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Abstract

Field studies were conducted to determine the effects of synthetic auxin herbicides at simulated
exposure rates applied to ‘Covington’ sweetpotato propagation beds on the quality of nonrooted
stem cuttings (slips). Treatments included diglycolamine salt of dicamba, 2,4-D choline plus
nonionic surfactant (NIS), and 2,4-D choline plus glyphosate at 1/10, 1/33, or 1/66 of a 1X appli-
cation rate (560 g ae ha−1 dicamba, 1,065 g ae ha−1 2,4-D choline, 1,130 g ae ha−1 glyphosate)
applied at 2 or 4 wk after first slip harvest (WASH). Injury to sweetpotato 2 wk after treatment
was greatest when herbicides were applied 2 WASH (21%) compared to 4 WASH (16%). More
slip injury was caused by 2,4-D choline than by dicamba, and the addition of glyphosate did not
increase injury over 2,4-D choline alone. Two weeks after the second application, sweetpotato
slips were cut 2 cm above the soil surface and transplanted into production fields. In 2019,
sweetpotato ground coverage 8 wk after transplanting was reduced 37% and 26% by the 1/
10X rates of dicamba and 2,4-D choline plus NIS, respectively. Though dicamba caused less
injury to propagation beds than 2,4-D choline with or without glyphosate, after transplanting,
slips treated with 1/10X dicamba did not recover as quickly as those treated with 2,4-D choline.
In 2020, sweetpotato ground coverage was 90% or greater for all treatments. Dicamba applied 2
WASH decreased marketable sweetpotato storage root yield by 59% compared to the non-
treated check, whereas treatments including 2,4-D choline reduced marketable yield 22% to
29%. All herbicides applied at 4 WASH reduced marketable yield 31% to 36%. The addition
of glyphosate to 2,4-D choline did not increase sweetpotato yield. Results indicate that caution
should be taken when deciding whether to transplant sweetpotato slips that are suspected to
have been exposed to dicamba or 2,4-D choline.

Introduction

As a result of increases in glyphosate-resistant weed populations, growers are relying on alter-
nativemodes of action for successful management (Duke 2015). Because few cases of weed resis-
tance to synthetic auxin herbicides have been reported (Busi et al. 2018), they are used as an
alternative to glyphosate for controlling resistant biotypes. In 2019, 2,4-D and dicamba were
applied to 35% and 45% of U.S. cotton, respectively (USDA 2020). In 2018, 26% of North
Carolina’s soybean hectares were dicamba-tolerant (Wechsler et al. 2019). The same year,
1% of non-dicamba-tolerant soybean fields in North Carolina exhibited symptoms attributable
to off-target injury from dicamba (Wechsler et al. 2019). Synthetic auxin herbicides are prone to
volatilization and subsequent off-target movement (Behrens and Lueschen 1979; Rensburg and
Breeze 1990). Thus supplemental application restrictions have been placed on synthetic auxin
herbicides in an attempt to prevent off-target movement. In addition, synthetic auxin herbicide
residue can remain in spray equipment and injure subsequently treated nontarget crops
(Boerboom 2004; Inman et al. 2020). Inman et al. (2020) reported notable concentrations of
residual dicamba even after sequential tank rinses.

In 2020, the United States produced 63,500 ha of sweetpotato (USDA-NASS 2020). North
Carolina is the largest producer of sweetpotato in the United States, accounting for 67% of the
harvested area (USDA-NASS 2020). Sweetpotato is a high-value crop, with a production value of
US$726 million and US$375 million in the United States and North Carolina, respectively
(USDA-NASS 2020). Sweetpotato is susceptible to injury from synthetic auxin herbicides, with
Batts et al. (2020a, 2020b) reporting a reduction in ‘Beauregard’ sweetpotato yield with increas-
ing rates (1/1,000 to 1/10X) of 2,4-D choline and N,N-Bis(3-aminopropyl)methylamine
(BAPMA) and diglycolamine (DGA) salt of dicamba when applied both alone and in combi-
nation with glyphosate 30 d after transplanting (DAP). Miller et al. (2020) also observed a
decrease in ‘Beauregard’ sweetpotato yield with increasing rates (1/100 to 1/10X) of 2,4-D
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choline or DGA salt of dicamba when applied in combination with
glyphosate at 30 DAP. Dicamba plus glyphosate applied at 1/100 to
1/33X increased injury by a difference of 11 to 12 percentage points
compared to 2,4-D choline plus glyphosate 2 wk after treatment
(WAT); however, 1/10X 2,4-D choline plus glyphosate increased
injury by a difference of 10% compared to 1/10X dicamba plus
glyphosate 2 WAT (Miller et al. 2020).

