Maximal sum-free sets in finite abelian groups, 11

H.P. Yap

Maximal sum-free sets in groups Z_n , where n is any positive integer such that every prime divisor of n is congruent to 1 modulo 3, are completely characterized.

Let G be an additive group. If S and T are non-empty subsets of G, we write $S \pm T$ for $\{s \pm t; s \in S, t \in T\}$ respectively, |S| for the cardinality of S and \overline{S} for the complement of S in G. We say that S is sum-free in G if S and S + S have no common element and that S is maximal sum-free in G if S is sum-free in G and $|S| \geq |T|$ for every T sum-free in G. We denote by $\lambda(G)$ the cardinality of a maximal sum-free set in G. We say that S is in a.p. (arithmetic progression) with difference d if $S = \{s, s+d, \ldots, s+nd\}$ for some s, $d \in G$ and some integer $n \geq 0$. We say that S is quasi-periodic if there exists a subgroup H, of order ≥ 2 , of G such that S is the disjoint union of a non-empty set S' consisting of H-cosets and a residue set S'' contained in a remaining H-coset. We say that a prime p is a bad prime if p is congruent to 1 modulo 3.

Erdös [2] gives certain upper and lower bounds for $\lambda(G)$ of finite abelian groups G. Exact values $\lambda(G)$ for all finite abelian groups G, except when every prime divisor of |G| is bad, were determined by Diananda and Yap [1]. In this exceptional case,

 $|G|(m-1)/3m \le \lambda(G) \le (|G|-1)/3$

where m is the exponent of G. For elementary abelian p-groups G of

Received 4 January 1971.

43

order p^n , Rhemtulla and Street [5] prove that $\lambda(G) = kp^{n-1}$, where p = 3k + 1 is a prime.

The structure of maximal sum-free sets in the following groups were completely characterized:

- (i) G is any abelian group such that |G| has a prime divisor congruent to 2 modulo 3 [1, 7];
- (ii) $G = Z_p$ where p is a bad prime [8, 5];
- (iii) G (abelian and non-abelian) is of order 3p , where p is a bad prime [9];
- (iv) G is an elementary abelian p-group where p is a bad prime[6];
- (v) G is an elementary abelian 3-group and $G = Z_3 \oplus Z_3 \oplus Z_p$ where p is a bad prime [10].

We shall apply a Lemma in [5] and Theorem 2.1 in [3], which are restated respectively as Lemma 1 and Theorem 1 here, to prove Theorem 2 which generalizes some results in [8] and [5].

LEMMA 1. Let $G = Z_n$, n = 3k + 1 and S be a sum-free set in G satisfying |S| = k, -S = S and $\overline{S} = S + S$. Then

- (i) if $|(S+g)\cap S| = 1$ for some g in G, then $|(S+g^*)\cap S| \ge k-3$ where $g^* = 3g/2$ and $\pm g/2 \in S$;
- (ii) if $|(S+g)\cap S| = \lambda > 1$ for some $g \neq 0$ in G, then $g^* = s_1 - s_2$, where $s_1, s_2 \ (\neq s_1) \in S$ and $s_1+g, s_2+g \in S$, is such that $|(S+g^*)\cap S| \ge k - (\lambda+1)$.

THEOREM 1 (Kemperman). Let G be an abelian group with subsets A and B such that |A|, $|B| \ge 2$. If |A+B| = |A| + |B| - 1, then either A + B is in a.p. or A + B is quasi-periodic.

We first prove the following lemmas.

LEMMA 2. Let $G = Z_n$ where n is any positive integer such that every prime divisor p of n is bad. If S is a maximal sum-free set in G, then

(i) if
$$-S \neq S$$
, $|S+S^*| = |S| + |S^*| - 1$, where $S^* = -S \cup S$;
(ii) if $-S = S$, either $|S+S| = 2|S| - 1$ or $\overline{S} = S + S$.

Proof. By Kneser's Theorem [4], there exists a subgroup K of G such that S + S + K = S + S and $|S+S| \ge 2|S+K| - |K|$. It is clear that K is a proper subgroup of G.

Suppose that |K| = q > 1. Let n = 3k + 1 = pq, p = 3r + 1, q = 3s + 1. Then $\lambda(G) = k = rq + s$ and

$$|G| - |S| = 2k + 1 \ge |S+S| \ge 2(k/q)q - q$$

where (x] denotes the smallest positive integer $\geq x$.

Thus $2k + 1 \ge |S+S| \ge (2r+1)q$, which is impossible. Hence $|S+S| \ge 2|S| - 1$.

