DIRECTED GRAPHS AND NILPOTENT RINGS

A. V. KELAREV

(Received 3 September 1997; revised 10 September 1998)

Communicated by J. R. J. Groves

Abstract

Suppose that a ring is a sum of its nilpotent subrings. We use directed graphs to give new conditions sufficient for the whole ring to be nilpotent.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 16N40; secondary 16N60.

The investigation of rings which are sums of their subrings has been carried out by Bahturin and Giambruno [1], Bahturin and Kegel [2], Beidar and Mikhalev [3], Ferrero and Puczyłowski [5], Fukshansky [6], Herstein and Small [7], Kegel [8, 9], Kelarev and McConnell [13], Kepczyk and Puczyłowski [14, 15], Puczyłowski [16], Salwa [17] and the author [10-12]. Although there are several positive results which show that some properties are preserved by sums of two subrings, it turns out that relatively few ring-theoretic properties are inherited by rings which are sums of their two subrings, and there are no known nontrivial properties which are inherited by sums of three or more subrings.

A strong negative result of this sort was obtained by Bokut' [4]: Every algebra over a field of characteristic zero can be embedded in a simple algebra which is a sum of three nilpotent subalgebras. In [10] the author constructed a ring which is not nil but is a direct sum of two locally nilpotent subrings. A primitive ring which is a sum of two Wedderburn radical subrings was given in [11] with the use of a homomorphic image of the construction introduced in [10].

Therefore some additional restrictions on the interaction of the summands are needed in order to obtain positive results.

A natural restriction is to require that some products of the subrings are equal to zero. Suppose that a ring R is a sum of its subrings $R_{r}, v \in V$, and assume that for some pairs $u, v \in V$ it is known that the product $R_{u} R_{r}$ is equal to zero.
(C) 1998 Australian Mathematical Society 0263-6115/98 $\$$ A2.00 +0.00

We use directed graphs (digraphs) to keep information about all pairs $u, v \in V$ with $R_{u} R_{r}=0$. Denote by E the set of all ordered pairs $u, v \in V$ such that $R_{u} R_{r}=0$, and consider the digraph $A=(V, E)$. By the complement of A we mean the digraph $G=\bar{A}=(V, \bar{E})$, where $\bar{E}=V \times V \backslash E$. Then we shall say that R is a G-sum of the R_{r}. The digraph A will be called the annihilator digraph of R.

This situation arises in several ring constructions. For example, if $U_{n}(F)$ is the ring of $n \times n$ upper triangular matrices over a field F, and $e_{i j}$ denotes the standard matrix unit, then $U_{n}(F)=\oplus_{1 \leq i \leq j \leq n} F e_{i j}$ and $F e_{i j} F e_{k l}=0$ whenever $j \neq k$. For a finite set V, a ring R is a direct product of $R_{r}, v \in V$, if and only if R is a G-sum, where the annihilator digraph $A=\bar{G}$ is the complete digraph on V.

We say that a digraph $G=(V, E)$ is 2-connected if, for any $u, v \in V$, there exists $w \in V \backslash\{u, v\}$ such that $(u, w),(w, v) \in E$.

THEOREM 1. Let G be a digraph without 2 -connected subgraphs. If a ring R is a G-sum of nilpotent subrings, then R is nilpotent too.

Proof. Assume that the digraph $G(V, E)$ does not contain any 2 -connected subgraphs. Take a ring R which is a G-sum of nilpotent subrings $R_{v}, v \in V$. Let R^{1} be the ring R with identity I adjoined.

Put $H(R)=\cup_{r \in V} R_{r}$. For any $r \in H(R)$, we fix an element ind $(r) \in V$ such that $r \in R_{\text {ind }(r)}$.

