THE WEAK COTYPE 2 AND THE ORLICZ PROPERTY OF THE LORENTZ SEQUENCE SPACE d(a, 1)

by J. ZHU

(Received 15 March, 1991)

1. Preliminaries. The question "Does a Banach space with a symmetric basis and weak cotype 2 (or Orlicz) property have cotype 2?" is being seriously considered but is still open though the similar question for the r.i. function space on [0, 1] has an affirmative answer. (If X is a r.i. function space on [0, 1] and has weak cotype 2 (or Orlicz) property then it must have cotype 2.) In this note we prove that for Lorentz sequence spaces d(a, 1) they both hold.

Let $a_1 \ge \ldots \ge a_n \ge \ldots > 0$. The Lorentz sequence space d(a, 1) is the space of vectors in \mathbb{R}^{∞} with finite norm given by

$$\|x\|=\sum_i a_i x_i^*,$$

where (x_i^*) is the decreasing rearrangement of $(|x_i|)$.

A decreasing positive sequence $a = (a_n)$ is said to be *p*-regular $(p \ge 0)$ if there exists a constant $0 < C < \infty$ such that

$$\sum_{i\leq n}a_i^p\leq Cna_n^p\qquad (n\in\mathbf{N}).$$

Reisner proved in [4] that a is 1-regular if and only if d(a, 1) does not contain l_{∞}^n uniformly, which is also equivalent to the existence of $q < \infty$ such that d(a, 1) is q-concave (for definition of q-concave see below). Another result in [4] which plays an important role in our proof is that d(a, 1) is 2-concave if and only if a is 2-regular. It is well known that for Banach lattices 2-concave and cotype 2 are equivalent. See [2].

The Banach space X is of weak cotype 2 if there is a constant $c \ge 0$, such that for any $n \in \mathbb{N}$ and n-dimensional subspace $E \subset X$, we have $\delta(E) \ge cn^{1/2}$ where

$$\delta(E) := \sup \left\{ \rho_2(x_1, \dots, x_k) = \left(\frac{1}{2^k} \sum_{\epsilon_i = \pm 1} \left\| \sum_{i \le k} \epsilon_i x_i \right\|^2 \right)^{1/2} : x_1, \dots, x_k \in E, \ \mu_2(x_1, \dots, x_k) \le 1, \ k \in \mathbb{N} \right\}$$
$$\mu_p(x_1, \dots, x_k) := \sup \left\{ \left(\sum_{i \le k} |f(x_i)|^p \right)^{1/p} : f \in E^*, \ \|f\| \le 1 \right\} \qquad (1 \le p \le \infty).$$

It is well known that weak cotype 2 implies cotype q for any q > 2. See [3] for details of weak cotype 2.

The Banach space X has the Orlicz property if there exists a constant C such that for any $k \in \mathbb{N}$ and any $x_1, \ldots, x_k \in X$, we have

$$\left(\sum_{i\leq k}\|x_i\|^2\right)^{1/2}\leq C\mu_1(x_1,\ldots,x_k).$$

The Orlicz constant $\pi_{2,1}(X) := \inf C$. For more information about the Orlicz property see [1].

Glasgow Math. J. 34 (1992) 271-276.

A Banach lattice X is said to be q-concave $(q \ge 2)$ if there exists a constant D such that

$$\left(\sum_{i\leq k} \|x_i\|^q\right)^{1/q} \leq D \left\| \left(\sum_{i\leq k} |x_i|^q\right)^{1/q} \right\|$$

for any $k \in \mathbb{N}$ and any x_1, \ldots, x_k in X.

2. The weak cotype 2

THEOREM 1. d(a, 1) is of weak cotype 2 if and only if it is of cotype 2.

Proof. Assume d(a, 1) is of weak cotype 2, so d(a, 1) does not contain l_{∞}^{n} uniformly. By [4] d(a, 1) is q-concave for some $q < \infty$ and a is 1-regular. For any $n \in \mathbb{N}$, let d(a, 1; n) denote the n-dimensional subspace of d(a, 1) with all coordinates after the nth being 0. Then the q-concave constant of d(a, 1; n) is independent of n.