If -S = S, then |S+S| is odd and from $2k + 1 \ge |S+S| \ge 2k - 1$, it follows that either |S+S| = 2|S| - 1 or |S+S| = 2|S| + 1 and thus $\overline{S} = S + S$.

If $-S \neq S$, then again by Kneser's Theorem there exists a proper subgroup K of G such that $S \stackrel{*}{+} S^* + K = S + S^*$ and $|S+S^*| \geq |S+K| + |S^*+K| - |K|$.

In this case, we can show that |K| = 1. Thus

 $2k + 1 \ge |S+S^*| \ge |S| + |S^*| - 1 \ge |S| + (|S|+2) - 1 = 2k + 1$. Hence $|S^*| = |S| + 2$ and $|S+S^*| = |S| + |S^*| - 1$.

The proof of Lemma 2 is now complete.

LEMMA 3. Let $G = Z_n$ where n is any positive integer such that every prime divisor p of n is bad. Let S be a maximal sum-free set in G.

(I) If $-S \neq S$, then S can be mapped onto $\{k, k+1, \ldots, 2k-1\}$ under an automorphism of G.

(II) If -S = S and |S+S| = 2|S| - 1, then S can be mapped onto $\{k+1, k+2, \ldots, 2k\}$ under an automorphism of G.

Proof (I). If $-S \neq S$, then by Lemma 2, $|S+S^*| = |S| + |S^*| - 1$. By Kemperman's Theorem, we have either $S + S^*$ is in a.p. or $S + S^*$ is quasi-periodic. Suppose that $S + S^*$ is quasi-periodic, then from $\overline{S} = S + S^*$ it follows that S is also quasi-periodic. Thus S', which is a subset of S consisting of H-cosets, will be a maximal sum-free set in G/H while the non-empty residue set S" which is contained in a remaining H-coset will violate the sum-free property of S. Hence $S + S^*$ cannot be quasi-periodic.

Let $S + S^* = \{a'+id; i = 0, 1, ..., 2k\}$. Since $|S+S^*| = 2k + 1$, therefore (d, n) = 1 (the g.c.d. of d and n). Hence under an automorphism of G, we can write $S + S^* = \{a+i; i = 0, 1, ..., 2k\}$. Then $S = \overline{S + S^*} = \{a+i; i = 2k+1, ..., 3k\}$. From $|S^*| = |S| + 2$, we have either

- (i) $2a + 2k + 3 + 3k \equiv 0 \pmod{n}$, that is $a \equiv -(k+1) \pmod{n}$, or
- (ii) $2a + 2k + 1 + 3k 2 \equiv 0 \pmod{n}$, that is $a \equiv -(k-1) \pmod{n}$.

(i) gives the maximal sum-free set $S = \{k, k+1, \dots, 2k-1\}$.

(ii) gives $S = \{k+2, k+3, ..., 2k+1\}$ which can be mapped onto $\{k, k+1, ..., 2k-1\}$ under an automorphism of G.

Proof (II). Applying similar methods we can show that under an automorphism of G, S + S can be mapped onto $S + S = \{a+i; i = 0, 1, ..., 2k-2\}$. Since -S = S, therefore $2a + 2k - 2 \equiv 0 \pmod{n}$, that is $a \equiv -(k-1) \pmod{n}$.

Then $S + S = \{-(k-1), -(k-2), \dots, k-1\}$, and $S \subset \overline{S+S} = \{k, k+1, \dots, 2k+1\}$.

But $2k = k + k \notin S + S$, therefore $k \notin S$. Hence $S = \{k+1, ..., 2k\}$. The proof of Lemma 3 is now complete.

LEMMA 4. Let $G = Z_n$, n = 3k + 1 and S be a sum-free set in G satisfying |S| = k, -S = S and $\overline{S} = S + S$. Then $|(S+g)\cap S| > 1$ for every $g \in \overline{S}$ with (g, n) > 1.

Proof. We first note that $(S+g) \cap S \neq \emptyset$ if and only if $g \notin S$. Suppose that $|(S+g)\cap S| = 1$ for some $g \in \overline{S}$ with (g, n) > 1. Then by Lemma 1, $|(S+f)\cap S| \ge k - 3$ where f = 3g/2.

Now $|(S+f)\cap S| \neq k$, since S cannot be a union of cosets of a nontrivial subgroup of G. Thus $|(S+f)\cap S| = k-1$, k-2 or k-3.

