave number
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n is large. In this case the stream function

(1) <C = - £ £

with the velocity component

u -

satisfies the equation

£} • . .
Here (a:, y) are the rectangular coordinates, (u, v) are the

corresponding velocity components, 5 the surface elevation which is

assumed to be small, g the acceleration due to the gravity and

f = 2ftsinx where x i s tiie latitude and R is the angular velocity of

2 3^ 8^ 2 f^
the sphere. Also V = — • + — , a =<Lr and it has been assumed that

x y

We remark that — i — is small, where L is the wave length. Then

(10 £ ^ + e g = o ,
in which case the planetary waves are referred to as being divergenceless.

The condition that the plane, wave

(5) ij, = eUlxmy-ot)

should satisfy (3) yields a dispersion relation

(6) U+Y)2 + m2 = y2 - a2 ,

where y = 6/2a . In this case the wave number locus is a circle of radius

v y -a and centre (-y, 0) • as shown in Figure 1 (on the opposite page).

3. Formulation of the problem

Let the impermeable strip be inclined at an angle a to the j/-axis

and let us take a new rectangular system ( X, Y, 2) where X is the
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Figure 1.

perpendicular to the plate. In this coordinate system, let us suppose that

the plate occupies the space

X = 0 , 0 < y < I , - c o < Z < c o .

Then the equations corresponding to (2) and (3) take the form

m -lit T/ - <M

and

- Bsina | | = 0 ,
8

where U and V are the velocity components in x and y directions

respectively. We define the total stream functions as

, Y)}-iat(9)

where

(10)
d

represents the incident wave whose wave number vector has magnitude k and

ikcos{e-a)XHksin(Q-a)Y
,• = e
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is inclined at an angle 9 to the I-axis. Angle 9 must satisfy the

relation 6 < 6 5 2TT - 9 where

9 = IT - arc

in order that the stream function should correspond to a planetary wave.

In terms of X and Y coordinates (8) may be rewritten as

(11) —Jj- + — ~ - a 41 + 2iYcosa -gj- - 2iYsina "gy = ° •

The boundary condition that the total normal velocity must vanish on the

strip implies

(12) || (0, Y) = - ̂ f = -ifesin(9-a)e
i/csin(9-a)y (0 < Y < I) .

In addition the stream function must satisfy the Sommerfeld Radiation

Condition at infinity.

4. The Wiener-Hopf equation

We define the Fourier transform of iK X, Y) in Y as

1 r iu

(13) iK*, Y) = -±- ^(X, Y)e dY .

The Fourier transform of (ll) reads

(lU) —^ + 2tYcosa -g| - (X +2YXsina+a )i(i = 0 .

The solution of (ill) satisfying the radiation condition can be formally

written as

(15) $(*, X) = d(X)exp{-iYcosctf-/(A+Ysina)2-Z>2|*|} ,

2 2 2 8^where o = Y - a and use has teen made of the continuity of vh (and
d J:

hence of $ ) at X = 0 .

/
* p" P* 77 r—I t-

(X+Ysina) -i = /(X-X J (X-X J
are X = -Ysina + b , X = -Ysina - fc , and we shall choose the branch
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which is real as X -*•<*>. To calculate A(X) , we define two functions

f(y) and g(y) as

(f{Y) for y < 0 , Y > I ,

(16) H (o, y) =
\ •£ksin(8-a)y „ . ,
i)e for 0 < y < I ,

and

(IT) f
, y < o , Y > I ,

, o <r < i .

Transforming (l6) and using (15) we get

(18) if (X)

Similarly, transforming (17) and using (15) we obtain

(19) -2/(X+Ysina)2-Z>2 A(X) = g(X) ,

where subscript '+' denotes a function regular for

ImX > e1-
Y0cos

29

Y2cos26-a2

where Y = ~ ie'
2a"

and '-' denotes a function regular for ImX < ImX . (l8) and (19) give

if (X) + ieiUf (X)

Xq(X)

2/(X+Ysina)2-&2

Above we have the required Wiener-Hopf equation to be solved for f (X)

and f_(X) , the quantities needed to solve the problem, as is manifest

from (15) and (18).

5. Method of solution

Let us start with the Wiener-Hopf equation
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(20) if (X) j (x)

Xg(X)

where

/[X-XlJ (X-X2J = /(X+sina)2-2>2 .

