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This note extends classical results on certain Galois groups attached to one-
dimensional algebraic groups. We prove that the fields arising from the division of a fixed
set of rational points on the product of an elliptic curve by the multiplicative group are as
"large" as possible.

1. Statement of the result. Let E be an elliptic curve defined over a number field K.
We write End E for the ring of endomorphisms of E (for simplicity, we assume that all
endomorphisms are defined over K). Given a prime number I, we consider:

the group /J,, of /th roots of unity, and the compositum Mt = K^) of. K and the Ith
cyclotomic field;

the group E, of Ith torsion points on E, and the extension Kt = iC(E,) they generate
over K. As is well-known, K{ contains M,.

The normal extension of K, obtained by adjoining the coordinates of an /th division
point of an element P of E(K) (resp. an Ith root of an element a of K* will be denoted by
Kt((lll)P) (resp. Kfia1")). Our aim is to determine the degree over K, of the compositum
of such fields.

THEOREM 1. Let Pu ..., Pm be m elements of E(K), linearly independent over End E,
and let a 1 ; . . . , as be s multiplicatively independent elements of Kx. There exists a number A
such that, for any prime I larger than A, the Galois group of
Ki((l/Z)P,, • • •, (lll)Pm, a I", • • •, al") over K, is isomorphic to ET x tf.

The proof of this assertion will be given in section 3 below. The dependence of A in
the data of the theorem is discussed in section 2.

Theorem 1 generalizes a result of Ribet (see the appendix of [3]), which concerns the
case m = s = l. When m=0, we recover the classical Kummer theory for
Ga\(M,(a\",..., al")/M,), while the hypothesis s = 0 corresponds to the theory of Bash-
makov ([2], Theorem C) on the Galois cohomology of elliptic curves (see [5], Theorem 2,
for a partial result, due to Tate, and Ribet [9], for a generalization to CM abelian
varieties). Both theories will in fact be used in the proof of Theorem 1.

Theorem 1 is readily seen to be equivalent to the following statement: let V be a
trivial extension of E by the multiplicative group Gm (this means that, as an algebraic
group over K, V is isomorphic to ExG m ) , and let End V be the ring of endomorphisms
of V (Note that, here, End V is isomorphic to E n d £ x | ) ; let Qu ..., Q, be t elements of
V(K) linearly independent over End V, and, for each Qi; let (1/0Q, be any ith division
point of Qf; then, for l> A, the Galois group of K(Vh (1//)Q,, . . . , (1/0Q) over K(Vt) is
isomorphic to VJ, where V, denotes the group of Ith torsion points on V. In connection
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with the study of integrals of the third kind on E, I asked under which assumption the
condition on the extension V can be removed. A complete solution of this problem has
recently been given by Ribet (see [10]).

2. Preliminaries. One of the motivations of the present study is the use of Kummer
theories in some problems of diophantine approximations (as, e.g., in [1], Chapters 1 and
7, [5], [3], [4], [6]). In this direction, it is important to obtain a bound for the constant A
appearing in Theorem 1. With this aim in mind, we now record the corollaries of Kummer
theory and Bashmakov's result to be used in the course of the proof.

Throughout this paper, we assume that P 1 ( . . . , Pm, a x , . . . , <xs satisfy the hypotheses
of Theorem 1. If ne [ l , m] and re [ l , s] denote two integers, we set, for every prime
number /:

G, = Ga\(KJK),

M W i r = M K a } " , . . . , a,1"),

LT> I

and we extend the last notation to n = 0 in the obvious way.
According to Kummer theory, Gal (M,Os/M,) is isomorphic to /xf as soon as the

classes of a l 5 . . . , as in K*I(K*)1 are multiplicatively independent. By "Cassels' remark"
and the hypothesis on the af's (see, e.g. [6], p. 112), this condition holds for any prime i
larger than

in this formula A denotes the sum of the logarithmic Weil heights hK of au ..., as, and
CK is the minimum of hK(a) as a runs through the non-torsion elements of K*. A result
of Dobrowolski (see [8], §1) shows that C^1 is bounded from above by
Q>[(logd)/loglog(3d)]3, where d denotes the degree of K over Q and Co is an absolute
constant.