Let H = [f], the subgroup of G generated by f, where |H| = p = 3r + 1 > 1, pq = n, q = 3s + 1, |S| = sp + r.

(i) If $|(S+f) \cap S| = k - 1$, then

$$S = \bigcup H_i \cup \{a_1, a_1 + f, \ldots, a_1 + m_1 f\}$$

where each H_i is a coset of H, $|\cup H_i| = sp$ and $m_1 = r - 1$. In this case it is clear that $S'' = \{a_1, a_1+f, \dots, a_1+m_1f\} \subseteq H$. But $H \subseteq S + S$ which contradicts the fact that $(S+S) \cap S = \emptyset$.

(ii) If $|(S+f)\cap S| = k - 2$, then $S = \bigcup H_i \cup \{a_1, a_1+f, \dots, a_1+m_1f\} \cup \{a_2, a_2+f, \dots, a_2+m_2f\}$, $m_1 \le m_2$.

Since -S = S, $s \ge 2$, therefore $H \subseteq S + S$, and

$$\{a_1, a_1+f, \ldots, a_1+m_1f\} = \{a_2, a_2+f, \ldots, a_2+m_2f\}$$
.

Hence $m_1 + m_2$ is even. If $|UH_i| = (s-1)p$, then $m_1 + m_2 = p + r - 2$ is odd, which is impossible. Hence $|UH_i| = sp$ and $m_1 + m_2 = r - 2$. But then

$$\{a_1, \ldots, a_1 + m_1 f, a_2, \ldots, a_2 + m_2 f\} + \{a_1, \ldots, a_1 + m_1 f, a_2, \ldots, a_2 + m_2 f\}$$

contains elements from 3 distinct cosets of H , which contradicts the fact that \overline{S} = S + S .

(iii) If
$$|(S+f)\cap S| = k - 3$$
, then
 $S = \bigcup H_i \cup \{a_1, \dots, a_1 + m_1 f, a_2, \dots, a_2 + m_2 f, a_3, \dots, a_3 + m_3 f\}$,
 $m_1 \le m_2 \le m_3$.

Suppose that $S \cap H = \emptyset$. Then from -S = S we know that

$$\{a_1, \ldots, a_1 + m_1 f, a_2, \ldots, a_2 + m_2 f, a_3, \ldots, a_3 + m_3 f\}$$

is contained in exactly two distinct cosets of H . Without loss of generality, assume that $a_2 \in a_1 + H$. Then

$$-\{a_1, \ldots, a_1 + m_1 f, a_2, \ldots, a_2 + m_2 f\} = \{a_3, \ldots, a_3 + m_3 f\}$$

which is impossible, because the right hand side is in a.p. with difference f while the left hand side is not in a.p. with difference f. Hence $S \cap H \neq \emptyset$. But then $|UH_i| = 0$ and s = 2, $m_1 + m_2 + m_3 = 2p + r - 3$. In this case, S + S will contain 5 distinct full cosets of H which is impossible.

The proof of Lemma 4 is now complete.

THEOREM 2. Let $G = Z_n$ where n is any positive integer such that every prime divisor of n = 3k + 1 is bad. If S is a maximal sum-free set in G, then S can be mapped, under an automorphism of G, to one of the following:

- (i) $\{k \neq 1, k \neq 2, \ldots, 2k\}$;
- (*ii*) { $k, k+1, \ldots, 2k-1$ };
- (*iii*) { $k, k+2, k+3, \ldots, 2k-1, 2k+1$ }.

Proof. By Lemmas 2 and 3, it remains to show that if -S = S, $\overline{S} = S + S$, then S can be mapped to $\{k, k+2, k+3, \ldots, 2k-1, 2k+1\}$ under an automorphism of G. The method used here is a modification of a method due to Rhemtulla and Street [5].

If $|(S+g)\cap S| = 1$ for some $g \in G$ such that (g, n) = 1, then by the same method as the proof of Theorem 2 in [5], we can show that under an automorphism of G, S can be mapped onto $\{k, k+2, k+3, \ldots, 2k-1, 2k+1\}$.