If $U \subseteq V,|U|=k \geq 1$ and $m \geq k$, then by $L(U, m)$ we denote the set of all products of the form $s_{1} t_{1} s_{2} t_{2} \cdots s_{k} t_{k} s_{k+1}$ such that there exist positive integers a_{1}, \ldots, a_{k} satisfying $a_{1}+a_{2}+\cdots+a_{k} \geq m$, where $t_{1}, \ldots, t_{k} \in H(R), t_{l} \in R_{\left.\text {ind } t_{1}\right)}^{a_{i}}$ for $l=1, \ldots, k,\left\{\operatorname{ind}\left(t_{1}\right), \ldots, \operatorname{ind}\left(t_{k}\right)\right\}=U$, and $s_{1}, \ldots, s_{k+1} \in R^{1}$.

For positive integers k, m, n, if $k>|V|$, then we put $P(k, m, n)=\{0\}$.
For positive integers k, m, n with $l \leq k \leq|V|$ and $m \geq k$, denote by $P(k, m, n)$ the set consisting of zero and all products $r_{1} r_{2} \cdots r_{n}$ such that there exists a subset $U \subseteq V$ satisfying $|U|=k$ and $r_{1}, \ldots, r_{n} \in L(U, m)$.

We claim that every product in $P(k, m, 3(|V|+1) n)$ is a sum of elements from $P(k, m+1, n)$ and $P(k+1 . m+1, n)$.

For $k>|V|$ the assertion is trivial. Assume that $k \leq|V|$. Take any product $w=$ $r_{1} r_{2} \cdots r_{3|V|+1) n} \in P(k, m, 3(|V|+1) n)$. By the definition of $P(k, m, 3(|V|+1) n)$ there exists a subset $U \subseteq V$ such that $|U|=k$ and $r_{1}, \ldots, r_{3| | V|+|) n} \in L(U, m)$.

For any $i=0,1, \ldots,(|V|+1) n-1$, we rewrite the elements $r_{3 i+1}, r_{3 i+2}, r_{3 i+3}$ and introduce an auxiliary set w_{i} which characterizes the way we rewrite them.

The definition of $L(U, m)$ shows that $r_{3 i+j}=s_{j .1} t_{j .1} s_{j .2} t_{j .2} \cdots s_{j . k} t_{j . k} s_{j . k+1}$, for $j=1,2,3$, where there exist positive integers $a_{j, 1}, \ldots, a_{j . k}$ such that

$$
a_{j .1}+a_{j .2}+\cdots+a_{j . k} \geq m
$$

$t_{j, 1}, \ldots, t_{j . k} \in H(R), t_{j . l} \in R_{\text {ind }\left(t_{l, l}\right)}^{a_{j, l}}$ for $l=1, \ldots, k,\left\{\operatorname{ind}\left(t_{j, 1}\right) \ldots, \operatorname{ind}\left(t_{j . k}\right)\right\}=U$, and $s_{j .1}, \ldots, s_{j . k+1} \in R^{1}$.

If the three sets of pairs

$$
\left\{\left(\operatorname{ind}\left(t_{j .1}\right), a_{j .1}\right), \ldots,\left(\operatorname{ind}\left(t_{j . k}\right), a_{j . k}\right)\right\}, \quad j=1,2,3
$$

are not equal to each other, then for each value of $\operatorname{ind}\left(t_{j . I}\right)$ we can choose the maximum power $a_{j . l}$ out of the three available powers $a_{j . l}, j=1,2.3$. Since for some ind $\left(t_{j . l}\right)$ the elements $a_{j . l}, j=1,2,3$ are not all equal, it follows that the sum of exponents of the chosen maximal powers is strictly greater than m. We keep the corresponding maximal elements $t_{j, l} \in R_{\left.\text {ind } t_{j, l}\right)}^{a_{j, l}}$ and multiply together the other elements which are between them. In this way we rewrite $r_{3 i+1} r_{3 i+2} r_{3 i+3}$ as a product in $L(U, m+1)$. In this case we put $w_{i}=\emptyset$ to remember that $r_{3 i+1} r_{3 i+2} r_{3 i+3}$ has been rewritten as a product in $L(U, m+1)$.

