Canad. Math. Bull. Vol. 17 (2), 1974.

ON THE INEQUALITY

$$\sum_{i=1}^{n} p_i \frac{f(p_i)}{f(q_i)} \le 1$$

BY PAL FISCHER

1. In this article, we are concerned with the following inequality

(1)
$$\sum_{i=1}^{n} p_i \frac{f(p_i)}{f(q_i)} \le 1$$

where $0 < p_i < 1$, $0 < q_i < 1$, $(i=1, 2, ..., n) \sum_{i=1}^n p_i = \sum_{i=1}^n q_i = 1$, *n* is a fixed positive integer, $n \ge 2$ and $f(p) \ne 0$ for 0 .

This inequality was first considered by A. Renyi, who gave the general differentiable solution of (1) for $n \ge 3$, [1]. With the help of this inequality one can characterize Renyi's entropy [2].

We shall state later the Renyi's result, which will be a special case of the Theorem 3.

These inequalities, the so-called quasi-linear inequalities are the subject of some recent articles [4], [5], [6].

2. Let us denote by $A_1 \setminus A_2$ the following set

$$A_1 \setminus A_2 = \{X : X = X_1 - X_2, X_1 \in A_1 \text{ and } X_2 \in A_2\}, m \text{ (resp. } m)$$

denotes the Lebesque measure (resp. inner Lebesque measure), \overline{A} denotes the closure of A and f/A denotes the restriction of f to A.

In this section, we shall give the general positive and the general continuous solution of the inequality (1) for $n \ge 3$.

Let us consider the inequality (1) in that special case when n=2, i.e.

(2)
$$p\frac{f(p)}{f(q)} + (1-p)\frac{f(1-p)}{f(1-q)} \le 1$$

where 0 , <math>0 < q < 1, and $f(p) \neq 0$ for 0 .

THEOREM 1. The general positive solution of the inequality (2) is monotone decreasing and continuous.

Proof. The inequality (2) can be written in the following form:

(3)
$$p\frac{f(p)-f(q)}{f(q)} \le (1-p)\frac{f(1-q)-f(1-p)}{f(1-q)}$$

P. FISCHER

that is if f(p) > f(q) then f(1-q) > f(1-p), and from (3) we obtain, by interchanging p and q and adding

(4)
$$\left[\frac{p}{f(q)} - \frac{q}{f(p)}\right] [f(p) - f(q)] \le \left[\frac{1-p}{f(1-q)} - \frac{1-q}{f(1-p)}\right] [f(1-q) - f(1-p)]$$

If for 0 < q < p < 1 we had f(q) < f(p), then we would have f(1-q) > f(1-p), in which case f(p) does not satisfy (4).

To prove the continuity of the solution of the inequality (2) let us write it in the form

$$(5) \quad q\left[\frac{f(p)}{f(q)} + \frac{f(q)}{f(p)}\right] + (1-p)\left[\frac{f(1-p)}{f(1-q)} + \frac{f(1-q)}{f(1-p)}\right] + (p-q)\left[\frac{f(p)}{f(q)} + \frac{f(1-q)}{f(1-p)}\right] \le 2$$

If $q \nearrow p_0$ and $p \searrow p_0$, then we have

(6)
$$p_0 \left[\frac{f(p_0+0)}{f(p_0-0)} + \frac{f(p_0-0)}{f(p_0+0)} \right] + (1-p_0) \left[\frac{f(1-p_0-0)}{f(1-p_0+0)} + \frac{f(1-p_0+0)}{f(1-p_0-0)} \right] \le 2$$

Since $\min(x+1/x)=2$ occurs for x=1 it follows that $f(p_0+0)=f(p_0-0)$ and $f(1-p_0-0)=f(1-p_0+0)$ for every p, 0 , that is, <math>f is continuous. Conversely, if f is continuous it does not change its sign, so it is monotone.

Exactly the same manner we can prove the following two generalizations of the former theorem.

PROPOSITION 1. The general positive solution of the inequality

$$p_1 \frac{f(p_1)}{f(q_1)} + p_2 \frac{f(p_2)}{f(q_2)} \le p_1 + p_2$$

where p_1 , p_2 , q_1 and q_2 are positive, p_1+p_2 is fixed $p_1+p_2=q_1+q_2$ and $f(p)\neq 0$ for 0 is monotone decreasing and continuous.

PROPOSITION 2. The general solution of the inequality 2 in the interval (p, 1-p) where 0 is monotone decreasing and continuous under the hypothetis that <math>f(p) is positive in the interval (p, 1-p).

Let us assume that f(p) > 0 for 0 .

