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Maximal sum-free sets in finite
abelian groups, 11

H.P. Yap

Maximal sum-free sets in groups Z , where n is any positive

integer such that every prime divisor of n is congruent to 1

modulo 3 , are completely characterized.

Let G be an additive group. If 5 and T are non-empty subsets of

G , we write S ± T for {s ± t; s i S, t 6 T} respectively, \S\ for

the cardinality of S and 5 for the complement of 5 in G . We say

that S is sum-free in G if S and S + S have no common element and

that S is maximal sum-free in G if 5 is sum-free in G and

|s| 2 \T\ for every T sum-free in G . We denote by X(G) the

cardinality of a maximal sum-free set in G . We say that S is in a.p.

(arithmetic progression) with difference d if S = {s, s+d, ..., s+nd}

for some s, d 6 G and some integer n i 0 . We say that S is

quasi-periodic if there exists a subgroup H , of order > 2 , of G such

that S is the disjoint union of a non-empty set S' consisting of

fl-cosets and a residue set S" contained in a remaining #-coset. We say

that a prime p is a bad prime if p is congruent to 1 modulo 3 •

Erdos [2] gives certain upper and lower bounds for X[G) of finite

abelian groups G . Exact values A(G) for all finite abelian groups G ,

except when every prime divisor of \G\ is bad, were determined by

Diananda and Yap [/]. In this exceptional case,

\G\(.m-l)/3m < X(C) 2 (|c|-l)/3

where m is the exponent of G . For elementary abelian p-groups G of
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44 H.P. Yap

order pn , Rhemtulla and Street [5] prove that \(G) = fcp""1 , where

p = 3k + 1 i s a prime.

The structure of maximal sum-free sets in the following groups were

completely characterized:

(i) G is any abelian group such that \G\ has a prime divisor

congruent to 2 modulo 3 [?, 71;

( i i ) G = Z where p is a bad prime [S, 5];

( i i i ) G (abelian and non-abelian) is of order 3p > where p is a

bad prime [9] ;

(iv) G is an elementary abelian p-group where p is a bad prime

[6];

(v) G is an elementary abelian 3-group and G = Z ® Z ® Z

where p is a bad prime [J0D.

We shall apply a Lemma in [5] and Theorem 2.1 in [3D, which are

restated respectively as Lemma 1 and Theorem 1 here, to prove Theorem 2

which generalizes some results in L8~) and [5].

LEMMA 1 . Let G = Z , n = 3k + 1 and S be a sum-free set in G

satisfying \S\ = k , -S = S and 5 = S + S . Then

(i) if \(S+g)nS\ = 1 for some g in G 3 then |(S+0*)nS| > k - 3

where g* = 3<?/2 and ±g/2 € S ;

(ii) if \(S+g)nS\ = A > 1 for some g t 0 in G , then

g* = S\ - sz i where 8\, S2 (# s j ) € 5 and si+g, a?+g € S ,

is such that \(S+g*)nS\ >k- (X+l) .

THEOREM 1 (Kemperman). Let G be an abelian group with subsets A

and B suah that \A\ , \B\ > 2 . If \A+B\ = \A\ + \B\ - 1 , then either

A + B is in a .p. or A + B is quasi-periodia.

We f i r s t prove the following lemmas.

LEMMA 2. Let G = Z where n is any positive integer suah that

every prime divisor p of n is bad. If S is a maximal sum-free set in

G , then
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(i) if -S t S , \S+S*\ = |S| + \S*\ - 1 , where S* = -S u S ;

(ii) if -S = S , either \S+S\ = 2|s| - 1 or I = S + S .

Proof. By Kneser's Theorem [4], there exists a subgroup K of G

such that S+S+K=S+S and \S+S\ > 2\S+K\ - \K\ . It is clear that

K is a proper subgroup of G .

Suppose that \K\ = q > 1 . Let n = 3k + 1 = p<? , p = 3r + l ,

q = 3s + 1 . Then X(G) = k = rq + s and

\G\ - |S| = 2fc + 1 > \S+S\ 2 2(k/c?]£? - q

where [x] denotes the smallest positive integer 2 a; .