Next consider the case where all three sets of pairs

$$
\left\{\left(\operatorname{ind}\left(t_{j .1}\right), a_{j .1}\right), \ldots,\left(\operatorname{ind}\left(t_{j, k}\right), a_{j . k}\right)\right\}, \quad j=1,2,3
$$

are equal to each other. In this case we rewrite $r_{3 i+1} r_{3 i+2} r_{3 i+3}$ as a sum of several elements, we consider only one summand and we introduce w_{i} to characterize this summand.

Given that the graph $G(V, E)$ is not 2-connected, we can find $u_{1}, u_{2} \in U$ such that for any $w \in U \backslash\left\{u_{1}, u_{2}\right\}$ either $\left(u_{1}, w\right) \notin E$ or $\left(w, u_{2}\right) \notin E$. Then we can find l_{1}, l_{2} such that $\operatorname{ind}\left(t_{2, l_{1}}\right)=u_{1}$ and $\operatorname{ind}\left(t_{3, l_{2}}\right)=u_{2}$. Let $r_{3 i+2}=a_{1} t_{2,1_{1}}^{a_{2,1}} b_{1}$ and $r_{3 i+3}=a_{2} t_{3, l_{2}}^{a_{3, / 2}} b_{2}$. Multiplying together $b_{1} a_{2}$ we use the fact that $R=\bigoplus_{v \in V} R_{v}$ and represent the product as a sum $b_{1} a_{2}=\sum_{v \in V} c_{v}$, where $c_{v} \in R_{r}$. When we substitute the sum for $b_{1} a_{2}$, the product $r_{3 i+1} r_{3 i+2} r_{3 i+3}$ turns into a sum of several elements $r_{3 i+1} a_{1} t_{2 . l_{1}} c_{1} t_{3, l_{2}} b_{2}$, where $v \in V$. We consider only one of these elements, for an arbitrary $v \in V$. Naturally, the product $r_{1} \cdots r_{3\left(\mid V_{\mid+1) n}\right.}$ also becomes a sum of several summands, and we consider only one of these summands.

If $v=u_{1}$, then $t_{2 . l_{1}} c_{v} \in R_{u_{1}}^{a_{2,1}+1}$. Using this we can rewrite $r_{3 i+1} r_{3 i+2} r_{3 i+3}$ as a product in $L(U, m+1)$ and we put $w_{i}=\emptyset$.

If $v=u_{2}$, then $c_{v} t_{3, l_{2}} \in R_{u_{2}}^{a_{3 / 2}+1}$. Using this we can rewrite $r_{3 i+1} r_{3 i+2} r_{3 i+3}$ as a product in $L(U, m+1)$ and we put $w_{i}=\emptyset$.

If $v \in U \backslash\left\{u_{1}, u_{2}\right\}$, then either $\left(u_{1}, v\right) \notin E$ or $\left(v, u_{2}\right) \notin E$. It follows that either $t_{2, l_{1}} c_{i^{\prime}}=0$ or $c_{v} t_{3, l_{2}}=0$, respectively. Therefore $r_{3 i+1} a_{1} t_{2, l_{1}} c_{r} t_{3, l_{2}} b_{2}=0$. In this case the corresponding summand of $r_{1} \cdots r_{3(|V|+1) n}$ is zero and belongs to $P(k, m+1, n)$, as claimed.

If $v \in V \backslash U$, then we rewrite $r_{3 i+1} r_{3 i+2} r_{3 i+3}$ as a product in $L(U \cup\{v\}, m+1)$ and we put $w_{i}=\left\{c_{v}\right\}$.

Thus all products $r_{3 i+1} r_{3 i+2} r_{3 i+3}$ have been rewritten. Therefore the whole product $r_{1} \cdots r_{3| | V|+1| n}$ has also been rewritten. We consider only one summand s of
$r_{1} \ldots r_{3 \mid V_{\mid+1)}}$. The corresponding elements $w_{1}, \ldots, w_{(|V|+\mid n}$ characterizing this summand s have been introduced.