Sweetpotato production fields in the United States are propa-
gated vegetatively and started from transplanted nonrooted stem
cuttings (slips) (Smith et al. 2009). Slips are grown from sweetpo-
tato storage roots buried 6 to 8 cm deep in 1-m-wide beds (propa-
gation beds). After planting, propagation beds are covered with
clear polyethylene mulch. After the last spring frost, the polyethyl-
ene cover is removed, and sweetpotato shoots emerge. Once slips
are approximately 30 cm long, they are cut above the soil line and
transplanted into production fields (Thompson et al. 2017). Slips
in propagation beds will regrow and are harvested two to three
times per season.

Prior research has evaluated the effect of reduced rates of
dicamba and 2,4-D choline with or without glyphosate in
‘Beauregard’ sweetpotato production fields; however, no research
has evaluated off-target applications to ‘Covington,’ the primary
sweetpotato cultivar grown in North Carolina (NCDACS 2015).
In addition, research is needed to support the decision-making
process for transplanting sweetpotato cuttings exposed to synthetic
auxin herbicides. Therefore studies were conducted to determine
the effect of simulated synthetic auxin herbicide exposure in
‘Covington’ sweetpotato propagation beds.

Materials and Methods

Propagation Beds

Sweetpotato propagation beds were located on a commercial farm
in Springhill, NC, in 2019 (35.638°N, 78.098°W) and 2020 (35.632°
N, 78.093°W). Soil was a Norfolk loamy sand (fine-loamy, kaoli-
nitic, thermic Typic Kandiudult) with pH 6 and <1% organic mat-
ter. ‘Covington’ sweetpotato storage roots were placed in field
propagation beds (1 m wide and spaced 1.8 m apart) on March
15, 2019, and March 7, 2020, then covered with 6 to 8 cm of soil.
Beds were covered with clear polyethylene mulch, which remained
until sweetpotato plants emerged.

The experimental design for each study was a randomized com-
plete block with four replications. Plots were a single row 1.5 m
long. Treatments were arranged in a 3 (herbicide) × 3 (herbicide
rate) × 2 (application timing) factorial. Herbicide treatments and
application rates included DGA salt of dicamba, 2,4-D choline plus
0.25% vol/vol nonionic surfactant (NIS) (Induce®, Helena Agri-
Enterprises LLC, Collierville, TN, USA), or 2,4-D choline plus
glyphosate at 1/10, 1/33, or 1/66 of a registered rate (Table 1),
respectively. The 1X rate was 560 g ae ha−1 dicamba, 1,065 g ae
ha−1 2,4-D, or 1,065 g ae ha−1 2,4-D plus 1,130 g ae ha−1 glyphosate.
In addition, a nontreated check was included for comparison.
Treatments were applied 2 or 4 wk after first slip harvest
(WASH) using a CO2-pressurized backpack sprayer calibrated
to deliver 187 L ha−1 at 200 kPa with a boom equipped with
two flat-fan XR 11002VS nozzles (TeeJet® 11002; TeeJet
Technologies, Wheaton, IL, USA) spaced 50 cm apart. Slips were
approximately 22 and 30 cm in height 2 and 4WASH, respectively.
Data collection included estimates of sweetpotato injury 2 WAT
using a scale of 0% (no injury) to 100% (plant death) (Frans
et al. 1986). Two weeks after the second application, 20 slips per

plot were cut 2 cm above the soil surface and transplanted into
sweetpotato production fields.

Production Field

Field sites were located at theHorticultural Crops Research Station,
Clinton, NC, in 2019 (35.024°N, 78.279°W) and at a commercial
farm in Cross Roads, NC, in 2020 (35.683°N, 78.014°W). Soil at
each location was a Norfolk loamy sand (fine-loamy, kaolinitic,
thermic Typic Kandiudult) with a pH of 6 and<1% organic matter
content. Slips were transplanted into raised beds spaced 1 m apart
at an in-row spacing of 30 cm. Plots consisted of two rows each 6.1
m long, where the first row was transplanted with nontreated slips
and served as a border and the second row was transplanted with
slips from an assigned treatment and used for data collection. The
study was maintained weed-free with a pretransplant application
of flumioxazin, an in-season application of clethodim plus NIS
(Table 1), between-row cultivation, and hand roguing, as needed.
Data collection included sweetpotato ground coverage 8 wk after
transplant. Ground coverage was estimated using a 1 m2 quadrat
with strings arranged in 10 × 10 cm grids. The quadrat was cen-
tered over the data row of each plot, then a photograph was taken
over top of the quadrat. Images were assessed to count grid inter-
sections containing foliage. The percent reduction in sweetpotato
canopy ground cover was calculated as the number of string inter-
sections with foliage divided by the total number of string intersec-
tions multiplied by 100 and subtracted from the percent ground
coverage of the nontreated check. Sweetpotato storage roots were
harvested using a chain digger 119 DAP in 2019 and a turn plow
112 DAP in 2020; hand sorted into canner (>2.5 to 4.4 cm diam-
eter), number (no.) 1 (>4.4 to 8.9 cm), and jumbo (>8.9 cm) grades
(USDA 2005); and weighed. Marketable yield was calculated as the
sum of no. 1 and jumbo grades.