THEOREM 2. If the solution of the inequality (2) is differentiable at the point p then it is differentiable at 1-p and the following relation is valid:

(7)
$$\frac{p}{f(p)}f'(p) = \frac{1-p}{f(1-p)}f'(1-p)$$

Proof. From the inequality (3) we obtain the following inequality:

194

[June

and this inequality gives the following two equalities

(9)
$$\frac{p}{1-p}\frac{f(1-p)}{f(p)}D^{-}f(p) = D^{+}f(1-p)$$

(10)
$$\frac{p}{1-p}\frac{f(1-p)}{f(p)}D^{+}f(p) = D_{-}f(1-p)$$

which proves the theorem.

Exactly the same manner we can prove the following

PROPOSITION 3. If the solution of the inequality * is differentiable at p_0 for $0 < p_0 < p_1 + p_2$, then it is differentiable at the point $p_1 + p_2 - p_0$ and the following relation is valid

$$\frac{p_0}{f(p_0)}f'(p_0) = \frac{p_1 + p_2 - p_0}{f(p_1 + p_2 - p_0)}f'(p_1 + p_2 - p_0)$$

under the assumption that f(p) is positive in the interval $(0, p_1+p_2)$.

THEOREM 3. The general positive solution of the inequality (1) for $n \ge 3$ is differentiable, and it has the following form:

$$f(p) = dp^c$$
 where $d > 0$ and $-1 \le c \le 0$.

Proof. If in the inequality (1) we set $p_3 = q_3, \ldots, p_n = q_n$, then it follows that the solution of (1) must satisfy the inequality * in the interval $(0, p_1 + p_2)$, that is, it is monotone decreasing in the interval $(0, p_1 + p_2)$, and since it is monotone decreasing for every $0 < p_1 + p_2 < 1$ the solution of (1) is monotone decreasing in (0, 1). On the other part, from Theorem (2) and Proposition 3 we see that if the solution is differentiable at the point p, 0 , then it is also differentiable at the $point <math>(p_1 + p_2 - p)$. If there existed a point p at which f is non-differentiable, then we can find a set of points of positive measure at which f is not differentiable, but this is impossible after a Theorem of Lebesgue. Thus the solution of the inequality (1) must satisfy the following relation:

(11)
$$\frac{p}{f(p)}f'(p) = C$$

where C is non-positive, since f(p) is monotone decreasing. Thus if f(p) is a solution it has to have the form

 $(12) f(p) = dp^C$

where d > 0 and $C \le 0$.

We prove now that (12) is a solution of (1) if and only if $-1 \le C \le 0$. It is easy to prove that (12) does not satisfy (1) if C < -1, and that it satisfies (1) if C = -1 or C = 0. Let us assume that -1 < C < 0. We have to prove that

(13)
$$\sum_{i=1}^{n} p_i^{1-|C|} q_i^{|C|} \le 1$$

By virtue of the Hölder inequality we have

$$\sum_{i=1}^{n} p_i^{1-|C|} q_i^{|C|} \le \left(\sum_{i=1}^{n} p_i^{1-|C|1/1-|C|} \right)^{1-|C|} \left(\sum_{i=1}^{n} q_i^{|C|1/|C|} \right)^{|C|} = 1.$$

Therefore, the general positive solution of the inequality is

(14) $f(p) = dp^C$ where d > 0 and $-1 \le C \le 0$.

REMARK. As special case we have the general differentiable solution of the inequality (2) for $n \ge 3$. This result was obtained by A. Renyi.

3. If f(p) changes its sign then the solution of the inequality (1) is not necessarily measurable. Namely if f(p)>0 and f(p) is a solution of the inequality (1), then e(p)f(p) also satisfies (1), where e(p) is any real solution of the $x^2(p)=1$

In this section we want to give the general monotone decreasing solution of the inequality (2) with non-constant sign.

Let $A = \{p: f(p) > 0\}$, $B = \{p: f(p) < 0\}$. We prove the following:

LEMMA 1. If f is a monotone decreasing solution of the inequality (2) with nonconstant sign, then f is constant in the intervals (0, a) and (1-a, 1) where $a = \min(m(A), m(B))$.

Proof. Let 0 . If <math>f(p) > f(q), then we have a contradiction by the inequality (3); and for the same reason it is impossible that for 1-a < q < p < 1, f(q) is greater than f(p).