Thus 2k + 1 2: |S+S| 2 (2r+l)q , which is impossible. Hence

\S+S\ 2: 2|5| - 1 .

If -S = S , then \S+S\ is odd and from 2k + 1 > |S+£| > 2fc - 1 ,

it follows that either |S+S| = 2|S| - 1 or \S+S\ = 2\s\ + 1 and thus

~S = S + S .

If -S # 5 , then again by Kneser's Theorem there exists a proper

subgroup K of G such that S + S * + # = S + S * and

\S+S*\ > |S+#| + \S*+K\ - \K\ .

In this case, we can show that \K\ = 1 , Thus

2k + 1 > |S+S*| 2; |S| + |5*| - 1 2: \S\ + (|S|+2) - 1 = 2k + 1 .

Hence |S*| = |S| + 2 and \S+S*\ = \s\ + \S*\ - 1 .

The proof of Lemma 2 is now complete.

LEMMA 3. Let G = Z where n is any positive integer such that

every prime divisor p of n is bad. Let S be a maximal sum-free set

in G .

(I) If -S ± S , then S can be mapped onto {k, k+1, ... , 2k-l)

under an automorphism of G .

(II) If -S = S and \S+S\ = 2|S| - 1 , then S can be mapped, onto

{k+1, k+2, ... , 2k} under an automorphism of G .

Proof (I). If -5 + S , then by Lemma 2, |£+S*| = |s| + \S*\ - 1 .

By Kemperman's Theorem, we have either S + S* is in a.p. or 5 + 5 * is

quasi-periodic.
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Suppose that 5 + S* is quasi-periodic, then from ~S = S + S* it

follows that 5 is also quasi-periodic. Thus S' , which is a subset of

5 consisting of tf-cosets, will be a maximal sum-free set in G/H while

the non-empty residue set S" which is contained in a remaining //-coset

will violate the sum-free property of S . Hence 5 + S* cannot be

quasi-periodic.

Let S + S* = {a'+id; i = 0, 1 2k) . Since 15+5*1 = 2k + 1 ,

therefore (d, n) = 1 (the g.c.d. of d and n ). Hence under an

automorphism of G , we can write S + S* = {a+i; i = 0, 1, ..., 2k] .

Then 5 = S + S* = {a+i; i = 2k+l, .... 3fc> • From \S*\ = \s\ + 2 , we

have either

(i) 2a + 2k + 3 + 3k = 0 (mod n) , that is a = -(k+l) (mod n) ,

or

(ii) 2a + 2k + 1 + 3k - 2 i 0 (mod n) , that is a i -(k-1)

(mod n) .

(i) gives the maximal sum-free set 5 = {k, k+l, ..., 2k-l} .

(ii) gives 5 = {k+2, k+3, •••, 2k+l] which can be mapped onto

{k, k+l, •••, 2k-l) under an automorphism of G •

Proof (II). Applying similar methods we can show that under an

automorphism of G , S + S can be mapped onto

S + S = {a+i; i = 0, 1, ..., 2k-2) . Since -S = S , therefore

2a + 2k - 2 = 0 (mod n) , that is a = -(k-1) (mod n) .

Then S + S = {-(k-l), -U-2) k-l] , and

5 cS + S = {k, k+l, ..., 2k+l) .

But 2k = k +tk $ S + S , therefore k $ 5 . Hence 5 = {k+l, ..., 2k] .

The proof of Lemma 3 is now complete.

LEWIA 4. Let G = Z , n = 3k + 1 and S be a sum-free set in G

satisfying \s\ = k , -S = 5 and ~S = S + S . Then |(S+#)n5| > 1 for

every g € 5 with (g, n) > 1 .

Proof. We first note that (5+^) n 5 t 0 if and only if g \ S .

Suppose that |(5+#)n5| = 1 for some g € 5 with (g, n) > 1 . Then
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by Lemma 1, |(5+/)nS| > k - 3 where / = 3g/2 .

Now \{S+f)nS\ ? k , since S cannot be a union of cosets of a

nontrivial subgroup of G . Thus |(S+f)nS\ = k - 1 , k - 2 or k - 3 .