Since the elements $w_{1}, \ldots, w_{|V|+1) n}$ are chosen in $V \cup\{\emptyset\}$, there exist

$$
1 \leq i_{1}<\cdots<i_{n} \leq(|V|+1) n
$$

such that $w_{i_{1}}=\cdots=w_{i_{,}}=w$.
If $w=\emptyset$, then all the summands of $r_{3 i_{i}+1} r_{3 i_{i}+2} r_{3 i_{i}+3}, l=1, \ldots, n$, which we considered, have been rewritten as elements of $L(U, m+1)$. Therefore we can rewrite the whole summand s as an element of $P(k, m+1, n)$, as claimed.

If $w=\{v\}$ for $v \in V$, then all the summands of $r_{3 i_{i}+1} r_{3 i_{i}+2} r_{3 i_{l}+3}, l=1, \ldots, n$, which we considered, have been rewritten as elements of $L(U \cup\{v\}, m+1)$. Therefore we can rewrite the whole summand s as an element of $P(k, m+1, n)$, as claimed.

Thus every product in $P(k, m, 3(|V|+1) n)$ is a sum of elements from $P(k, m+1, n)$ and $P(k+1, m+1, n)$.

Denote by N the maximum of the nilpotency indices of the rings $R_{v}, v \in V$. Then $R_{v}^{N}=0$ for all v. Easy induction shows that every product in

$$
P\left(1,1,[3(|V|+1)]^{N|V|}\right)
$$

is a sum of elements from the sets $P(k, 1+N|V|, 1)$, for $1 \leq k \leq|V|$.
Take any element r in $P(k, 1+N|V|, 1)$. By the definition there exists a subset $U \subseteq V$ such that $|U|=k$ and $r \in L(U, 1+N|V|)$. Therefore $r=s_{1} t_{1} s_{2} t_{2} \cdots s_{k} t_{k} s_{k+1}$ and there exist positive integers $a_{1} \ldots, a_{k}$ satisfying $a_{1}+a_{2}+\cdots+a_{k} \geq 1+N|V|$, where $t_{1}, \ldots, t_{k} \in H(R), t_{l} \in R_{\text {ind }(t)}^{a_{l}}$ for $l=1, \ldots, k,\left\{\operatorname{ind}\left(t_{1}\right), \ldots, \operatorname{ind}\left(t_{k}\right)\right\}=U$, and $s_{1}, \ldots, s_{k+1} \in R^{1}$. We can choose a maximum exponent a_{i} for some $1 \leq i \leq k$. Clearly, $a_{i} \geq N$, and so $t_{i} \in R_{\left.\text {ind } t_{i}\right)}^{a_{i}}=0$. It follows that $r=0$.

Thus $P(k, 1+N|V|, 1)=\{0\}$. Therefore $P\left(1,1,[3(|V|+1)]^{N|V|}\right)=0$.
Put $n=|V|\left\{[3(|V|+1)]^{N|V|}-1\right\}+1$, and consider an arbitrary product $w=$ $r_{1} \ldots r_{n}$, where $r_{1}, \ldots, r_{n} \in H(R)$. Since ind $\left(r_{i}\right) \in V$ for all i, clearly there exist numbers

$$
1 \leq i_{1}<i_{2}<\cdots<i_{[3| | V|+|]^{*} v} \leq|V|\left\{[3(|V|+1)]^{N|V|}-1\right\}+1
$$

such that

$$
\operatorname{ind}\left(r_{i_{1}}\right)=\operatorname{ind}\left(r_{i_{2}}\right)=\cdots=\operatorname{ind}\left(r_{i_{13, v+1, ~}}\right)=v
$$

Every element r_{i}, belongs to $L(\{v\}, 1)$. Therefore w can be rewritten as a product in $P\left(1,1,[3(|V|+1)]^{N|V|}\right)=0$. Thus $H(R)^{n}=0$, and so $R^{n}=0$.