Multiplying (20) throughout by /X-X e~ ,

iXl
(21) i.fj\)/k-r + ^ — ^ ^ + te"

A7 (x)/x-x

-r ifcsin(9-a)Z. -tXZ

where

(22) A' = iksin(B-a)

Equation (21) may be rewritten as

(23) i

_v

where

l2h)

Similarly, rearrangement of (20) after multiplication by /X-Xp gives

,, rA-Xo-/-X_-fesin(9-a)-|

(2 5) i?_(x)/x-x2 + A _ [ 2
x+fesi

2
n(e-a) J + *
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. 1

S (X) + 5 (X) = — A i(X) + 5 (X) = A i X ^ . ^ r
+ - ^ i 2 X+ZcsinO-a)

where

(26)

All the functions appearing on the left hand side of (23) and the right

hand side of (25) are '+' functions while those on the other sides are

'-' functions. The behaviour of the functions -ri- and -̂ y and

application of the extended form of Liouvilles' Theorem shows that both

sides of equations (23) and (25) are constants. Thus

i?csin(6-a)Z

(27) iT+W^\ j=_ Ax

)-,

(28) i f ( x ) /x -x^ + A _ [ 2
x+fesi

2
n(ea) J - *_<

and

)/x-x̂  + A_ [
 2 2

Using the asymptotic limits X -»• °° in the above equations, one concludes

that the constant C is equal to zero. Thus (27) "becomes

, ,i , iks±n(8-a)l

(29) i T + U ) A ^ - A _ ^ - ex+fes.n(9_a) + u+(X) + v+(x) = o .

Calculating the asymptotic behaviours of U (X) , and so forth, and

putting them in (29) and (28) gives

, ,i , iks±n(Q-a)l .,
(30) i

and

r , , /X-X -/-X -fesin(e-a)
(3D i?_(X)ATx^ + A _ 2 2

(30) and (31) are two algebraic equations which result in

(_x
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. , iksin(e-a)l R (X)

GA-X,

and

(33) if (X) = - T — ^X+fesin(6-a)

X +fesin(9-a)

\i-X)

1 +

The re su l t s for f+(X) in the above two equations, (32) and (33), are now

subst i tu ted in (18) to obtain the quantity i4(X) . On account of (15) > on

taking inverse Fourier transforms, we obtain

•£fcsin(e-aKD , ,> „,,,

(3U) • ( * , X) =
/-X -fesin(9-a)

eiUeiUT(\)T'{-\ j
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-X^G

x expf-iycosax-/(X+ysina) -b |x|-iXT}dX ,

where

(36)

and

(37)

X +fcsin(6-

O- — VIA-.— A _ J | A _ — A- I — 1 l A - l i l"*"njv ± d/ K d ± d' ±

Equation (3^) can also "be written as

(38) ty(X, Y) = I /l?(X)exp{-iYcosct^-/ {\*yslna)2-b2\x\-i>j)d\

where

(39) - A1

X/^X^si

GXA-X2

e^lT(\)Tl{-\1)A2

A'

GXA-X1

[ ^ f
XA-X A-X2G *•

(9-a) e m D 1 " l u "

n(e-a)] XAT

(-xj/^-x^tx^x^
XA-X2

GXA-X1

)Z
i?2(-X)

i'\ 7

- ' •

2 XA-X1

6. Asymptotic behaviour of the solution

We now use the saddle point method to determine the behaviour of

y) in (3*0 at a large distance from the origin. Putting X = i?cosr ,
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Y = Rsint , i t can be seen easily that the single saddle point is at

A = ysinot + fcsinX .s

Thus

( U 0 )

T( Ysina-fosinx) (l+sinx) j +

A'J-\2-ksin(Q-a)

/t>+£sinx(2)sinx-Ysina)[&sinx-Ysina)+fc3in(9-cx)]

(bsinX-Ysina)/b+&sinx L

G

•£(£>sinx-Ysina) r + ̂ x.w-|BJ.iu,+ r . . . j i

ir(Z)sinx-Ysina) i/2"fc/sinx-lS,-i r ^.-i
g x exp -ifl{Ycos(a+x)+M + -j— |cosx| —

where ^ D and it' are the contributions from the poles at -fcsin(G-a)n c

and at 0 . (ho) gives the required diffracted wave.

We note that -?csin(9-a) lies between \ and X if

-ksin(G-a) < X , an inequality satisfied in the regions I and II of
s

Figure 2. In the shadow region II we observe that

ti

as expected. In region I , the calculation of the residue at

X = -ksin(6-a) gives

which represents a reflected wave. Also calculation of the residue at 0

gives
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Figure 2.

= Dexpf-iycosa^-iY/cos a-cos 6|^|} J

where

D = N(0)

Now we can also calculate the quantity C that we need to complete the

solution. We utilize the fact that the total energy flux in the direction

normal to the plate is zero. This gives

\1> = 0 , D = N{0) = 0 ,
P

or
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C = -
A' /-X2-fcsin(6-a)

/-A fcsin(e-ct)

x {r' (o ) T (x2) v ^ +

' (o )T (x2) +/

We wish to make a remark regarding the result in [I]. We can

immediately obtain the conclusion in this paper by approaching the limit

I •* °° , in which case all the if's and Q's vanish.
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