We are now left with the case where S satisfies the conditions of Lemma 1 and $|(S+g)\cap S| \neq 1$ for any g in G satisfying (g, n) = 1. If $|(S+g)\cap S|$ is maximal for some g satisfying (g, n) = 1, then by taking an automorphism of G if necessary, assume that $|(S+1)\cap S|$ is maximal. We write

(1)
$$S = \{a_1, \dots, a_1+m_1, a_2, \dots, a_2+m_2, \dots, a_h, \dots, a_h+m_h\}$$
,
where $1 < a_1 \le a_1+m_1 < a_2-1 < a_2+m_2 < \dots < a_h-1 < a_h+m_h < n$, and
 a_i, \dots, a_i+m_i denotes a string of (m_i+1) consecutive elements of S

We have

(2)
$$|(S+1)\cap S| = k - h \ge |(S+g)\cap S|$$
 for every $g \ne 0$ in G .
Hence h is minimal in (1).

Let
$$X = \{a_1, a_2, \dots, a_h\}$$
. Then
 $Y = \{a_1 + m_1 + 1, \dots, a_h + m_h + 1\} = 1 - X$,

since -S = S.

For each $i = 1, \ldots, h$, $a_i - 1 \notin S$. Since $\overline{S} = S + S$ and $|(S+g) \cap S| \ge 2$ for any $g \ (\neq 0) \in \overline{S}$ (by assumption and Lemma 4), therefore there exist $s_1, s_2 \ (\neq s_1)$ in S such that $a_i - 1 = s_2 - s_1$ and $g = -s_1 - s_2 \neq 0$. We have now $s_1 + g$, $s_2 + g \in S$ and $k - h \ge |(S+g) \cap S| \ge 2$, therefore, by Lemma 1, we have $|(S+a_i-1) \cap S| \ge h - 1$. But for any $s_1, s_2 \in S$, $s_1 + a_i - 1 = s_2$ implies that $s_1 \in X$, $s_2 \in -X$ and $s_1 + a_i \in Y$. Hence

(3)
$$h \ge |(X+a_i) \cap Y| \ge h - 1$$
 for all $i = 1, \ldots, h$.

Suppose that $h \ge 3$.

If for each j = 1, ..., h, $X + a_j = Y = 1 - X$, then X + [X-X] = X, h = |X| = |[X-X]| = p, which divides n, and (4) $2 \sum_{i=1}^{h} a_i + ha_j \equiv h \pmod{n}$ for each j = 1, ..., h.

Thus

(5)
$$h(a_i - a_j) \equiv 0 \pmod{n}$$
 for every $i, j = 1, \ldots, h$.

If n is a prime, we already get a contradiction here. Otherwise, X = a + H where H = [q], pq = n. We then have

(6)
$$a_1 = a$$
, $a_2 = a + q$, ..., $a_p = a + (p-1)q$.

Substituting (6) into (4) for j = 1, we get $(3a-1)p \equiv 0 \pmod{n}$ from which it follows that a = 2s + 1 (q = 3s+1) and

$$S = \{2s+1, \ldots, 2s+1+m_1, \ldots, 2s+1+(p-1)q+m_p\}.$$

H.P. Yap

But $2s + 1 + 2s + 1 + (p-1)q + \frac{m}{p} > n$ which contradicts the fact that $a_1 + a_p + \frac{m}{p} = n$. Hence, for at least one $t \in \{1, \ldots, h\}$, $|(X+a_t) \cap Y| = h - 1$.

If there is only one $t \in \{1, ..., h\}$ such that $|(X+a_t) \cap Y| = h - 1$, then there are at least two distinct $i, j \in \{1, ..., h\}$ such that $X + a_i = Y = X + a_j$ and thus $X + a_i - a_j = X$ from which it follows that X is the union of cosets of a nontrivial subgroup of G. (If n is a prime, we get a contradiction here.) Thus $|(X+a_t) \cap Y| \neq h - 1$ which contradicts the hypothesis.

Hence there are at least two
$$t_1, t_2 \in \{1, ..., h\}$$
 such that
 $| (X+a_{t_1}) \cap Y | = h - 1 = | (X+a_{t_2}) \cap Y |$. Then
(7) $\{a_1, ..., a_{t-1}, a_{t+1}, ..., a_h\} + a_t =$
 $1 - \{a_1, ..., a_{t-1}, a_{t+1}, ..., a_h\}$, $t = t_1, t_2$,

from which it follows that

(8)
$$2 \sum_{i=1}^{h} a_i + (h-3)a_t \equiv h - 1 \pmod{n}, \quad t = t_1, \quad t_2,$$

and thus

(9)
$$(h-3)(a_{t_1}-a_{t_2}) \equiv 0 \pmod{n}$$

Suppose there are also at least two $r_1, r_2 \in \{1, \ldots, h\}$ such that $|(X+a_{r_i}) \cap Y| = h$. Divide $\{1, \ldots, h\}$ into the union of two disjoint subsets $R = \{r_1, \ldots, r_u\}$, $u \ge 2$, $T = \{t_1, \ldots, t_v\}$, $v \ge 2$ such that $|(X+a_{r_i}) \cap Y| = h$ and $|(X+a_{t_i}) \cap Y| = h - 1$. Then

(10)
$$h(a_{r}-a_{r}) \equiv 0 \pmod{n}$$
 for every $r, r' \in \mathbb{R}$,

(11)
$$(h-3)(a_t-a_t) \equiv 0 \pmod{n}$$
 for every $t, t' \in T$.