Corollary 2. For a graph $G=(V, E)$ the following conditions are equivalent:
(i) if a ring R is a G-sum of nilpotent subrings, then R is nilpotent too;
(ii) G does not contain triangles.

Proof. (i) \Rightarrow (ii): Suppose that (ii) is not satisfied, that is G contains a triangle. Then Bokut's example of a ring which is not nilpotent but is a sum of three nilpotent subrings can be easily made a G-sum of the three nilpotent subrings and several zero subrings. Thus (i) does not hold. Thus (i) implies (ii).
(ii) \Rightarrow (i): We can view the graph G as a digraph associating with every undirected edge two directed edges. Then it is easily seen that every 2 -connected graph contains a triangle. Thus G does not contain 2 -connected subgraphs by (ii). Theorem 1 yields (i).

There exist directed graphs which are 2-connected but contain no triangles. For example, take $G=(V, E)$ with $V=\left\{O, A_{1}, \ldots, A_{n}\right\}$, where O is connected to all A_{1}, \ldots, A_{n} by two-sided edges, each A_{i} is connected to A_{i+1} and A_{n} is connected to A_{1} by directed edges.

Next, we discuss an example which shows that our Theorem 1 is probably not improvable. Let $G=(V, E)$ be a digraph containing a 2-connected digraph $H=$ (W, \bar{F}) where $W \subseteq V, F \subseteq E$. We define a ring R which is an H-sum of subrings $R_{u}, w \in W$, with zero multiplication. If, after that, we put $R_{r}=0$ for all $v \in V \backslash W$, then we see that R is a G-sum of the R_{r}. Hence we may throw out the vertices of G which do not belong to the 2-connected digraph H and assume that G is 2-connected from the very beginning. We also assume that E contains no loop (v, v), since we can throw away all loops from E without changing the 2-connectedness of G. Let $n=|V|$. To simplify further notation we assume that $V=\{1, \ldots, n\}$.

Let M be the set of terms formed by variables x_{1}, \ldots, x_{n} with respect to n nonassociative operations f_{1}, \ldots, f_{n}. It can be defined recursively by the following two conditions:
(i) $x_{1}, \ldots, x_{n} \in M$;
(ii) $f_{i}(y, z)$ for all $y, z \in M$ and $i \in\{1, \ldots, n\}$.

For $i=1, \ldots, n$, we define the sets

$$
M_{i}=\left\{x_{i}\right\} \cup\left\{f_{i}(y, z) \mid y, z \in M\right\}
$$

Then $M=M_{1} \cup \cdots \cup M_{n}$. For any $y \in M$, there exists an integer ind (y) such that $y \in M_{\text {ind }(y)}$.

Let \mathbb{R} be the field of real numbers. We define an \mathbb{R}-algebra R generated by the set M subject to relations

$$
\begin{equation*}
y z-f_{1}(y, z)-\cdots-f_{n}(y, z)=0 \tag{1}
\end{equation*}
$$

for all $y, z \in M$ such that (ind $(y), \operatorname{ind}(z)) \in E$;

$$
\begin{equation*}
u v=f_{1}(u, v)=\cdots=f_{n}(u, v)=0 \tag{2}
\end{equation*}
$$

for all $u, v \in M$ such that $(\operatorname{ind}(u), \operatorname{ind}(v)) \notin E$.
For $i=1, \ldots, n$, denote by R_{i} the subspace spanned over \mathbb{R} by M_{i}. The relations (1) and (2) show that $R=\sum_{i=1}^{n} R_{n}$ is a G-sum. Given that E contains no loops (v, v), $v \in V$, it follows from (2) that all R_{1}, \ldots, R_{n} are rings with zero multiplication.

