Atmospheric CO$_2$, CH$_4$ and N$_2$O records over the past 60 000 years based on the comparison of different polar ice cores

Bernard STAUFFER,¹ Jacqueline FLÜCKIGER,¹ Eric MONNIN,¹ Jakob SCHWANDER,¹ Jean-Marc BARNOLA,² Jérôme CHAPPELLAZ²

¹Physics Institute, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland E-mail: stauffer@climate.unibe.ch

²Laboratoire de Glaciologie et Géophysique de l’Environnement du CNRS, Domaine Universitaire, 54 rue Molière, BP 96, 38402 Saint-Martin-d’Hères Cedex, France

ABSTRACT. Analyses of air extracted from polar ice cores are the most straightforward method of reconstructing the atmospheric concentrations of greenhouse gases and their variations for past climatic epochs. These measurements show that the concentration of the three most important greenhouse gases (other than water vapour) CO$_2$, CH$_4$ and N$_2$O have steadily increased during the past 250 years due to anthropogenic activities (Prather and others, 2001; Prentice and others, 2001). Ice-core results also provided the first evidence of a substantial increase in the concentration of the three gases during the transition from the last glacial epoch to the Holocene (Raynaud and others, 1993). However, results from different cores are not always in agreement concerning details and small, short-term variations. The composition of the air enclosed in bubbles can be slightly changed by fractionation during the enclosure process, by chemical reactions and/or biological activity in the ice and by fractionation during the air extraction. We compile here several records with short-term variations or anomalies and discuss possible causes, taking into account improved analytical techniques and new results.

INTRODUCTION

During the past decade, new ice cores have become available from Greenland and Antarctica, and analytical techniques have been improved. Analyses of the concentration of the three greenhouse gases CO$_2$, CH$_4$ and N$_2$O have provided more reliable results which have confirmed the general features of earlier findings: the industrial increase of all three components, and significant changes in the concentration of all three gases parallel to the large climatic cycles.

This paper focuses mainly on smaller variations. Several of these were published many years ago and some have been called tentative and questionable. We will discuss their likelihood by comparing them with recently published records and present state-of-the-art records of the atmospheric composition of the three air components for the last millennium, the Holocene, the transition from the last glacial epoch to the Holocene and part of the last glacial epoch (<60 000 years BP).

One way of testing the validity of ice-core results is to compare them with mixing ratios measured directly in atmospheric air, but this is applicable only to the last 10–50 years at most. For older periods the main measure of the reliability of ice-core results is their consistency between ice cores from different drilling sites with different temperatures, accumulation rates and impurity concentrations. Such tests have shown that CO$_2$ and N$_2$O, and possibly to a lesser extent also CH$_4$, can be produced or depleted in the ice by chemical reactions between impurities or biological activities even at very low temperature (Anklin and others, 1995; Flückiger and others, 1999; Tschumi and Stauffer, 2000; Sowers, 2001). Such artefacts may affect smaller, short-term variations, rather than the general trend. Uncertainties in the age scales of different ice cores make it difficult to verify short-term variations by testing the consistency between different cores. Also the consistency of results with values measured in atmospheric air in the short overlapping interval loses some of its power, since chemical reactions take time, and the reaction products may not yet be observed in relatively young ice.

Only ice cores from very cold locations where summer melting can be excluded are suitable for CO$_2$ analyses, due to the high solubility of CO$_2$ in water. An enhancement of CO$_2$ is not necessarily confined to visible melt layers. CO$_2$ is also enriched due to high solubility in snow crystals and firn grains. The air dissolved in these grains is gradually enriched in CO$_2$ (Tschumi et al., 1982). CO$_2$ can be modified in the ice by acid–carbonate reactions if carbonate particulates are present (Delmas, 1993; Smith and others, 1997). CO$_2$ depletion can occur due to fractionation during the extraction procedure, especially in ice from the transition zone of ice sheets where the air is partly enclosed in clathrates, as bubble air is more easily extracted and is slightly...
depleted in CO$_2$ relative to air in clathrates (Stauffer and Tschumi, 2000). The analytical reproducibility of CO$_2$ analyses on ice cores, including the extraction procedure, is reported to be 1.2 (Etheridge and others, 1996) to 3 ppm (Barnola and others, 1995) (1σ scatter). If we assume that the analytical reproducibility is well constrained and that Antarctic ice cores from cold sites with low impurity content contain undisturbed atmospheric air, replicate measurements on neighbouring ice samples should lead to a scatter comparable to the analytical reproducibility. However, recent high-resolution records along short ice-core sections representing a few annual layers on Dome Concordia and Kohlen station ice cores reveal a higher scatter than the analytical reproducibility (2–3.5 ppmv compared to analytical reproducibility of 1.5 ppmv).