We now turn to the elliptic division field Klm0. Viewing the F,-vector space Et as a
G|-module (under Galois action), we distinguish between the following cases:

(a) E has no complex multiplication: a fundamental result of Serre [11] then asserts
the existence of a constant

such that, for />Aa, Gt is isomorphic to Autp,(E|). Unfortunately, effective upper bounds
for Aa are known only in special cases (see [11], Proposition 21 and 24).

(b) End E is isomorphic to an order of the ring of integers 0 of a quadratic imaginary
field F: class field theory then implies that, for any prime I larger than some constant Ab,
Gj is isomorphic to Aut^cE, = (€IIO)X. Moreover, in view of (e.g.) the discussion in [9],
§2, on the Frobenius endomorphisms irm and the fact that iru generates NKIFv in €, we
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may choose

K = YE,

where yE depends only on E, and is effectively computable.
For later purposes, we split case (b) as follows:
(b,) I remains prime in 6; for I > Ab, this implies that E, is an irreducible G,-module.
(b2) / splits in 6, i.e. €116—(¥t)

2: for J>Ab, E, can then be decomposed as a direct
sum of two irreducible G, -modules E\*'\ E\X2> upon which G, acts via the canonical
characters Xu X2 °f (F*)2-

In each of the three cases, Bashmakov's theorem shows that Ga\(Klm0IKt) is
isomorphic to EJ" as soon as the classes of Pu ..., Pm in E(K)/IE{K) are linearly
independent over End E/l End E. By Cassels' remark again, and the hypothesis on the
Pi's (see, e.g., Masser's appendix to chapter 7 of [1]; [4], Proposition 4 and §3.1; or [6],
chapter 5), this condition holds for any prime / larger than

A2 = max(Aa, (C^KU)ml2) (in case (a)),

\ 2 = max(Ab, (C^KUT) (in case (b));

in these formulae U denotes the sum of the logarithmic Neron-Tate heights heK of the
points P , , . . . , Pm, and CBK is the minimum of hEK(P) as P runs through the non-torsion
points of E(K). In case (b), a result of Anderson (see [8], §1) shows that CE-'K is bounded

,from above by CB(d logd)3, for some constant CE effectively computable in terms of E.
(This bound has recently been improved to CEd2(log d)3 by Masser.)

A step-by-step inspection of the discussion of §3 implies:

THEOREM 2. Theorem 1 holds with A = m a x ^ , A2).

In particular, Theorem 1 provides an effective result when E has complex multiplica-
tions.

3. Proof of Theorem 1. In cases (a) and (bj) listed above, the following proof of
Theorem 1 is a mere generalization of that of Ribet in [3]. Case (b2), however,
necessitates a new type of argument, based on the Weil pairing on E,.

We fix the integer m and a prime Z>A, and prove Theorem 1 by induction on
r = 0 , . . . , s. If r = 0, we apply Bashmakov's theorem. Assume Theorem 1 is valid for
r = s - 1 . In order to conclude, it suffices to show that a*" does not belong to Ki>m>s_i. We
suppose this is false, and denote by n the smallest integer (possibly 0) such that a ]" lies in

We start by assuming n = 0. This means that A, = Gal(M,0S/MIOs_j) is a quotient of
B, = Ga\(Kl0JMl0s^). By the induction hypothesis, Ga\(KlOs_JK,) is isomorphic to
ti'r1, which Kummer theory identifies with GaKM^.s-a/M,). Hence, B, - Gal(K,/M,). By
Kummer theory again, A( is isomorphic to ji,. Thus, /i.| would be a quotient of Gal(K,/M().
In case (a), the latter group is isomorphic to SL^F,), which has no quotient of order I,
while the desired contradiction follows in cases (bj) and (b2) from a comparison of
degrees.
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Consequently, n is positive, and we have the tower of fields

K ^ K, c-> K^Us_t ^ KUn_Us <^> KUn,s = Kln,s_u

which the induction hypothesis (and a comparison of degrees) show to be strictly
ascending. Consider the normal subgroups

of J, = Gal(KlnJK), and let Y = Gal(Ku_,_s/lC,n_1 s_t) = R,/X. Conjugation in /, yields an
action of G( = JJH{ on R,, under which X is stable. We can then view X (resp. Y) as a
proper submodule (resp. quotient) of the Gt -module R,.

