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1. Preliminaries. The question "Does a Banach space with a symmetric basis and
weak cotype 2 (or Orlicz) property have cotype 2?" is being seriously considered but is
still open though the similar question for the r.i. function space on [0,1] has an
affirmative answer. (If A' is a r.i. function space on [0,1] and has weak cotype 2 (or
Orlicz) property then it must have cotype 2.) In this note we prove that for Lorentz
sequence spaces d(a, 1) they both hold.

Let a, > . . . >an > . . . >0. The Lorentz sequence space d(a, 1) is the space of
vectors in R°° with finite norm given by

11*11 = So.*.*.

where (x*) is the decreasing rearrangement of (|JC,-|).
A decreasing positive sequence a = (an) is said to be p-regular (p > 0) if there exists a

constant 0 < C < °o such that

2a^Cnap
n (neN).

Reisner proved in [4] that a is 1-regular if and only if d(a, 1) does not contain /£,
uniformly, which is also equivalent to the existence of q < °° such that d(a, 1) is ^-concave
(for definition of q-concave see below). Another result in [4] which plays an important
role in our proof is that d(a, 1) is 2-concave if and only if a is 2-regular. It is well known
that for Banach lattices 2-concave and cotype 2 are equivalent. See [2].

The Banach space X is of weak cotype 2 if there is a constant c s 0, such that for any
n e N and ^-dimensional subspace E c X, we have d(E) s cnm where

c,,. . . ,xk)

II l|2\ 1/2

:xx,. . . ,xkeE,n2(xu. . . ,xk)<l,

Hp(xu . . . ,**) := sup{(| , l/frOI')1":/ eE*,

It is well known that weak cotype 2 implies cotype q for any q > 2. See [3] for details
of weak cotype 2.

The Banach space X has the Orlicz property if there exists a constant C such that for
any k e N and any xu . . . , xk e X, we have

I v 1/2

S I M 2 SQI .OC, , . . . , * * ) .

The Orlicz constant JT2 I(.AQ := inf C. For more information about the Orlicz property
see [1].
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A Banach lattice X is said to be q-concave (q > 2) if there exists a constant D such

that

2iwn **> (2w)
is* / ll\sfc / II

for any fceN and any x , , . . . ,xk'm X.

2. The weak cotype 2

THEOREM 1. d{a, 1) « o/ weak cotype 2 if and only if it is of cotype 2.

Proof. Assume d(a,l) is of weak cotype 2, so d(a, 1) does not contain 12,
uniformly. By [4] d{a, 1) is ̂ -concave for some q <oo and a is 1-regular. For any n e N,
let d(a, l ;n) denote the ^-dimensional subspace of d(a, 1) with all coordinates after the
nth being 0. Then the ^-concave constant of d(a, 1; n) is independent of n.

Let*,,. . . ,xk ed(a, l;n). Then we have, using Holder's inequality, the definition of
^-concavity and Khintchine's inequality,

p2(xu- • ,xk)<[-^ 2J \\2J *,•*/
His*

II x z

2*?o-)) •
W / J y = ill

(i)

/ v 1/2

Without loss of generality we may assume that the numbers ( E xj(j)\ , for
/ = 1 , . . . , « , are decreasing. Then from (1) one has

/ \1/2

P2(JC,, . . . ,Jc*)=£C22(2Wy)l2 aj. (2)

Suppose that jU2(x1;... ,xk) = l. Since ye = {eya;}"=1 e d(a, 1; n)* has norm 1 for any
e = ( e , , . . . , en) e {-1,1}", one has

Averaging over { —1,1}" we have

2(2i*/0)iaV2si . (3)

Combining (2), (3) and Lemma 1 below we have
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Meanwhile 6{d{a, \;n))>cnm, so that

for Vn e N. Hence a is 2-regular, since a is 1-regular, and so d(a, 1) is 2-concave by [4],
equivalently of cotype 2. •

LEMMA 1. Let a = (au . . . ,an), x = (xu . . . , xn), with fl,>...>an>0 and
*, > . . . >xn ^ 0. Write ax = (atjci,. . . , anxn). Then

\ax , a

Proof. Define R(xu. . . ,xn) = \\ax\\J\\ax\\2 for any x as above. We show that for
1 < it < w — 1, we have

i,. . . ,xk,xk+i,. . . ,

Then the conclusion follows because R(xu . . . ,xt) = ||a||i/| |a||2- Define

)

where

-4 = 2 atXi, B =

Then
F'(/) = [B(C + Dt2) -(A + Bt)Dt](C + Dt2)'312

= (BC - ADt)(C + Dt2y312.

If 0 s t < xk (and hence t < xt•., for i < /t), then

Hence F'(f)> 0, and so F(f) is increasing. The statement follows.

3. Some results on Lorentz sequence spaces.

LEMMA 2. (1) (i2{ex,. . . , en) = V S a2 in d(a, 1).