The consistency between CH$_4$ mixing ratios measured on different polar ice cores is much better than for CO$_2$. The solubility is much smaller, although air dissolved in water at equilibrium contains twice as much methane as the equilibrated atmosphere. There is some evidence that at least in mid-latitude glaciers, CH$_4$ can be enriched in the ice by a solubility effect. The production or depletion of CH$_4$ due to chemical reactions is less probable than in the case of CO$_2$. Reduction of organic compounds to CH$_4$ or combustion of CH$_4$ are high-temperature processes, requiring in most cases a catalyst. Low-temperature processes only include reactions with radicals such as OH or Cl. These radicals are unlikely to exist in polar ice. On the other hand, CH$_4$ might be produced by bacterial activity. Bacteria are known to be present in polar ice. The analytical reproducibility of CH$_4$ analyses (1σ scatter) is between 5 ppmv (Etheridge and others, 1998) and 10 ppmv (Chappellaz and others, 1995; Sowers and others, 1997).

N$_2$O is almost as soluble in water as CO$_2$. Therefore, the same strong criteria concerning melting–refreezing processes as for CO$_2$ are valid for reliable results. There is no obvious chemical reaction which could produce N$_2$O between impurities in the ice. The reaction of ammonium and nitrate to N$_2$O and water is an endothermic reaction. Whether small amounts of N$_2$O can be produced under special circumstances (catalysis) by this reaction is not known. On the other hand, N$_2$O can be produced by bacterial activity in the ice (Sowers, 2005). The mean analytical reproducibility (1σ scatter) of the data presented is between 2 ppmv (Machida and others, 1995) and 4 ppmv (Flückiger and others, 1999).

THE LAST MILLENNIUM

The general trend of the atmospheric concentration of the three greenhouse gases reconstructed based on ice-core analyses gives a consistent picture of an almost constant level during the last millennium, terminated by the dramatic anthropogenic increase during about the last 250 years. The records using the results published by the Intergovernmental Panel on Climate Change (Prather and others, 2008; Prentice and others, 2008) and additional measurements of the three components are shown in Figure 1.

Figure 2a shows CO$_2$ results for the first eight centuries of the last millennium. The most recent and most reliable record has been obtained from samples from Law Dome, Antarctica (Dome Summit South: 66°46′ S, 112°48′ E; $T_a = -22^\circ C$, $a = 650$ mm ice a$^{-1}$) (Etheridge and others, 1996). The reproducibility of these CO$_2$ results is 1.2 ppmv, and the individual results represent a small time interval due to the high accumulation at Law Dome. However, this is a single record from one drilling site and awaits confirmation from other ice cores. It can be compared with older records from less suited Antarctic drill sites with smaller annual accumulation rates. In order to compare the Law Dome record with other results with a higher uncertainty and a larger age distribution of individual measurements, we used a spline with a cut-off time of 200 years to the Law Dome results and results from D47 (67°23′ S, 138°43′ E; $T_a = -25.8^\circ C$, $a = 290$ mm ice a$^{-1}$), D57 (68°11′ S, 137°33′ E; $T_a = -32^\circ C$, $a = 190$ mm ice a$^{-1}$) (Barnola and others, 1995) and South Pole (90° S; $T_a = -51^\circ C$, $a = 90$ mm ice a$^{-1}$) (Siegenthaler and others, 1988).

Both records show variations in the order of 5–10 ppmv, which are significant for both datasets. However, the time evolutions of the two smoothed records do not agree. New, very detailed
measurements along well-suited ice cores are needed to verify and improve the record from Etheridge and others (1996). There are several CH4 records from various ice cores covering substantial parts of the last millennium (Blunier and others, 1993; Nakazawa and others, 1999; Enting, 1987). Solid line: spline through all results from D47, D57 and South Pole; dashed line: spline through all results from Law Dome; both with a cut-off period of 200 years (Enting, 1987). (b) CH4 results from Antarctic and Greenland ice cores. Solid line: spline fits through all individual results from GRIP and EUROCORE (upper) and through the results from Law Dome (lower) with a cut-off period of 200 years.