Let H = [f] , the subgroup of G generated by / , where

|ff|=p = 3r + l > l , pq = n , q = 3s + 1 , \S\ = sp + r .

(i) If |(S+f)nS| = k - 1 , then

5 = UHi u {alS a^f, ..., a^mj}

where each H. is a coset of H , |ll#. I = sp and m. = r - 1 . In this

case it is clear that 5" = {a , a +f, ..., a +m /} c H . But H cS + S

which contradicts the fact that (S+S) n S = 0 .

(ii) If |(S+/)nS| = k - 2 , then

S = LtfT. u {av a±+f, ..., a^m^} u {a^, a£f, ..., a^m^} , m± < m2 .

Since -S = S , s 2; 2 , therefore H c S + S , and

-{ax, a^+f, ..., a ^ m ^ } = (a2, a2+/, ..., a2+m2/} .

Hence m + m is even. If |U#.| = (s-l)p , then m. +m=p+r-2

is odd, which is impossible. Hence |U#.| = sp and m + mo = v - 2 .

But then

{a±, .... a-fm^, a^, ..., a^m^f] + {a^, ..., a^m^f, a2, ..., a^m^f}

contains elements from 3 distinct cosets of H , which contradicts the fact

that S = S + 5 .

(iii) If |(S+/)r>S| = k - 3 , then

S = UJT. u {a±, ..., a^+m^, a^, ..., a^-m^f, a^, ..., a^+m^f} ,

m1 £ m2 < m3 .

Suppose that S n H = 0 . Then from -S = S we know that

{ax, . . . , 0^ -^ / , a2, ..., a^-m^f, ay ..., a^+m^f]

is contained in exactly two distinct cosets of H . Without loss of

generality, assume that a € a. + H . Then
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which i s impossible, because the right hand side is in a .p . with

difference f while the le f t hand side is not in a.p. with difference

f . Hence 5 n H ? f> . But then |ll#. | = 0 and s = 2 ,

m + m + m = 2p + r - 3 . In this case, S + S wi l l contain 5 dis t inct

fu l l cosets of H which i s impossible.

The proof of Lemma k i s now complete.

THEOREM 2. Let G = Z where n is any positive integer such that

every prime divisor of n = 3k + 1 i s bad. If S is a maximal sum-free

set in G , then S can be mapped, under an automorphism of G , to one of

the following:

(i) {fe-cl, k+2, . . . , 2k} ;

(ii) {k, k+1, . . . , 2k-l) ;

(Hi) {k, k+2, k+3, . . . , 2k-l, 2k+l} .

Proof. By Lemmas 2 and 3, it remains to show that if -S = S ,

~S = S + S , then 5 can be mapped to {k, k+2, k+3, ..-, 2k-l, 2k+l}

under an automorphism of G . The method used here is a modification of a

method due to Rhemtulla and Street [5].

If \{S+g)nS\ = 1 for some j f C such that (g, n) = 1 , then by

the same method as the proof of Theorem 2 in [5], we can show that under an

automorphism of G , S can be napped onto

{k, k+2, k+3, -.., 2k-l, 2k+l} .

We are now left with the case where S satisfies the conditions of

Lemma 1 and \(S+g)nS\ # 1 for any g in G satisfying {g, n) = 1 . If

l^+gOoSl is maximal for some g satisfying (g, n) = 1 , then by taking

an automorphism of G if necessary, assume that |(5+l)n5| is maximal.

We write

( i \ C — i _i- _i_ si J-m \

where 1 < a, 5 a. +m < an-l < a+m < .. . < a,-1 < a,+m. < n , and

a., ..., a.+m. denotes a string of (m .+l] consecutive elements of 5 .
Tr If If If
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We have

(2) |(S+l)nS| = k - ft > \(S+g)nS\ for every g * 0 in C .

Hence ft is minimal in (l).

Let X = {a , a , ..., a^} . Then

since -S = S .

