MATHEMATICAL NOTES

A Review of Elementary Mathematics and Science.

A Problem in Probability.

The following is a generalisation of the well known probability question, viz., "n letters are each addressed to one of n houses, in how many ways can they all be misdelivered, one to each house?" Or in the original form, "n cards numbered 1 to n are drawn from a bag one by one, what is the probability that the order in which a card is drawn will in no case coincide with the number on the card?"

Laplace generalised the problem in one direction, but the following is a double generalisation permitting a line of attack which appears to be new.

If we have a different groups each of n similar objects and β dissimilar objects ungrouped, if, also, we have a places each marked to correspond to one of the a groups and γ places unmarked, in how many different ways can the $\alpha + \gamma$ places receive each one of the $n\alpha + \beta$ objects without any of the objects being assigned to a place with a corresponding mark?

The problem may be visualized more clearly from the following scheme:

a groups of n	β objects ungrouped
A, B, C, D	P, Q, R, S
a, b, c, d,	x, y, z
a corresponding places	γ places unmarked.

Let $f(\alpha, \beta, \gamma, n)$ be the solution.

It will be seen that $f(\alpha - 1, \beta + n, \gamma + 1, n)$ is the solution of an analogous problem for which the scheme is

$\alpha - 1$ groups of n	$\beta + n$ objects ungrouped
A, B, C, D	P, Q, R, S
a, b, c, d	$x, y, z \dots$
$\alpha - 1$ corresponding places	$\gamma + 1$ places unmarked.

In the latter problem make a group of n of the $\beta + n$ ungrouped objects and consider these with reference to the place x.

- (1) x may be filled up from one of these—in n different ways. The allocation is then completed in $f(\alpha - 1, \beta + n - 1, \gamma, n)$ ways.
- (2) x may be avoided completely by this group of n. This places the group in the same relation to x in particular and to the other places in general as one of the $\alpha 1$ groups, say A, is placed in regard to a and the remaining places, *i.e.* the allocation is made in $f(\alpha, \beta, \gamma, n)$ ways.

Hence we have the fundamental relation

$$f(\alpha - 1, \beta + n, \gamma + 1, n) = nf(\alpha - 1, \beta + n - 1, \gamma, n) + f(\alpha, \beta, \gamma, n)...I.$$

Put $\alpha = 1$, then

$$f(1, \beta, \gamma, n) = f(0, \beta + n, \gamma + 1, n) - nf(0, \beta + n - 1, \gamma, n) = \frac{\beta + n}{P_{\gamma + 1}} - n \frac{\beta + n - 1}{P_{\gamma}} P_{\gamma}$$

in the ordinary notation for permutations.

Put $\alpha = 2$,

$$f(2, \beta, \gamma, n) = f(1, \beta + n, \gamma + 1, n) - nf(1, \beta + n - 1, \gamma, n)$$

= ${}^{\beta+2n}P_{\gamma+2} - 2n{}^{\beta+2n-1}P_{\gamma+1} + n^{2}{}^{\beta+2n-2}P_{\gamma}$

making use of the result just obtained.

This leads to the general assumption

$$f(\alpha, \beta, \gamma, n) = \sum_{k=0}^{a} (-n)^{k} {}^{a}C_{k} {}^{\beta+an-k}P_{\gamma+a-k}$$

It is only necessary to show that this satisfies the fundamental relation I. A few transformations easily establish that relation I. is satisfied.

Since

$${}^{\beta+an-k}P_{\gamma+a-k}=\frac{{}^{na+\beta}P_{a+\gamma}}{{}^{na+\beta}C_k\mid k}.$$

The solution is

$$f(\alpha, \beta, \gamma, n) = P_{\alpha+\gamma} \sum_{k=0}^{\alpha} \frac{(-n)^k}{\lfloor k \rfloor} \frac{{}^{\alpha}C_k}{n \alpha+\beta}C_k$$

or since ${}^{na+\beta}P_{a+\gamma}$ gives the unrestricted number of ways of filling up the places, the probability that no object is in a place correspondingly marked in a fortuitous distribution is

$$\sum_{k=0}^{a} \frac{(-n)^{k}}{\lfloor k \rfloor} \cdot \frac{{}^{a}C_{k}}{n \, a + \beta}_{C_{k}}.$$

The particular result for the problem enunciated at the beginning is got by putting n=1, $\beta=\gamma=0$

i.e.
$$\sum_{k=0}^{a} \frac{(-1)^{k}}{|k|}$$

or $|\alpha| \sum_{k=0}^{\alpha} \frac{(-1)^k}{|k|}$ according to the mode of statement of the

problem.

WILLIAM MILLER.

Analytical Note on Lines Forming a Harmonic Pencil.

The following is a simple proof of the theorem that the concurrent lines whose equations are

$a_1 x + b_1 y + c_1 = 0 \dots$	(1)
$a_2 x + b_2 y + c_2 = 0 \dots$	(2)
$a_1 x + b_1 y + c_1 = k (a_2 x + b_2 y + c_2) \dots \dots$	(3)
$a_1 x + b_1 y + c_1 = -k (a_2 x + b_2 y + c_2) \dots$	(4)

form a harmonic pencil.

Let a line through the origin parallel to the line (2) intersect (4) in A (x_1, y_1) , and (3) in B (x_2, y_2) .

The pencil is harmonic if the mid-point of *AB*, $C\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$, lies on (1).

Since OAB is parallel to (2) we have

$$a_2 x_1 + b_2 y_1 = a_2 x_2 + b_2 y_2 = 0.$$

Hence since $\Lambda(x_1, y_1)$ lies on (4),

$$a_1 x_1 + b_1 y_1 + c_1 = -k c_2,$$