which is done in Figure 2b. The triangles represent new unpublished data from the EUROCORE, and the squares published and new results from the GRIP ice core from Summit. The new EUROCORE and GRIP results have an uncertainty of 10 ppbv (1σ). Etheridge and others (1998) give a reproducibility of 5 ppbv (1σ). Because CH4 sources are concentrated in the Northern Hemisphere and the CH4 residence time in the atmosphere is only ten times longer than the interhemispheric exchange time, there is already in pre-industrial times a substantial concentration difference between the two hemispheres. This was estimated by Chappellaz and others (1997) to be on average 35 ± 7 ppbv over the pre-industrial part of the last millennium, while Etheridge and others (1998) give a difference varying between 24 and 58 ± 10 ppbv. A salient feature of Blunier and others’ (1993) record is a maximum around 1150 AD. This maximum is confirmed by Etheridge and others (1998) but with a smaller amplitude. New measurements performed in Bern (1σ accuracy 10 ppbv) on ice cores from Summit confirm an attenuated maximum. Blunier and others’ (1993) record shows a minimum around 1350, and already increasing values around 1500, long before the end of the Little Ice Age, while Etheridge and others (1998) claim that their results reflect the Little Ice Age quite well. However, if we apply the same spline fitting through the latter’s results and all available results from Summit (results from Blunier and others (1993) and Chappellaz and others, 1997 and new unpublished results), two almost parallel smoothed records are obtained. Based on the two records from two different ice cores showing synchronous variations with similar amplitudes, we conclude that these variations very likely represent variations of the atmospheric CH4 mixing ratio.

For N2O there are only two records covering with a small scatter substantial parts of the last millennium. Figure 1 shows the records of Machida and others (1995) and Fluckiger and others (1999). The comparison with new measurements from Dome Concordia, Antarctica, is discussed by Fluckiger and others (2002). With the available records no significant concentration variations are observed during the first seven centuries. To obtain the same accuracy and reliability for the N2O record as for CO2 and CH4 the analytical precision must be improved, and higher-resolution records from different ice cores are needed to interpret possible short-term variations.

THE HOLOCENE

Records of the three greenhouse gases covering the entire Holocene are shown in Figure 3. There are two CO2 records from Taylor Dome, Antarctica (diagonal crosses) (77°48’S, 158°43’E; Tm = −42°C, a = 70 mm ice a−1) (Indermühle and others, 1999) and from Dome Concordia (open triangles) (75°06’S, 158°43’E; Tm = −54°C, a = 27 mm ice a−1) (Fluckiger and others, 2002), both plotted on their original published time-scales. The two CO2 records, one from Summit (diagonal crosses) (Blunier and others, 1995; Chappellaz and others, 1997), the other from Dome Concordia (open triangles) (Fluckiger and others, 2002), and a first N2O record covering the Holocene from Dome Concordia (Fluckiger and others, 2002) are also plotted on the original unmatched time-scales. The two CO2 records agree in general, but there are significant differences in the time window 7500–5000 years BP.
There are two possible explanations for these differences, which are far above experimental uncertainties. Either one of the ice cores is affected by an artefact that changes the CO$_2$ concentration in the bubbles of the ice, or the two age scales deviate substantially from each other. A production of CO$_2$ in Antarctic ice corresponding to a concentration increase of 5 ppmv cannot be excluded in principle. The time period during which the difference occurs coincides with the climatic optimum (about 6000 years BP and N$_2$O concentration. The grey solid line is a spline through all N$_2$O results with a cut-off period of 3000 years).

Last-Glacial to Holocene Transition

The transition from the last glacial epoch to the Holocene, with the large global temperature increase accompanied by an increase in atmospheric greenhouse-gas concentrations, is a key epoch for the understanding of mechanisms of global climatic change. Analyses along the new Dome Concordia ice core allowed reconstruction of the increase of the CO$_2$ concentration with an excellent time resolution and a small scatter (Monnin and others, 2001). The results agree well with earlier measurements on Antarctic ice cores within the error limits (Fischer and others, 1999). However, a serious problem is the age scale. If we compare the Dome Concordia CH$_4$ record (time-scale EDC1 (Schwander and others, 2001)) with the GRIP CH$_4$ record (time-scale SS09 (Schwander and others, 1997)) we observe, for example, for the transition from the Younger Dryas to the Holocene an age difference of 500 years, which makes any comparisons difficult. Therefore, we matched the two time-scales using the two CH$_4$ records, assuming that fast CH$_4$ variations occur simultaneously in both hemispheres due to the fast atmospheric mixing time of CH$_4$, and refer all results to the GRIP time-scale. The records of the three greenhouse gases are shown in Figure 4 together with the δD (Jouzel and others, 2001) and δ18O (Dansgaard and others, 1993) records of Dome Concordia and GRIP, respectively, which are