Let

(12)
$$a_{t_1} + a_{r_1} \equiv 1 - a_{p_1} \pmod{n}$$
,

(13)
$$a_{t_2} + a_{p_1} \equiv 1 - a_{p_2} \pmod{n}$$
.

Then $a_{t_1} - a_{t_2} \equiv a_{p_2} - a_{p_1} \pmod{n}$ from which it follows that at least one of p_1, p_2 is in T. Suppose that $p_1 = t \in T$. Let

(14)
$$a_{t_1} + a_{r_2} \equiv 1 - a_{p_3} \pmod{n}$$
.

Then from (12) and (14), we have $a_{r_1} - a_{r_2} \equiv a_{p_3} - a_t \pmod{n}$ and thus $p_3 \equiv r \in \mathbb{R}$. Then $h(a_r - a_t) \equiv 0 \pmod{n}$, and thus from (10), we have (15) $h(a_r - a_t) \equiv 0 \pmod{n}$ for every $r \in \mathbb{R}$.

Let

(16)
$$a_{t_2} + a_{r_2} \equiv 1 - a_{p_4} \pmod{n}$$
.

Then from (14) and (16), we have $a_{t_1} - a_{t_2} \equiv a_{p_4} - a_r \pmod{n}$ from which it follows that $p_4 \equiv t' \in T$. Hence $(h-3)(a_t, -a_r) \equiv 0 \pmod{n}$. Then from (11), we have

(17)
$$(h-3)(a_t-a_n) \equiv 0 \pmod{n}$$
 for every $t \in T$.

But (15) and (17) cannot occur at the same time. Hence for at most one $j \in \{1, \ldots, h\}$, $|\{X+a_j\} \cap Y| = h$. But then (9) is true for every $t_1, t_2 \in \{1, 2, \ldots, j-1, j+1, \ldots, h\}$. We have either

(i)
$$h - 3 = vp > 0$$
, $p | n$, $(v, n) = 1$ and
 $X' = \{a_1, \dots, a_{j-1}, a_{j+1}, \dots, a_h\} = a + A'$
where $A' \subseteq H = [q]$, $pq = n$, which is impossible because
 $h - 1 = vp + 2 > |G/H|$; or

(ii)
$$h = 3$$
 and thus

$$S = \{a, \ldots, a+c-1, k+c+1, \ldots, 2k-c, 3k+2-a-c, \ldots, 3k+1-a\}$$

where
$$a \leq k$$
 and $c < k/2$.

Then from (8) we get

$$0 \equiv 3 - 1 - 2\{a+k+c+1-(a+c-1)\} \pmod{n},$$

that is $1 \equiv k + 2 \pmod{n}$ which is impossible.

Thus $h \leq 2$. But $h \neq 1$, because S is not in a.p. If h = 2, then $S = \{\pm k/2, \pm(1+k/2), \ldots, \pm(k-1)\}$ which maps, under an automorphism of G, to $\{k, k+2, k+3, \ldots, 2k-1, 2k+1\}$.

Finally, suppose that $|(S+g)\cap S| \ge 2$ for every $g \ne 0$ in G with (g, n) = 1 and that $|(S+g)\cap S|$ is maximal for some g in G with (g, n) > 1. By taking an automorphism of G, if necessary, suppose that g|n. Then we can write