Let $x_1, \ldots, x_k \in d(a, 1; n)$. Then we have, using Hölder's inequality, the definition of q-concavity and Khintchine's inequality,

$$\rho_{2}(x_{1},\ldots,x_{k}) \leq \left(\frac{1}{2^{k}}\sum_{\epsilon_{i}=\pm 1}\left\|\sum_{i\leq k}\epsilon_{i}x_{i}\right\|^{q}\right)^{1/q}$$
$$\leq C_{1}\left\|\left(\frac{1}{2^{k}}\sum_{\epsilon_{i}=\pm 1}\left|\sum_{i\leq k}\epsilon_{i}x_{i}\right|^{q}\right)^{1/q}\right\|$$
$$\leq C_{2}\left\|\left\{\left(\sum_{i\leq k}x_{i}^{2}(j)\right)^{1/2}\right\}_{j=1}^{n}\right\|.$$
(1)

Without loss of generality we may assume that the numbers $\left(\sum_{i \le k} x_i^2(j)\right)^{1/2}$, for j = 1, ..., n, are decreasing. Then from (1) one has

$$\rho_2(x_1,\ldots,x_k) \leq C_2 \sum_{j \leq n} \left(\sum_{i \leq k} |x_i(j)|^2 \right)^{1/2} a_j.$$
 (2)

Suppose that $\mu_2(x_1, \ldots, x_k) = 1$. Since $y_{\epsilon} = \{\epsilon_j a_j\}_{j=1}^n \in d(a, 1; n)^*$ has norm 1 for any $\epsilon = (\epsilon_1, \ldots, \epsilon_n) \in \{-1, 1\}^n$, one has

$$\sum_{i\leq k} (y_{\epsilon}, x_i)^2 \leq 1.$$

Averaging over $\{-1, 1\}^n$ we have

$$\sum_{j \le n} \left(\sum_{j \le k} |x_i(j)|^2 \right) a_j^2 \le 1.$$
(3)

Combining (2), (3) and Lemma 1 below we have

$$\delta(d(a,1;n)) \leq C_3 \frac{\sum\limits_{j\leq n} a_j}{\left(\sum\limits_{j\leq n} a_j^2\right)^{1/2}}.$$

Meanwhile $\delta(d(a, 1; n)) \ge cn^{1/2}$, so that

$$\left(n\sum_{j\leq n}a_j^2\right)^{1/2}\leq C_4\sum_{j\leq n}a_j,$$

for $\forall n \in \mathbb{N}$. Hence a is 2-regular, since a is 1-regular, and so d(a, 1) is 2-concave by [4], equivalently of cotype 2.

LEMMA 1. Let $a = (a_1, \ldots, a_n)$, $x = (x_1, \ldots, x_n)$, with $a_1 \ge \ldots \ge a_n \ge 0$ and $x_1 \ge \ldots \ge x_n \ge 0$. Write $ax = (a_1x_1, \ldots, a_nx_n)$. Then

$$\frac{\|ax\|_1}{\|ax\|_2} \le \frac{\|a\|_1}{\|a\|_2}$$

Proof. Define $R(x_1, \ldots, x_n) = ||ax||_1/||ax||_2$ for any x as above. We show that for $1 \le k \le n-1$, we have

$$R(x_1,\ldots,x_k,x_k,\ldots,x_k) \geq R(x_1,\ldots,x_k,x_{k+1},\ldots,x_{k+1}).$$

Then the conclusion follows because $R(x_1, \ldots, x_1) = ||a||_1/||a||_2$. Define

$$F(t) = R(x_1, \ldots, x_k, t, \ldots, t) = \frac{A + Bt}{\sqrt{C + Dt^2}},$$

where

$$A = \sum_{i \le k} a_i x_i, \qquad B = \sum_{j=k+1}^n a_j,$$
$$C = \sum_{i \le k} a_i^2 x_i^2, \qquad D = \sum_{j=k+1}^n a_j^2.$$

Then

$$F'(t) = [B(C + Dt^2) - (A + Bt)Dt](C + Dt^2)^{-3/2}$$

= (BC - ADt)(C + Dt^2)^{-3/2}.

If $0 \le t \le x_k$ (and hence $t \le x_i$, for $i \le k$), then

$$ADt = \sum_{1 \le i \le k} \sum_{k+1 \le j \le n} a_i a_j^2 t x_i \le \sum_i \sum_j a_i^2 a_j x_i^2 = BC$$

Hence $F'(t) \ge 0$, and so F(t) is increasing. The statement follows.

3. Some results on Lorentz sequence spaces.

LEMMA 2. (1)
$$\mu_2(e_1, \ldots, e_n) = \sqrt{\sum_{i \le n} a_i^2}$$
 in $d(a, 1)$
(2) $\pi_{2,1}(d(a, 1)) \ge \sqrt{n} \frac{a_1}{\sum_{i \le n} a_i}$ for each n .

(3) If a is 1-regular, then for $k \ge l$,

$$l(a_{k+1}^2 + \ldots + a_{k+l}^2) \leq 4C^2(a_{k+1} + \ldots + a_{k+l})^2$$

where C is a constant independent of k and l.