![Fig. 3. CO$_2$, CH$_4$ and N$_2$O records covering the Holocene (11000–250 years BP). Top: CO$_2$ concentration. ×, Taylor Dome (Indermühle and others, 1999); Δ, Dome Concordia (Flückiger and others, 2002). Middle: CH$_4$ concentration in Greenland and Antarctica. ×, GRIP (Chappellaz and others, 1997); Δ, Dome Concordia (Flückiger and others, 2002). Bottom: N$_2$O concentration measured on samples from Dome Concordia (Flückiger and others, 2002). The grey solid line is a spline through all N$_2$O results with a cut-off period of 3000 years.](https://www.cambridge.org/core)
proxies for the local temperature. For the age scale of the two isotope records measured on ice, additional uncertainties concerning the age difference (200–500 years) between ice and enclosed air must be taken into account. The CO$_2$ record from Dome Concordia shows that the beginning of the increase is approximately synchronous or only a few hundred years delayed compared to the temperature increase measured along the same core. The general trend follows rather closely the temperature increase in Antarctica and thus supports the idea that the Southern Ocean was an important factor controlling atmospheric CO$_2$ concentration during the transition. However, very fast small increases are observed at the beginning of the Bolling/Allerød warm period and the Preboreal, events which are typical for the Northern Hemisphere. This suggests that processes connected to these events, possibly changes of the deep water formation, also have a significant influence on atmospheric CO$_2$ concentration.

The CH$_4$ record confirms records measured on other ice cores. Since the presented CO$_2$ and CH$_4$ data have been measured on the same ice core, the two records can be compared without any assumption about age scales or age differences between ice and enclosed air. The distinct concentration changes of the methane allow us, on the other hand, to synchronize the records precisely with age scales from other ice cores (as used here to match the GRIP and the Dome Concordia time-scales).

The N$_2$O record from Dome Concordia is compared with a record from the GRIP ice core (Fluckiger and others, 1999). The values agree quite well in the period 14,500–11,000 years BP, but deviate substantially before that. In the GRIP ice core, sporadic elevated values have been observed during the glacial epoch, mainly in depth intervals with elevated dust concentrations, corresponding to the beginning or even the first part of Dansgaard/Oeschger events. In the Dome Concordia ice core, the elevated, highly scattered values in the late glacial epoch are more general. Similar high values connected with a large scatter have also been found in the Vostok ice core in the time period preceding the penultimate deglaciation (Sowers, 2001). At present we have no explanation for the elevated values. An important task will be to investigate the mechanisms which produce N$_2$O in the ice.

THE SECOND PART OF THE LAST GLACIAL EPOCH

The second part of the last glacial epoch (<60,000 years BP) is characterized by drastic and fast temperature changes in the Northern Hemisphere, documented in the Dansgaard/Oeschger events recorded in the Greenland ice cores. The Antarctic records show fewer and much less pronounced temperature variations. It was a big surprise when results from the Dye 3 ice core suggested that the atmospheric CO$_2$ concentration varied parallel to Dansgaard/Oeschger events with amplitudes of about 50 ppmv (Stauffer and others, 1984). Later results measured along the ice core from Byrd station did not confirm variations of this order and created a serious problem (Oeschger and others, 1988). The dilemma could only be solved after it became possible to synchronize the age scale of enclosed air between Greenland and Antarctic ice cores with CH$_4$ variations (Stauffer and others, 1998). The large variations measured in Greenland ice cores are an artefact, caused most probably by production of CO$_2$ by chemical reactions between impurities in the ice (Smith and others, 1997). On the other hand, the synchronized Byrd record suggested that the atmospheric CO$_2$ concentration varied parallel to Dansgaard/Oeschger events with amplitudes of about 50 ppmv (Stauffer and others, 1998). The large variations measured in Greenland ice cores are an artefact, caused most probably by production of CO$_2$ by chemical reactions between impurities in the ice (Smith and others, 1997). On the other hand, the synchronized Byrd record suggested that the atmospheric CO$_2$ concentration varied parallel to Dansgaard/Oeschger events with amplitudes of about 50 ppmv (Stauffer and others, 1998). The large variations measured in Greenland ice cores are an artefact, caused most probably by production of CO$_2$ by chemical reactions between impurities in the ice (Smith and others, 1997). On the other hand, the synchronized Byrd record suggested that the atmospheric CO$_2$ concentration varied parallel to Dansgaard/Oeschger events with amplitudes of about 50 ppmv (Stauffer and others, 1998). The large variations measured in Greenland ice cores are an artefact, caused most probably by production of CO$_2$ by chemical reactions between impurities in the ice (Smith and others, 1997). On the other hand, the synchronized Byrd record suggested that the atmospheric CO$_2$ concentration varied parallel to Dansgaard/Oeschger events with amplitudes of about 50 ppmv (Stauffer and others, 1998). The large variations measured in Greenland ice cores are an artefact, caused most probably by production of CO$_2$ by chemical reactions between impurities in the ice (Smith and others, 1997). On the other hand, the synchronized Byrd record suggested that the atmospheric CO$_2$ concentration varied parallel to Dansgaard/Oeschger events with amplitudes of about 50 ppmv (Stauffer and others, 1998). The large variations measured in Greenland ice cores are an artefact, caused most probably by production of CO$_2$ by chemical reactions between impurities in the ice (Smith and others, 1997). On the other hand, the synchronized Byrd record suggested that the atmospheric CO$_2$ concentration varied parallel to Dansgaard/Oeschger events with amplitudes of about 50 ppmv (Stauffer and others, 1998). The large variations measured in Greenland ice cores are an artefact, caused most probably by production of CO$_2$ by chemical reactions between impurities in the ice (Smith and others, 1997). On the other hand, the synchronized Byrd record suggested that the atmospheric CO$_2$ concentration varied parallel to Dansgaard/Oeschger events with amplitudes of about 50 ppmv (Stauffer and others, 1998). The large variations measured in Greenland ice cores are an artefact, caused most probably by production of CO$_2$ by chemical reactions between impurities in the ice (Smith and others, 1997).
Dansgaard/Oeschger events 8, 12, 14 and 17 in the Northern Hemisphere (Blunier and others, 1998).