Statistical Analysis

Data were assessed for homogeneity of variance by examining
residual plots. Arcsine square root transformations were required
for percent ground cover data. Back-transformed means are pre-
sented. Analysis of variance was conducted using PROC GLIMMIX

in SAS, version 9.4 (SAS Institute, Cary, NC, USA) with a signifi-
cance level of α= 0.05. Fixed effects included year, herbicide, rate,
application timing, and their interactions, whereas replication
nested within year was considered a random effect. Rate responses
could not be appropriately described using regression analysis;
thus all means were separated using Tukey’s honestly significant
difference (HSD) at a significance level of α= 0.05.

Results and Discussion

Propagation Bed Injury

Injury to sweetpotato slips appeared as epinasty, leaf cupping, stem
swelling and cracking, and stunting. A significant (P < 0.0001) her-
bicide × rate interaction was present for sweetpotato propagation
bed injury. No other significant interactions were present.
Sweetpotato slip injury 2 WAT was slightly greater (P < 0.0001)
when herbicides were applied 2 (21%) compared to 4 WASH
(16%) (data not shown). Treatments including 1/10X 2,4-D chol-
ine caused the greatest injury to propagation bed plants (37% and
39%), and the addition of glyphosate to 2,4-D did not increase
injury at any rate applied (Table 2). These data differ from injury
observed in previous studies in production fields. Batts et al.
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(2020a) reported that the addition of glyphosate to 2,4-D at the 1/
10X rate increased ‘Beauregard’ sweetpotato injury 2 WAT by 12
percentage points compared to 2,4-D alone when applied in pro-
duction fields; however, NIS was not included in treatments. Injury
in the present study was less than 64% or 74% injury 2 WAT
reported by Miller et al. (2020) from 1/10X 2,4-D choline plus
glyphosate or dicamba plus glyphosate, respectively, applied in
sweetpotato production fields.

Production Field

Sweetpotato Ground Coverage
Analysis indicated a significant application timing × rate interac-
tion (P= 0.01); no other interactions, including application timing,
were significant (P> 0.05). At the 1/66 (4% and 3%) and 1/10X
(11% and 16%) rates, application timing did not have a significant
effect on ground coverage (Table 3); however, the 1/33X rate
reduced sweetpotato ground coverage more when applied 2
WASH compared to 4 WASH (11 vs 3%). The year × herbicide
× rate interaction was significant (P= 0.03); therefore the herbi-
cide × rate interaction was assessed by year. The 1/66 and 1/
33X rates cased 12% or less reduction in sweetpotato ground cover-
age for all herbicides (Table 4). In 2019, 1/10X dicamba and 2,4-D
choline plus NIS reduced ground coverage 37% and 26%, respec-
tively. The addition of glyphosate to 2,4-D choline did not reduce
ground coverage compared to 2,4-D choline plus NIS. In 2020,

sweetpotato ground coverage was 90% or greater for all treatments.
Though 1/10X dicamba caused less injury to propagation beds
than 1/10X 2,4-D or 2,4-D choline plus glyphosate, after trans-
planting, slips that were treated with 1/10X dicamba recovered
as slowly as or slower than those treated with 2,4-D. However,
Miller et al. (2020) reported that ‘Beauregard’ sweetpotato injury
rates from 1/10X and 1/33X rates of 2,4-D choline plus glyphosate
and dicamba plus glyphosate applied in production fields were
similar 5 WAT.

Yield
Only application timing × herbicide (P≤ 0.004) and application
timing × rate (P ≤ 0.001) interactions were significant for market-
able and no. 1 yield data. No significant effects or interactions were
present for jumbo-grade yield data. In 2019 and 2020, marketable
yields from the nontreated check were 30,327 and 46,923 kg ha−1,
respectively; no. 1 yield was 22,127 and 40,679 kg ha−1, respec-
tively. Dicamba applied 2 WASH decreased marketable yield by
59%, whereas treatments including 2,4-D choline decreased mar-
ketable yield 22% to 29% (Table 5). All herbicides applied 4WASH
reduced marketable yield 31% to 36%. The addition of glyphosate
to 2,4-D choline did not affect sweetpotato yield compared to 2,4-
D choline plus NIS. All herbicide rates applied 2 WASH reduced
marketable yield 33% to 39%. At 4 WASH, increasing the applica-
tion rate from 1/66X to 1/10X decreased marketable yield by 36%.
In previous research, dicamba plus glyphosate or 2,4-D choline
plus glyphosate reduced total ‘Beauregard’ sweetpotato yield 0%
to 66% from 1/66X to 1/10X rates, respectively, when applied in
sweetpotato production fields (Miller et al. 2020). All treatments
in the present study were applied after the initial slip harvest;

Table 1. Herbicides and sources used for the studies.