 $S = \bigcup H_i \cup \{a_1, a_1 + g, \dots, a_1 + m_1 g, \dots, a_h, a_h + g, \dots, a_h + m_h g\}$

where each H_i is a coset of H = [g],

$$S'' = \{a_1, a_1 + g, \dots, a_1 + m_1 g, \dots, a_h, a_h + g, \dots, a_h + m_h g\}$$

does not contain a whole coset of H, $a_i + (m_i+1)g \ddagger a_j \pmod{n}$ for any $i, j = 1, \dots, h$, $1 \le a_1 \le a_2 \le \dots \le a_h \le n$, and

$$\begin{split} \big|(S+g) \cap S\big| &= k - h \geq \big|(S+g') \cap S\big| \quad \text{for every} \quad g' \neq 0 \quad \text{in} \quad G \; . \\ \text{Let} \quad X = \{a_1, a_2, \ldots, a_h\} \; . \quad \text{Then} \end{split}$$

$$Y = \{a_1 + (m_1 + 1)g, \ldots, a_h + (m_h + 1)g\} = g - X$$
,

since -S'' = S''. By a similar method we can show that (3) holds good. Suppose that $h \ge 3$. If for each $j = 1, \ldots, h$, $X + a_j = Y = g - X$, then h = |X| = |[X-X]| = p, and this divides n, and (6) also holds good. We have then $a \equiv (2s+1)g \pmod{q}$. Now if $|UH_i| \neq 0$, then $H \cap S = \emptyset$. We note that the number of elements of a_i in X that belong to a particular coset H_i of H and the number of a_j in Xthat belong to $-H_i$ are the same, therefore since p is odd, there is at least one $a_i \in X$ such that $a_i \in H$ which contradicts the fact that $H \cap S = \emptyset$. Hence in this case, $|UH_i| = 0$ and $H \cap S \neq \emptyset$. Now if (g, q) = d > 1, then d|a and thus d divides each element in S which is impossible. Hence (g, p) = g and $q \le n/g$. It is then clear that $each m_i \le q - 1$. Otherwise for some i with $1 \le i \le p$, $a + (g+i-1)q \in S$ will be one of the elements of S that belong to $\{a+(i-1)q+g, \ldots, a+(i-1)q+m_ig\}$ or $a + (g+i-1)q = a + (i-1)q + (m_i+1)g$, which is not true. From this, it can be shown that each of the cosets K_i of K = [q] which is contained in S is of the form a + ig + K, i < q - 1. Since $3a \equiv g \pmod{q}$, we have 3a - g = 2q if g < q and g - 3a = xq if g > q where $x \equiv 1 \pmod{3}$. Now since $a + K \subseteq S$, therefore $-a + K \subseteq S$. We have -a + K = a + (g+2q)/3 - g + K if g < q and -a + K = a + (g-xq)/3 - g + K if g > q. But neither (g+2q)/3 nor (g-xq)/3 is of the form ig, $1 \le i \le q-1$, for otherwise g will divide q.

By a similar method and the proof of Lemma 4, we can show that all the other possibilities cannot occur. Hence $h \leq 2$. If h = 1, 2, then using the proof of Lemma 4 again, we can show that these cases cannot occur also. Hence the possibility that $|(S+g)\cap S|$ is maximal for some g with (g, n) > 1 is excluded.

This is the end of the proof of Theorem 2.

References

- [1] Palahenedi Hewage Diananda and Hian Poh Yap, "Maximal sum-free sets of elements of finite groups", Proc. Japan Acad. 45 (1969), 1-5.
- [2] P. Erdös, "Extremal problems in number theory", Proc. Sympos. Pure Math. 8, 181-189 (Amer. Math. Soc., Providence, Rhode Island, 1965).
- [3] J.H.B. Kemperman, "On small sumsets in an abelian group", Acta Math. 103 (1960), 63-88.
- [4] Henry B. Mann, Addition theorems: The addition theorems of group theory and number theory (Interscience Tracts in Pure and Applied Mathematics, Number 18, John Wiley, New York, London, Sydney, 1965).
- [5] A.H. Rhemtulla and Anne Penfold Street, "Maximal sum-free sets in finite abelian groups", Bull. Austral. Math. Soc. 2 (1970), 289-297.

- [6] A.H. Rhemtulla and Anne Penfold Street, "Maximal sum-free sets in elementary abelian *p*-groups", *Canad. Math. Bull.* (to appear).
- [7] H.P. Yap, "The number of maximal sum-free sets in C_p ", Nanta Math. 2 (1968), 68-71.
- [8] H.P. Yap, "Structure of maximal sum-free sets in C_p ", Acta Arith. 17 (1970), 29-35.
- [9] Hian Poh Yap, "Structure of maximal sum-free sets in groups of order 3p", Proc. Japan Acad. 46 (1970), 758-762.
- [10] H.P. Yap, "Maximal sum-free sets in finite abelian groups", Bull. Austral. Math. Soc. 4 (1971), 217-223.

University of Alberta, Edmonton, Canada.