Figure 5 (lowest part) shows a composite CH$_4$ record. The last 11 000 years are a repetition of Figure 3; the transition shows the Dome Concordia record from Figure 4 together with GRIP CH$_4$ results (Chappellaz and others, 1997). The Antarctic data from 60 000 to 18 000 years BP are from Byrd; the Greenland data are a composite of Greenland Ice Sheet Project 2 (GISP2) (60 000–47 000 years BP) and GRIP (47 000–18 000 years BP). We consider the composite record a quite reliable reconstruction of the atmospheric CH$_4$ concentration over the past 60 000 years. Based on these records, we conclude that it is easier to determine Northern Hemisphere–Southern Hemisphere concentration differences for the Holocene than for the last glacial epoch. The estimates from Dallenbach and others (2000) for the last glacial epoch are still a best estimate, but they must be considered tentative, and more measurements with a higher depth resolution and possibly higher accuracy are needed.

N$_2$O has only been measured over Dansgaard/Oeschger event 8, where it clearly shows an increase from <210 ppbv to >250 ppbv before decreasing again to <210 ppbv. The general pattern of the N$_2$O record during this event is similar to that of CH$_4$ (Fluckiger and others, 1999), but no continuous record over the entire second part of the last glacial epoch is yet available.

CONCLUSIONS

The records presented in Figure 5 are considered a very likely reconstruction of the evolution of the atmospheric CO$_2$ and CH$_4$ concentration during the pre-industrial part of the past 60 000 years.

We consider variations of the CO$_2$ concentration during the last glacial epoch simultaneous with warming events in Antarctica, the detailed evolution of the CO$_2$ concentration during the transition and the general behaviour during the Holocene to be very likely. The increase of the atmospheric CO$_2$ concentration during the past 250 years is a fact, but small short-term variations found in the first 750 years of the last millennium need to be verified. The agreement of various CH$_4$ records shows that long- and short-term variations very likely represent the evolution of the atmospheric CH$_4$ concentration over the past 60 000 years. The precision is good enough to reconstruct reliable concentration differences...
Stauffer and others: Atmospheric CO$_2$, CH$_4$ and N$_2$O from polar ice cores

start-up phase. The increase of the atmospheric concentration during the transition from the last glacial epoch to the Holocene and during the past 250 years is based on results from various records and can be considered very likely. The concentration change parallel to Dansgaard/Oeschger event 8 and the transition has been found in both an Antarctic and a Greenland ice core and is considered to present very probably a variation of the atmospheric N$_2$O concentration. There is good evidence that the record of the N$_2$O concentration during the Holocene as shown in Figure 3 represents the atmospheric N$_2$O concentration, but this finding needs to be confirmed by measurements along other ice cores.

ACKNOWLEDGEMENTS

This work was supported by the Swiss National Science Foundation, the University of Bern, the Bundesamt für Energie and the Bundesamt für Bildung und Wissenschaft.

REFERENCES