(2) n2 {(d(a, 1)) > V^ — /or eac/i n.
E a,-

(3) If a is 1-regular, then for k>l,

l(a2
k+i + ...+ a2

k+l) < AC\ak+x + ...+ ak+l)
2,

where C is a constant independent of k and I.
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Proof. (1) and (2) are fairly easy. We only prove (3). By 1-regularity of a, there is a
constant C such that

(/c + l K + , < a , + . . . + ak+, < (k + l)Cak+l

k +1
and so ak+x <——Cak+i <2Cak+l. Hence

l(a2
k+l + ...+ a2

k+l) < l2a2
k+l < 4C2/2a2

+/ =£ 4C2(a*+1 + . . . + a*+/)
2,

which completes the proof. •

We now prove a result using Talagrand's "isoperimetric inequality" (see [6] for
details). Let xi,. . . ,x n be elements of any linear normed space X, (X2{x,,...,*„) = a. Let
Pn be the usual probability measure on Dn = { — 1,1}". For e e Dn, write s(e) = E e,x,. For

r>0 , let A, = {eeDn:\\s(e)\\<t}, B, = Dn\A,. The inequality states that for M>0,
Pn(AM)Pn(BM+,)<exp(-t2/8o2). If M=S\\s(e)\\, then Pn(B2M)^h by since Chebyshev's
inequality M > Jfl2M ||5(e)|| > 2MPn(B2M). Hence Pn(fi2M+/) s 2 exp(-f2/8a2).

PROPOSITION. Let yx,. . . ,yN be positive elements of d(a, 1; n) with £ y - s l . Let the

q-concave constant of d(a, \;n) be C, for some q <°°. Then there exist z,,. . . , zN e
d(a, 1; n) and C = C'{C) such that \zi{j)\=yi{j){Vi,j) and

This generalizes Lemma 6.4 of [5]. The proof is similar but more transparent.

Proof. Let DNn denote the set of e = {e,y:/< N,/ '<n} with e , v e { - l , l } . Assuming
equal probability 2~N" to each such e, define z*{j) = eijyi(j) for 1 < / < N , l<y '<n.
Clearly |zf(/)| =y,0).

Let ty: e {-1,1} for 1 < i < N. Then

where e*j = ??,e,,r The map et-*e* maps DNn onto itself.
Write yij=yi{j)eh so that

i

If/is a linear functional on d(a, l;n) with ||/| | < 1, then

2^!"2 (4)

by (1) of Lemma 2 and E y,0')2- 1- Hence fi2{yN:/ < AT,/ <n} <"vTof.
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We will show that

f \\Z^jyiidP(e)^C'2ai. (5)
JDNn II ij II

By the isoperimetric inequality it will then follow that

PNn\e: b zf\\ > C £ a, + r] < 2 eXp(-/2/8 £ aj).
*- II i II -* ^ '

If we then choose / with t2 = 8N E a?, then for each (rj,) e D^, we have

: ||2 1/*f| a c' S «. +

Hence the probability of the union of such sets for all (JJ,-) is not greater than
2N+le~N(<l, if yv>3). So there is an e belonging to none of these sets, so that
||E r/,zf||<C" Ea,- + f for all (JJ,-). To prove (5), note first that for each s, Ey,,;(s)2 =

yi(s)2, and so E yij(s)2 = E yi(s)2 ^ 1. By the g-concavity and Khintchine's inequality, it is

easy to obtain the statement. •

4. The Orlicz property.

THEOREM 2. If d(a, 1) has the Orlicz property then a is 2-regular; equivalently d(a, 1)
is of cotype 2.

Proof. Throughout the proof we use M,MX, M2,. . . for the constants which are
independent of n. Since Ji2l(d(a, 1)) <<», d(a, 1) does not contain 11 uniformly, so by [4],
a is 1-regular. Then it is enough to prove that there exists M such that n S » 2 <

M{ E a\ , Vn e N.

Without loss of generality we may assume that n = 2m. Let

k' =

isn

Then 1 < k' < n. Let A: by the largest integer of the form 2s with k < k', so that 2k>k'.
Note that

1/2 / \ 1/2

Let l = n/k (an integer). We must show that l^Mx. Let

y{m) = a(m_1)/+, + . . . + am/, m = 1,. . . , k,

so that _y(l)>. . . >_y(A:). Let yx = yeRk and let y2,---,yk b e t h e elements of R*
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obtained from y by cyclic permutation. Let *, be the element (yt,. . . , _y,) of (R*)' = R" for
1 < i < k. Then

+ . . . + y{k)[a(k_,)l+x + . . .+akl] = £ y(/)2= IMIl- (6)

( E * 2 V =|Ly| | 2 ( l , . . . , l ) .
Visit /

Since d(a, 1) is g-concave for some q < » , by the Proposition there exist z , , . . . ,
such that |z,| =JC, (hence ||z,|| = | |^ | | | ) and

Since (E ||2,||2)1/2< ^2>1(d(a, 1 ) ) ^ , , . . . , zk), we have
1/2

) • (7)

By (2) of Lemma 2, V/(a? + . . . + « ? ) < M4y(l)2, and by (3) of Lemma 2

/ ( ^ m _ 1 ) / + 1 + . . . + a L ) ^ M 5 y ( m ) 2 (m = 2 , . . . ,fc).

Hence
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