If $m(B) \ge m(A)$; then the only monotone decreasing solution is

$$f(p) = \begin{cases} C_1 > 0 & \text{for } p \in A \\ C_2 < 0 & \text{for } p \in B \end{cases}$$

if m(B) > m(A), then f(p) < 0 for m(A) so according to Proposition 2 it is monotone increasing. If <math>m(B) < m(A), then the general monotone decreasing solution has the following form:

$$f(p) = \begin{cases} C & \text{for } 0 0 \\ f(p) & \text{for } m(B) 0 \end{cases}$$

where f(p)>0 in the interval (m(B), 1-m(B)) and f satisfies in this interval the inequality (2), and moreover,

$$m(B)\frac{C}{f(1-m(B)-0)} \le 1 + \frac{d}{f(m(B)+0)}(1-m(B))$$

4. In the following, we do not assume that f(p) > 0 for every $p \in (0, 1)$. Let us define by

$$\begin{aligned} &A_1 = \{p : f(p) > 0, 0 0, 0$$

196

https://doi.org/10.4153/CMB-1974-039-8 Published online by Cambridge University Press

[June

LEMMA 2. If f is a solution of the inequality (1) for $n \ge 3$ then f is monotone decreasing in A_1 and f is monotone increasing in B_1 . Furthermore, f|A (resp. f|B) is continuous on A_1 (resp. B_1).

We omit the proof of this Lemma. We shall prove the following

THEOREM 4. If $m_*(A \cap (0, x)) > 0$ for every positive x, and if $\overline{A} \supset [\frac{1}{2}, 1]$ then f|A is monotone decreasing and continuous.

Proof. If the result were not true, then we can find p_1 and q_1 such that $f(p_1)>0$, $f(q_1)>0$, $0< p_1< q_1$, $f(p_1)< f(q_1)$ and $\frac{1}{2}< q_1$. It is then easy to see that for every $\delta>0$, we can find in the interval $[p_1, q_1] p'_1$ and q'_1 such that $p'_1< q'_1>\frac{1}{2}p'_1+\delta>q'_1$ and $0< f(p'_1)< f(q'_1)$. If we choose δ such that $0<\delta<1-q_1$ and δ less than the length of the interval contained in $A \cap (0, 1-q_1)/A \cap (0, 1-q_1)$ with left endpoint x=0, then it is easy to see, that

$$q_1'\frac{f(q_1')}{f(p_1')} + q_2\frac{f(q_2)}{f(p_2)} + (1 - q_1' - q_2) \le 1$$

is impossible where $f(q_2)>0$, $f(p_2)>0$, because $\frac{1}{2}>p_2>q_2$ and it was shown that for these values f is monotone decreasing. To prove the continuity, it suffices to prove first that for every p/2 , <math>f/A(p-0)=f/A(p+0). Let us assume that for a fixed p/2 , <math>f/A(p-0)>f/A(p+0) and let

$$\frac{f/A(p-0)}{f/A(p+0)} = 1 + \varepsilon \qquad \text{where } \varepsilon > 0,$$

let p_m be a monotone increasing sequence and q_m be a monotone decreasing

$$\frac{1}{2} < p_m < p$$
 and $p < q_m < 1$

 $\lim p_m = p, \lim q_m = p \text{ and } p_m \in m \quad (m = 1, 2, \ldots).$

Thus if $m \ge N_0$ we can find $p'_m \in A$ and $q'_m \in A$ such that $q'_m - p'_m = q_m - p_m$ and $\lim p'_m = \lim q'_m = 0$.

$$p_m \frac{f(p_m)}{f(q_m)} + p'_m \frac{f(p'_m)}{f(q'_m)} + (1 - p_m - p'_m) \le 1$$

And if $m \rightarrow \infty$ we obtain that

$$p(1+\varepsilon)+(1-p) \le 1$$

Furthermore it is easy to see that $f/A(\frac{1}{2}-0)=f/A(\frac{1}{2}+0)$ if $f/A(\frac{1}{2}-0)$ exists, which proves the theorem. In the same manner one can prove the following

PROPOSITION 4. If $A \cap (0, x)$ has the Baire property and if it is a set of second category for every positive x, and if furthermore $\overline{A} \supset [\frac{1}{2}, 1]$, then f|A is monotone decreasing and continuous.

THEOREM 5. Let f(x) be a solution of the inequality (1) for $n \ge 3$ such that $\lim_{x \to +0} x f(x) = 0$. If $\overline{A} \supset [\frac{1}{2} - \varepsilon, \frac{1}{2}]$, where ε is an arbitrary small positive number then f is monotone decreasing on A.

***Proof.** We can assume that in (*) $\lim_{p \to +0} pf(p) = 0$ then we obtain (since this limit can be performed holding p_1 fixed) $f(p_1)/f(q_1) \le 1$ whenever $0 < q_1 \le p_1 < 1$, $p_1 - q_1 < \frac{1}{2}$, $p_1 \in A$, $q_1 \in A_1$ since from the Lemma 2 follows that

$$\liminf_{q_2 \to p_1 - q_1 + 0} |f(q_2)| > 0.$$

Let $p'_1 \in A$, $q'_1 \in A$ and $0 < q'_1 < p'_1 < 1$, where $p'_1 - q'_1 > \frac{1}{2}$ then we can find a p'_2 , such that

$$q_1' = p_3' < p_2' < p_1'$$

$$p'_2 - p'_3 < \frac{1}{2}$$
 and $p'_1 - p'_2 < \frac{1}{2}$

In this case

$$\frac{f(p')}{f(q_1')} \!=\! \frac{f(p_1') f(p_2')}{f(p_2') f(p_2')} \!\leq 1$$

which proves the Theorem.

and such that $p'_2 \in A$ and

Finally, we shall prove the following theorem.