J. ZHU

Proof. (1) and (2) are fairly easy. We only prove (3). By 1-regularity of a, there is a constant C such that

$$(k+1)a_{k+1} \le a_1 + \ldots + a_{k+l} \le (k+l)Ca_{k+l}$$

and so $a_{k+1} \le \frac{k+l}{k+1} C a_{k+l} \le 2C a_{k+l}$. Hence

$$l(a_{k+1}^2 + \ldots + a_{k+l}^2) \le l^2 a_{k+1}^2 \le 4C^2 l^2 a_{k+l}^2 \le 4C^2 (a_{k+1} + \ldots + a_{k+l})^2,$$

which completes the proof.

We now prove a result using Talagrand's "isoperimetric inequality" (see [6] for details). Let x_1, \ldots, x_n be elements of any linear normed space $X, \mu_2(x_1, \ldots, x_n) = \sigma$. Let P_n be the usual probability measure on $D_n = \{-1, 1\}^n$. For $\epsilon \in D_n$, write $s(\epsilon) = \sum_i \epsilon_i x_i$. For t > 0, let $A_t = \{\epsilon \in D_n : ||s(\epsilon)|| \le t\}$, $B_t = D_n \setminus A_t$. The inequality states that for M > 0, $P_n(A_M)P_n(B_{M+t}) \le \exp(-t^2/8\sigma^2)$. If $M = \int ||s(\epsilon)||$, then $P_n(B_{2M}) \le \frac{1}{2}$ by since Chebyshev's inequality $M \ge \int_{B_{2M}} ||s(\epsilon)|| \ge 2MP_n(B_{2M})$. Hence $P_n(B_{2M+t}) \le 2\exp(-t^2/8\sigma^2)$.

PROPOSITION. Let y_1, \ldots, y_N be positive elements of d(a, 1; n) with $\sum_{i \le N} y_i^2 \le 1$. Let the q-concave constant of d(a, 1; n) be C, for some $q < \infty$. Then there exist $z_1, \ldots, z_N \in d(a, 1; n)$ and C' = C'(C) such that $|z_i(j)| = y_i(j)(\forall i, j)$ and

$$\mu_1(z_1,\ldots,z_N) \leq C'\left(\sum a_i + \sqrt{N\sum a_i^2}\right).$$

This generalizes Lemma 6.4 of [5]. The proof is similar but more transparent.

Proof. Let D_{Nn} denote the set of $\epsilon = \{\epsilon_{i,j} : i \le N, j \le n\}$ with $\epsilon_{i,j} \in \{-1, 1\}$. Assuming equal probability 2^{-Nn} to each such ϵ , define $z_i^{\epsilon}(j) = \epsilon_{i,j} y_i(j)$ for $1 \le i \le N$, $1 \le j \le n$. Clearly $|z_i^{\epsilon}(j)| = y_i(j)$.

Let $\eta_i \in \{-1, 1\}$ for $1 \le i \le N$. Then

$$\sum_{i} \eta_{i} z_{i}^{\epsilon}(j) = \sum_{i} \epsilon_{i,j}^{*} y_{i}(j) = \sum_{i} z_{i}^{\epsilon^{*}}(j),$$

where $\epsilon_{i,j}^* = \eta_i \epsilon_{i,j}$. The map $\epsilon \mapsto \epsilon^*$ maps D_{Nn} onto itself.

Write $y_{i,j} = y_i(j)e_i$, so that

$$z_i^{\epsilon} = \sum_j \epsilon_{i,j} y_{i,j}.$$

If f is a linear functional on d(a, 1; n) with $||f|| \le 1$, then

$$\sum_{i} \sum_{j} f(y_{i,j})^2 = \sum_{j} \sum_{i} y_i(j)^2 f(e_j)^2$$
$$\leq \sum_{j} f(e_j)^2 \leq \sum_{i} a_i^2$$
(4)

by (1) of Lemma 2 and $\sum_{i} y_i(j)^2 \le 1$. Hence $\mu_2\{y_{i,j}: i \le N, j \le n\} \le \sqrt{k a_i^2}$.

We will show that

$$\int_{D_{Nn}} \left\| \sum_{i,j} \epsilon_{i,j} y_{i,j} \right\| dP(\epsilon) \le C' \sum a_i.$$
(5)

By the isoperimetric inequality it will then follow that

$$P_{Nn}\left\{\epsilon: \left\|\sum_{i} z_{i}^{\epsilon}\right\| \geq C' \sum a_{i} + t\right\} \leq 2\exp\left(-t^{2}/8 \sum a_{i}^{2}\right).$$

If we then choose t with $t^2 = 8N \sum a_i^2$, then for each $(\eta_i) \in D_N$, we have

$$P_{Nn}\left\{\epsilon: \left\|\sum \eta_i z_i^{\epsilon}\right\| \geq C' \sum a_i + t\right\} \leq 2e^{-N}.$$

Hence the probability of the union of such sets for all (η_i) is not greater than $2^{N+1}e^{-N}(<1, \text{ if } N>3)$. So there is an ϵ belonging to none of these sets, so that $||\sum \eta_i z_i^{\epsilon}|| \le C' \sum a_i + t$ for all (η_i) . To prove (5), note first that for each s, $\sum_j y_{i,j}(s)^2 = y_i(s)^2$, and so $\sum_{i,j} y_{i,j}(s)^2 = \sum_i y_i(s)^2 \le 1$. By the *q*-concavity and Khintchine's inequality, it is easy to obtain the statement.