Obviously, every 2 -connected graph contains a directed cycle. Let $i_{1}, \ldots, i_{k}, i_{1}$ be a directed cycle in G. Then it seems that $w=\left(x_{i_{1}} \cdots x_{i_{k}}\right)^{m}$ is nonzero for all positive integers m. The diamond lemma suggests itself as a tool for proving this.

In conclusion we look at the ring $S U_{n}(R)$ of strictly upper triangular matrices over any ring R to illustrate Theorem 1. Clearly, $S U_{n}(R)=\sum_{i<j} R e_{i j}$, where $e_{i j}$ is the standard matrix unit. All the rings $R e_{i j}$ have zero multiplication for $1 \leq i<j \leq n$. If we put $G=(V, E)$, where $V=\{(i, j) \mid 1 \leq i<j \leq n\}$ and $E=\{((i, j),(j, k))$ $1 \leq i<j<k \leq n\}$, then we see that $S U_{n}(R)$ is a G-sum of the rings $R e_{i j}$. It follows from Theorem I that $S U_{n}(R)$ is nilpotent.

References

[1] Yu. A. Bahturin and A. Giambruno, 'Identities of sums of commutative subalgebras' Rend. Circ. Mat. Palermo (2) 43 (1994)(2), 250-258.
[2] Yu. A. Bahturin and O. H. Kegel, 'Lie algebras which are universal sums of abelian subalgebras', Comm. Algebra 23 (1995), 2975-2990.
[3] K. I. Beidar and A. V. Mikhalev, 'Generalized polynomial identities and rings which are sums of two subrings', Algebra i Logika 34 (1995)(1), 3-11.
[4] L. A. Bokut', 'Embeddings in simple associative algebras', Algebra i Logika 15 (1976)(2), 117-142.
[5] M. Ferrero and E. R. Puczyłowski, 'On rings which are sums of two subrings', Arch. Math. (Basel) 53 (1989), 4-10.
[6] A. Fukshansky, 'The sum of two locally nilpotent rings may contain a non-commutative free subring'. Proc. Amer. Math. Soc, to appear.
[7] I. N. Herstein and L. W. Small, 'Nil rings satisfying certain chain conditions', Canad. J. Math. 16 (1964), 771-776.
[8] O. H. Kegel, 'Zur Nilpotenz gewisser assoziativer Ringe', Math. Ann. 149 (1962/63), 258-260.
[9] O. H. Kegel, 'On rings that are sums of two subrings', J. Algebra 1 (1964), 103-109.
[10] A. V. Kelarev, 'A sum of two locally nilpotent rings may be not nil', Arch. Math. (Basel) $\mathbf{6 0}$ (1993), 431-435.
[11] A. V. Kelarev, 'A primitive ring which is a sum of two Wedderburn radical subrings', Proc. Amer. Math. Soc. 125 (1997), 2191-2193.
[12] A. V. Kelarev, 'An answer to a question of Kegel on sums of rings', Canad. Math. Bull. 41 (1998), 79-80.
[13] A. V. Kelarev and N. R. McConnell, 'Two versions of graded rings', Publ. Math. (Debrecen) 47 (1995) (3-4), 219-227.
[14] M. Kepczyk and E.R. Puczylowski, 'On radicals of rings which are sums of two subrings', Arch. Math. (Basel) 66 (1996), 8-12.
[15] M. Kepczyk and E.R. Puczyłowski, 'Rings which are sums of two subrings'. J. Pure Appl. Algebra. to appear.
[16] E. R. Puczyłowski, 'Some questions concerning radicals of associative rings'. Theory of Radicals. Szekszárd, 1991, Coll. Math. Soc. János Bolyai 61 (1993), 209-227.
[17] A. Salwa, 'Rings that are sums of two locally nilpotent subrings'. Comm. Algebra 24 (1996)(12), 392I-3931.

School of Mathematics
University of Tasmania
G.P.O. Box 252-37

Hobart, Tasmania 7001
Australia
e-mail: kelarev@hilbert.maths.utas.edu.au