It is now timely to recall the map t// = i/»Pn: Rt —» E( used in the proof of Bashmakov's
theorem. It associates to an element <r of R, the well-defined ith torsion point

/I \ 1
i//(cr) = o- - Pn — P n .

\l I I

By the standard cocycle identities, we have, for any T in G|

In other words, I/MS a homomorphism of Gt -modules, and Bashmakov's theorem asserts
that it is an isomorphism. Our assumption would thus imply that the Gt-module E( has a
proper submodule i/»(X). In cases (a) and (b^, this contradicts the irreducibility of E,.

In order to deal with case (b2), we introduce the map cp = cpa_: Y —> ^ given by

Since a]n does not lie in i^i,n-i,s_i, <p is bijective. Let further T be an element of Gt.
Recalling the action of G, on Y, we obtain

where the right-hand side represents the Galois action of G, on /x,. Hence, as G(-modules,
/x, and Y are isomorphic, and JLIJ can be viewed as a quotient of R,. But, according to the
Weil pairing, the action of G( on /x, is given by the determinant X\X2- Since the characters
X\ and Xi a r e non-trivial, this contradicts, for A>Ab, the structure of G(-module of R|
obtained by lifting back (via t/») the decomposition E, = E\X>)(&E\X*).

APPENDIX (see [10]). Consider the product V = ExGm mentioned in §1. Ribet notes
that the proof in §3 only uses the following properties of V,:H1(Gal(K'(V,)/K), V,) = 0;
EndGal(K(V|)/K)V, = EndV/Z EndV; V, is a semi-simple Gal(K(V()/K)-module. This enables
him, in particular, to prove Theorem 1 when E is replaced by an abelian variety A
defined over any field 3if of characteristic 0. provided the above properties hold, together
with the following "axiom" (see [10], §1, B4, Prop. 1.1 and Remark 2.3).

(*) Let Px,..., Pm be m elements of A{JK), linearly independent over 6 = End A. For any
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sufficiently large prime number I, the classes of Pu ..., Pm in A/IA are linearly independent
over 0110.

We shall here show how the arguments of §2 imply, in an effective way, the validity
of (*) for all simple abelian varieties A defined over 3if. Without loss of generality, we
may assume that 3C is a finitely generated regular extension of a number field K. Let p be
the rank of 0 over 1, and let (B, T) be the JC/K-trace of A (see [7], chapter V).
Considering the ©-module 0Pl +... + 0Pm, we may further assume that, for some integer
n e [ 1 , . . . , m], the points P 1 ; . . . , Pn_t belong to T(B)(K), while the classes of Pn,..., Pm

in A(3if)/T(B)(K) are linearly independent over ©. Suppose that the conclusion of (*) does
not hold. By the Dirichlet box principle (see [4], Proposition 4), there exist elements
Yi, • • •, Ym of ©, not all zero, of size < ;1-<1'pm»j s u ch that

yiP,+ ...+ymPm = lQ,

where Q belongs to A(3C). If the class of Q modulo T(B){K) is not zero, the quadraticity
of the "geometric" height hA3C associated to a symmetric divisor on A(JC) provides a
contradiction as soon as

ipm/2

If Q belongs to T(B)(K), then yn, • •. ,ym vanish, and the quadraticity of the "arithmetic"
height hBK associated to a symmetric divisor on T(B)(K) provides a contradiction as soon
as

^ pm/2[ n — 1 "I

cmJOlvK(p,)
i = 1 - I(In these formulae, C and C denote positive numbers depending only on A and X.)

The author wishes to thank J. Coates, K. Ribet and the referee for several helpful
remarks.
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