MATHEMATICAL NOTES

A Review of Elementary Mathematics and Science.

A Problem in Probability.

The following is a generalisation of the well known probability question, viz., " n letters are each addressed to one of n houses, in how many ways can they all be misdelivered, one to each house?" Or in the original form, " n cards numbered 1 to n are drawn from a bag one by one, what is the probability that the order in which a card is drawn will in no case coincide with the number on the card?"

Laplace generalised the problem in one direction, but the following is a double generalisation permitting a line of attack which appears to be new.

If we have α different groups each of n similar objects and β dissimilar objects ungrouped, if, also, we have α places each marked to correspond to one of the α groups and γ places unmarked, in how many different ways can the $\alpha+\gamma$ places receive each one of the $n \alpha+\beta$ objects without any of the objects being assigned to a place with a corresponding mark?

The problem may be visualized more clearly from the following scheme:

a groups of n	β objects ungrouped
$A, B, C, D \ldots$	P, Q, R, S.
a, b, c, d,	x, y
α corresponding places	γ places unmarked.

Let $f(\alpha, \beta, \gamma, n)$ be the solution.
It will be seen that $f(\alpha-1, \beta+n, \gamma+1, n)$ is the solution of an analogous problem for which the scheme is
$\alpha-1$ groups of n
A, B, C, D.
a, b, c, d.
$\alpha-1$ corresponding places
$\beta+n$ objects ungrouped
$P, Q, R, S \ldots \ldots \ldots \ldots \ldots$.
x, y, z
$\gamma+1$ places unmarked.

In the latter problem make a group of n of the $\beta+n$ ungrouped objects and consider these with reference to the place x.
(1) x may be filled up from one of these-in n different ways. The allocation is then completed in $f(\alpha-1, \beta+n-1, \gamma, n)$ ways.
(2) x may be avoided completely by this group of n. This places the group in the same relation to x in particular and to the other places in general as one of the $\alpha-1$ groups, say A, is placed in regard to a and the remaining places, $i . e$. the allocation is made in $f(\alpha, \beta, \gamma, n)$ ways.
Hence we have the fundamental relation

$$
f(\alpha-1, \beta+n, \gamma+1, n)=n f(\alpha-1, \beta+n-1, \gamma, n)+f(\alpha, \beta, \gamma, n) \ldots \mathrm{I} .
$$

Put $\alpha=1$, then

$$
\begin{aligned}
f(1, \beta, \gamma, n)=f(0, \beta+n, \gamma+1, n)-n f & (0, \beta+n-1, \gamma, n) \\
= & { }^{\beta+n} P_{\gamma+1}-n^{\beta+n-1} P_{\gamma}
\end{aligned}
$$

in the ordinary notation for permutations.
Put $\alpha=2$,
$f(2, \beta, \gamma, n)=f(1, \beta+n, \gamma+1, n)-n f(1, \beta+n-1, \gamma, n)$

$$
={ }^{\beta+2 n} P_{\gamma+2}-2 n^{\beta+2 n-1} P_{\gamma+1}+n^{2}{ }^{\beta+2 n-2} P_{\gamma}
$$

making use of the result just obtained.
This leads to the general assumption

$$
f(\alpha, \beta, \gamma, n)=\sum_{k=0}^{\alpha}(-n)^{k a} C_{k}^{\beta+a n-k} P_{\gamma+a-k}
$$

It is only necessary to show that this satisfies the fundamental relation I. A few transformations easily establish that relation I. is satisfied.

Since

$$
\beta+a n-k P_{\gamma+a-k}=\frac{{ }^{n a+\beta} P_{\alpha+\gamma}}{{ }^{n a+\beta} C_{k}!k}
$$

The solution is

$$
f(\alpha, \beta, \gamma, n)={ }^{n a+\beta} P_{\alpha+\gamma} \sum_{k=0}^{\alpha} \frac{(-n)^{k}}{\underline{\mid k}} \frac{{ }^{a} C_{k}}{n a+\beta} C_{k}
$$

or since ${ }^{n a+\beta} P_{a+\gamma}$ gives the unrestricted number of ways of filling up the places, the probability that no object is in a place correspondingly marked in a fortuitous distribution is

$$
\sum_{k=0}^{a} \frac{(-n)^{k}}{\underline{k}} \cdot \frac{{ }^{a} C_{k}}{n a+\beta} C_{k} .
$$

The particular result for the problem enunciated at the beginning is got by putting $n=1, \beta=\gamma=0$

$$
\text { i.e. } \quad \sum_{k=0}^{a} \frac{(-1)^{k}}{\underline{k}}
$$

or $\underline{\underline{\alpha}} \sum_{k=0}^{a} \frac{(-1)^{k}}{\underline{k}}$ according to the mode of statement of the problem.

William Miller.

Analytical Note on Lines Forming a Harmonic Pencil.

The following is a simple proof of the theorem that the concurrent lines whose equations are

$$
\begin{align*}
& a_{1} x+b_{1} y+c_{1}=0 \tag{1}\\
& a_{2} x+b_{2} y+c_{3}=0 \tag{2}\\
& a_{1} x+b_{1} y+c_{1}=k\left(a_{2} x+b_{2} y+c_{2}\right) \tag{3}\\
& a_{1} x+b_{1} y+c_{1}=-k\left(a_{2} x+b_{2} y+c_{2}\right) \tag{4}
\end{align*}
$$

form a harmonic pencil.
Let a line through the origin parallel to the line (2) intersect (4) in $A\left(x_{1}, y_{1}\right)$, and (3) in $B\left(x_{2}, y_{2}\right)$.

The pencil is harmonic if the mid-point of $A B, C\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$, lies on (1).

Since $O A B$ is parallel to (2) we have

$$
a_{2} x_{1}+b_{2} y_{1}=a_{2} x_{2}+b_{2} y_{2}=0 .
$$

Hence since $\Lambda\left(x_{1}, y_{1}\right)$ lies on (4),

$$
a_{1} x_{1}+b_{1} y_{1}+c_{1}=-k c_{2},
$$