Active ingredient Trade name Rate Manufacturer City, state Website

g ai/ae ha−1

Clethodima Select Max® 135 Valent USA Corp. Walnut Creek, CA www.valent.com
Dicamba XtendiMax® 9, 18, 56 Bayer CropScience St. Louis, MO www.cropscience.bayer.com
Flumioxazin Valor® SX 107 Valent USA Corp. Walnut Creek, CA www.valent.com
2,4-Da Enlist One® 17, 33, 106 Corteva Agriscience™ Wilmington, DE www.corteva.com
2,4-D plus glyphosate Enlist Duo® 17þ 18, 33þ 36, 106þ 113 Corteva Agriscience™ Wilmington, DE www.corteva.com

aNonionic surfactant (Induce®) was included at 0.25% vol/vol.

Table 2. Sweetpotato injury 2 wk after treatment as affected by dicamba, 2,4-D,
and 2,4-D plus glyphosate applied at simulated exposure rates to sweetpotato in
propagation beds in North Carolina in 2019 and 2020.a,b,c

Herbicide Rated Sweetpotato injurye

g ae ha−1 %
Dicamba 1/66X 7 d

1/33X 13 bcd
1/10X 18 b

2,4-Df 1/66X 11 cd
1/33X 16 bc
1/10X 37 a

2,4-D plus glyphosate 1/66X 11 cd
1/33X 16 bc
1/10X 39 a

aInjury was characterized as epinasty, leaf cupping, and stem swelling and cracking.
bData were pooled across years and application timings (2 or 4 wk after the first slip harvest).
cMeans within a column followed by the same letter are not significantly different according
to Tukey’s honestly significant difference, α= 0.05.
dThe 1X rate was 560 g ae ha−1 dicamba, 1,065 g ae ha−1 2,4-D, or 1,065 g ae ha−1 2,4-D plus
1,130 g ae ha−1 glyphosate.
eRating scale: 0%, no treatment effect; 100%, plant death.
fNonionic surfactant (0.25% vol/vol) was included.

Table 3. Effect of application timing and rate of dicamba, 2,4-D, and 2,4-D plus
glyphosate applied to sweetpotato propagation beds on sweetpotato ground
coverage 8 wk after transplanting to production fields in Clinton and Cross
Roads, North Carolina, 2019 and 2020.a,b,c

Application timing Rated Reduction in ground coverage

g ae ha−1 % of nontreated
2 WASH 1/66X 4 b

1/33X 11 a
1/10X 11 a

4 WASH 1/66X 0 b
1/33X 3 b
1/10X 16 a

aMeans within a column followed by the same letter are not significantly different according
to Tukey’s honestly significant difference, α= 0.05.
bData were pooled across years and herbicide.
cAbbreviation: WASH, weeks after first slip harvest.
dThe 1X rate was 560 g ae ha−1 dicamba, 1,065 g ae ha−1 2,4-D, or 1,065 g ae ha−1 2,4-D plus
1,130 g ae ha*1 glyphosate.

Weed Technology 381

https://doi.org/10.1017/wet.2022.26 Published online by Cambridge University Press

https://www.valent.com
https://www.cropscience.bayer.com
https://www.valent.com
https://www.corteva.com
https://www.corteva.com
https://doi.org/10.1017/wet.2022.26


however, sweetpotato injury from auxin exposure in newly
emerged propagation beds may differ. Thus additional research
should evaluate the effects of auxin exposure at various propaga-
tion bed growth stages.

The rates used in the present study ranged from 1/66X to 1/10X;
however, herbicide drift from an adjacent field is generally

expected to occur at rates less than 1/100X (Egan et al. 2014). In
addition, carrier volumes are much lower in drift situations and
should also be reduced (Banks and Schroeder 2002). Inman
et al. (2020) reported that insufficient sprayer tank cleanout can
leave 19% (approximately 1/5X rate) or 4% (1/25X rate) of the ini-
tial dicamba concentration from one or two tank rinses, respec-
tively. Thus the present study gives better insight into nontarget
applications from tank contamination events rather than drift
events. Sweetpotato slips treated with a 1/66X rate resulted in
11% or less injury in the propagation bed but still decreased mar-
ketable yield by ≥16%. Therefore caution should be taken when
deciding to transplant sweetpotato slips that are suspected to have
been exposed to synthetic auxin herbicides.
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