For each i = 1, ..., ft , a. - 1 $ £ . Since S = S + S and

|(S+g-)nS| > 2 for any g- (# 0) € 5 (by assumption and Lemma U ) ,

therefore there exist s,, so (# s,) in 5 such that a. - 1 = s_ - s.
X £i X Z- ^ X

and c? = -s - s ^ 0 . We have now S-. + g , s_ + g (. S and

k - h > \{S+g)rS\ 2 2 , therefore, by Lemma 1, we have

| [S+a.-l)nS\ 2 ft - 1 . But for any s^, s^ £ S , s, + a. - 1 = so

implies that s. € * , so € -X and s, + a. € Y . Hence

(3) ft > | (*+a.)ny| 2 ft - 1 for all i = 1, ... , ft .

Suppose that ft 2 3 .

If for each 3=1, ..., ft , X + a . = J = l - # , then

* + [X-X] = X , ft = \X\ = | U - * ] | = p , which divides rc , and

ft
(4) 2 £ a. + ha. =h (mod n) for each j = 1, ..., ft .

Thus

(5) ft (a.-a.) = 0 (mod n) for every i, j = 1, ..., ft .

If n is a prime, we already get a contradiction here. Otherwise,

X = a + H where H = [q] , pq = n . We then have

(6) a1 = a , a2 = a+q, ... , a = a + (p-l)q .

Substituting (6) into (h) for j = 1 , we get (3a-l)p = 0 (mod n)

from which it follows that a = 2s + 1 (.q = 3s+l) and

5 = {2s+l, ..., 2s+l+m , ..., 2s+l+(p-l)q+m } .
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But 2s + 1 + 2s + 1 + (p-l)<? + m > n which contradicts the fact that

a. + a + tn = n . Hence, for at least one t € {1, . .., h) ,

I[x+a,)nX\ = ft - 1 .

If there is only one t € {l ft} such that | [x+at)nY| = ft - 1 ,

then there are at least two distinct i, j i. {l, ..., ft} such that

X + a. = I = X + a . and thus X + a. - a . = X from which it follows that

X is the union of cosets of a nontrivial subgroup of G . (If n is a

prime, we get a contradiction here.) Thus | (x+a,)nj| # h - 1 which

contradicts the hypothesis.

Hence there are at least two t , t_ € {1 h) such that

I f W | = ft - 1 = | [x+a. )nY\ . Then

at

t =

from which it follows that

h
(8) 2 £ a. + (h-3)a. H h - 1 (mod n) , t = t , t ,

and thus

(9) (?J"3)(atr%^ E 0 (mod n) -

Suppose there are also at least two r , r € {l , . . . , ft} such that

|[X+a }nj | = ft . Divide { l , . . . . ft} into the union of two disjoint
i

s u b s e t s R = {r±, . . . , r } , H > 2 , T = { £ , . . . , i ^ } , u 2 2 s u c h

that \\X+ar \nX
i

= ft and | \X+a \nX
t

= ft - 1 . Then

(10) h[a -a ,) = 0 (mod n) for every r , r ' € fl ,

(11) (ft-3) [a.-a ,) = 0 (mod n) for every t, t' (. T .

Let
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(12) a + a = 1 - a (mod n) ,
l̂ * l pi

(13) a. + a = 1 - a (mod n) .
t2 P\ Pz

Then a, - a. = a -a (mod n) from which it follows that at least
t\ t2 p2 Pi

one of p., p 2 is in T . Suppose that p = t ( T . Let

(lit) a, + a = 1 - a (mod n) .
t\ r2 P3

T h e n f r o m ( 1 2 ) a n d ( l U ) , w e h a v e a - a = a - a . ( m o d n ) a n d t h u s
rl ?2 P3 *

p = r f R . Then h(a -a } = 0 (mod n) , and thus from (10), we have

(15) h(ar~at) E ° (mod n^ for e v e r v r € i? .

Let

(16) a, + a = 1 - a (mod n) .
t2 r2 Pk

Then from (lU) and (16), we have a, - a, = a - a (mod w) from
ti tz pk r

which it follows that p, = t' d T . Hence (/z-3)(a.r-a ) = 0 (mod n) .

Then from (11), we have

(17) i.h-3) [at-
a
r) = 0 (mod n) for every t € T .