THEOREM 6. Let f(x) be a solution of the inequality (1) for $n \ge 3$. Let $\overline{A} \supset [\frac{1}{2}, 1]$, and let us assume that there exists an interval $(0, p_0)$ such that for every $p \in (0, p_0)$ p is a point of maximal density of A, and that for every positive $x m(A \cap (0, x)) > 0$. Then the function

(15)
$$f^*(p) = \begin{cases} f(p) & \text{for } p \in A \\ \text{continuous on } (0, 1) \end{cases}$$

satisfies the inequality (*) on the interval $(0, p_0)$.

Proof. Let p_1 , p_2 be arbitrary positive numbers such that $p_1+p_2 < p_0$. As f satisfies the inequality (1), it satisfies the following relation:

$$p_1 \frac{f(p_1)}{f(q_1)} + p_2 \frac{f(p_2)}{f(q_2)} + (1 - p_1 - p_2) \le 1$$

Let $p_1^{(m)}$, $p_2^{(m)}$ be sequences such that $p_1^{(m)} \rightarrow p_1$, $p_2^{(m)} \rightarrow p_2$, $p_1^{(m)} + p_2^{(m)} = p_1 + p_2$, and $f(p_1^{(m)}) > 0$, $f(p_2^{(m)}) > 0$. The existence of such sequences follows from the following result. Let A_1 and A_2 be sets of positive measures, let X_1 (resp. X_2) be a point of maximal density with respect to A_1 (resp. A_2) where X_1 does not necessarily belong to A_1 (resp. A_2). Then there exist sequences X_m^1 and X_m^{11} such that $X_m^1 \in A_1$, $X_m^{11} \in A_2$

^{*} We wish to express our thanks to the Referee for the simplification of the proof of this Theorem and for his very helpful suggestions.

INEQUALITY

(m=1, 2, ...) $X_m^1 \rightarrow X_1$, $X_m^{11} \rightarrow X_2$ and $X_m^1 - X_m^{11} = X_1 - X_2$. (This result slightly generalizes a theorem of Kemperman [7].) Since

(16)
$$p_1^{(m)} \frac{f(p_1^{(m)})}{f(q_1)} + p_2^{(m)} \frac{f(p_2^{(m)})}{f(q_2)} + (1 - p_1 - p_2) \le 1$$

we have from the continuity and the monotoncity of f|A that

$$p_1 \frac{f^*(p_1)}{f(q_1)} + p_2 \frac{f^*(p_2)}{f(q_2)} + (1 - p_1 - p_2) \le 1.$$

On the other hand, let $q_1^{(m)}$, $q_2^{(m)}$ be sequences such that

$$q_1^{(m)} \to q_1 q_2^{(m)} \to q_2, \qquad q_1^{(m)} + q_2^{(m)} = q_1 + q_2$$

and $f(q_1^{(m)}) > 0$, $f(q_2^{(m)}) > 0$. Since

$$p_1 \frac{f^*(p_1)}{f(q^{(m)})} + p_2 \frac{f^*(p_2)}{f(q_2^{(m)})} \le p_1 + p_2$$

we have

$$p_1 \frac{f^*(p_1)}{f^*(q_1)} + p_2 \frac{f^*(p_2)}{f^*(q_2)} \le p_1 + p_2$$

As a corollary of Theorem 3, it can be proved that if f^* satisfies the inequality (17) for every $0 < p_1 + p_2 < p_0$, then it has the form

$$f^*(p) = dp^c \text{ for } 0$$

where d > 0, and $-1 \le C \le 0$.

References

1. A. Renyi, Unpublished.

2. A. Renyi, On the Foundations of Information Theory, Rev. Inst. Internat. Stat. 33 (1965), 1-14.

3. J. Aczel and G. Pfanzagl, Remarks on the Measurement of Subjective Probability and Information, Metrika II (1966), 91-105.

4. J. Aczel and Z. Daroczy, *Measures of Information and their Characterizations*, Academic Press, New York, in preparation.

5. P. Fischer, On the inequality $\sum p_i f(p_i) \ge \sum p_i f(q_i)$, Metrika, Vol. 18 1972, 199–208.

6. P. Fischer, On the inequality $\sum g(p_i)f(p_i) \ge \sum g(p_i)f(q_i)$, in print, Aequation. Math.

7. J. M. B. Kemperman, A general functional equation Transactions of the American Math. Society, 1957, pp. 28-56, 1957.

This work was supported in part by N.R.C. Grant A 8040.

1974]