4. The Orlicz property.

THEOREM 2. If d(a, 1) has the Orlicz property then a is 2-regular; equivalently d(a, 1) is of cotype 2.

Proof. Throughout the proof we use M, M_1, M_2, \ldots for the constants which are independent of *n*. Since $\pi_{2,1}(d(a, 1)) < \infty$, d(a, 1) does not contain l_{∞}^n uniformly, so by [4], *a* is 1-regular. Then it is enough to prove that there exists *M* such that $n \sum_{i \le n} a^2 \le M\left(\sum_{i \le n} a_i\right)^2$, $\forall n \in \mathbb{N}$.

Without loss of generality we may assume that $n = 2^m$. Let

$$k' = \frac{\left(\sum_{i \le n} a_i\right)^2}{\sum_{i \le n} a_i^2}.$$

Then $1 \le k' \le n$. Let k by the largest integer of the form 2^s with $k \le k'$, so that $2k \ge k'$. Note that

$$\left(k\sum_{i\leq n}a_i^2\right)^{1/2}\leq \sum_{i\leq n}a_i\leq \left(2\sum_{i\leq n}a_i^2\right)^{1/2}.$$

Let l = n/k (an integer). We must show that $l \le M_1$. Let

$$y(m) = a_{(m-1)l+1} + \ldots + a_{ml}, \qquad m = 1, \ldots, k,$$

so that $y(1) \ge \ldots \ge y(k)$. Let $y_1 = y \in \mathbf{R}^k$ and let y_2, \ldots, y_k be the elements of \mathbf{R}^k

obtained from y by cyclic permutation. Let x_i be the element (y_i, \ldots, y_i) of $(\mathbf{R}^k)^l = \mathbf{R}^n$ for $1 \le i \le k$. Then

$$||x_{i}|| = y(1)(a_{1} + \ldots + a_{l}) + y(2)(a_{l+1} + \ldots + a_{2l}) + \ldots + y(k)[a_{(k-1)l+1} + \ldots + a_{kl}] = \sum_{j \le k} y(j)^{2} = ||y||_{2}^{2}.$$
(6)

Also $\left(\sum_{i\leq k} x_i^2\right)^{1/2} = ||y||_2(1,\ldots,1).$

Since d(a, 1) is q-concave for some $q < \infty$, by the Proposition there exist z_1, \ldots, z_k such that $|z_i| = x_i$ (hence $||z_i|| = ||y||_2^2$) and

$$u_1(z_1,\ldots,z_k) \le ||y||_2 M_2 \sum_{i\le n} a_i$$

Since $(\sum ||z_i||^2)^{1/2} \le \pi_{2,1}(d(a, 1))\mu_1(z_1, \ldots, z_k)$, we have

 $\|y\|_{2} \leq M_{3} \left(\sum_{i \leq n} a_{i}^{2}\right)^{1/2}.$ (7)

By (2) of Lemma 2, $\sqrt{l}(a_1^2 + \ldots + a_l^2) \le M_4 y(1)^2$, and by (3) of Lemma 2

$$l(a_{(m-1)l+1}^2 + \ldots + a_{ml}^2) \le M_5 y(m)^2 \quad (m = 2, \ldots, k).$$

Hence

$$\sqrt{l} \sum_{i \le n} a_i^2 \le M_6 \|y\|_2^2 \le M_7 \sum_{i \le n} a_i^2$$

and so $l \leq M_1$.

ACKNOWLEDGEMENT. The author wishes to thank Dr. Jameson for his generous help in rewriting the original version and many valuable discussions.

REFERENCES

1. G. J. O. Jameson, Summing and nuclear norms in Banach space theory (Cambridge University Press, 1987).

2. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II (Springer-Verlag, 1977).

3. G. Pisier, The volume of convex bodies and Banach space geometry (Cambridge University Press, 1989).

4. S. Reisner, A factorization theorem in Banach lattices and its application to Lorentz spaces, Ann. Inst. Fourier 31 (1981), 239-255.

5. M. Talagrand, An isoperimetric inequality on the cube and the Kintchine-Kahane inequality, Proc. Amer. Math. Soc. 104 (1989), 905–909.

6. M. Talagrand, Cotype of operators from C(K), to appear.

DEPARTMENT OF MATHEMATICS University of Lancaster Lancaster LA1 4YF England