But (15) and (IT) cannot occur at the same time. Hence for at most one

3 € {l h) , \{x+a.}rtf\ = h . But then (9) is true for every
3

t±, t2 i {X, 2, ..., 3-1, 3+1, ..., h} . We have either

(i) h - 3 = vp > 0 , p\n , (v, n) = 1 and

X< = { a l a3-l' aj+l' ••" ah} = a + A'

where A' c H = [q] , pq = n , which is impossible because

h - 1 = vp + 2 > \G/H\ ; or

(ii) h = 3 and thus

S = {a, ..., a+a-1, k+e+1, ..., 2k-o, 3k+2-a-a, ..., 3k+l-a]

where a 5 k and e < k/2 .

Then from (8) we get

0 = 3 - 1 - 2{a+k+c+l-(a+c-l)} (mod n) ,
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that is 1 B k + 2 (mod n) which is impossible.

Thus h £ 2 . But H i , because 5 is not in a.p. If h = 2 ,

then 5 = {±fc/2, ±(l+fc/2), ..., ±(fc-l)} which maps, under an automorphism

of G , to {fe, k+2, k+3, ..., 2fc-l, 2fe+l} .

Finally, suppose that \(S+g)nS\ > 2 for every <y # 0 in G with

(<7, n) = 1 and that |(S+<7)nS| is maximal for some g in G with

(g, n) > 1 . By taking an automorphism of G , if necessary, suppose that

#|n . Then we can write

where each #. is a coset of # = [g] ,

S" = {a±, ax+g, ..., a^m^, ..., a^,

does not contain a whole coset of H , a. + [m.+l)g ̂  a. (mod n) for

any £, j = 1, ..., h , 1 < a. < aj < ••• < a-^ < n , and

|(£r+g-)r6'| = k - h > \(S+g')nS\ for every ff' * 0 in G .

Let X = {a , a2, ..., a,} . Then

Y = {c^+^+l}^, ..., ah+[mh+l)g} = g - X ,

since -5" = 5" . By a similar method we can show that (3) holds good.

Suppose that h 2; 3 • If for each j = 1, ..., h , X + a. = Y = g-X ,
d

then h - \x\ = | [ # - / ] | = p , and th is divides n , and (6) also holds

good. We have then a = (2s+l)<? (mod q) . Now if |ll#.| / 0 , then

H n S = 0 . We note that the number of elements of a. in X that

belong to a par t icular coset H. of # and the number of a. in X

that belong to -H. are the same, therefore since p is odd, there i s at

leas t one a. € X such that a. € H which contradicts the fact that

H n S = V . Hence in th i s case, |Uff. | = 0 and H n S t V . Now if

(g, q) = d > X , then d\a and thus d divides each element in 5 which

is impossible. Hence {g, p) = g and q 5 n/g . I t i s then clear that

each m. < q - 1 . Otherwise for some i with 1 £ i 5 p ,
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a + (g+i-l)q € S will be one of the elements of S that belong to

{a+(i-l)q+g, ..., a+(i-l)q+m.g) or a + (g4-£-l)q = a + (i-l)<7 + [m-+l)g ,
if l>

which is not true. From this, it can be shown that each of the cosets K.

of K = [q] which is contained in 5 is of the form a + ig + K ,

i < q - 1 . Since 3a = g (mod q) , we have 3a - g = 2q if g < q

and g - 3a = xq if g > q where a; = 1 (mod 3) • Now since

a + K c_S , therefore -a + K c S . We have -a + K = a + (g+2q)/3 - g + K

if <? < c? and -a + X = a + (g-xq)/3 - g + K if g > q . But neither

(0+2q)/3 nor {g-xq)/3 is of the form i^ , 1 5 i 5 <?-l , for otherwise

g will divide q .

By a similar method and the proof of Lemma It, we can show that all the

other possibilities cannot occur. Hence h 5 2 . If h = 1, 2 , then

using the proof of Lemma h again, we can show that these cases cannot occur

also. Hence the possibility that |(S+<y)nS| is maximal for some g with

(g, n) > 1 is excluded.

This is the end of the proof of Theorem 2.
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