FREE COMPLETELY REGULAR SEMIGROUPS

by P. G. TROTTER

(Received 5 May, 1983)

A completely regular semigroup is a semigroup that is a union of groups. The aim here is to provide an alternative characterization of the free completely regular semigroup F_X^{cr} on a set X to that given by J. A. Gerhard in [3, 4].

Although the structure theory for completely regular semigroups was initiated in 1941 [1] by A. H. Clifford it was not until 1968 that it was shown by D. B. McAlister [5] that F_X^{cr} exists. More recently, in [7], M. Petrich demonstrated the existence of F_X^{cr} by showing that completely regular semigroups form a variety of unary semigroups (that is, semigroups with the additional operation of inversion).

In [2] Clifford investigated the structure of F_X^{cr} by considering it as a quotient semigroup F_X^u/ρ of the free unary semigroup F_X^u on X. He gave a simple description of Green's relations \mathcal{L} , \mathcal{R} and \mathcal{D} on F_X^u/ρ and showed that F_X^{cr} is a free semilattice of its \mathcal{D} -classes. The description of \mathcal{D} was in terms of content of elements while the \mathcal{L} -class of an element was described modulo a description of the ρ -class of an element of lesser content. Clifford enabled the ρ -classes of elements of content at most 2 to be explicitly described, by providing a model for F_Z^{cr} when |Z|=2.

J. A. Gerhard showed in [4] that an \mathcal{H} -class of F_X^u/ρ is a free group. The free generators were described modulo solution of the word problem in F_X^u/ρ for words of lesser content. With a given \mathcal{H} -class from each \mathcal{D} -class and with Petrich's description [6] of an arbitrary completely regular semigroup, Gerhard constructed a model for F_X^c .

In this paper we inductively select a unique representative $w\theta \in F_X^u$ for each ρ -class $w\rho \in F_X^u/\rho$. In particular $w\theta$ is uniquely expressed as a product of elements from X and from {segments of $a\theta$; $a \in F_X^u$ has smaller content than w}. It is then shown that the set $\{w\theta; w \in F_X^u\}$ with the multiplication $u\theta \cdot v\theta = (u\theta(v\theta))\theta$ is isomorphic to F_X^{cr} . Since they do not appear to shorten the proofs of this paper, the results of [3, 4] are not utilized here.

In section 1 some preliminary information, especially from [2], is listed. Some properties of F_X^u/ρ are derived in section 2. In section 3, θ is defined and relevant properties are derived. A model for F_X^{cr} is obtained in the final section.

1. Definitions and preliminaries. Let F_X and F_X^{cr} denote respectively the free semigroup and free completely regular semigroup on a non-empty set X. Let F_X^u denote the *free unary semigroup* on X; that is, the free object on X in the category of semigroups with a unary operation. Let $\overline{X} = X \cup \{(,)^{-1}\}$ where $(,)^{-1} \notin X$. By [3], F_X^u is the smallest subsemigroup of the free semigroup $F_{\overline{X}}$ such that $X \subseteq F_X^u$ and $(w)^{-1} \in F_X^u$ for all $w \in F_X^u$. There is an alternative description of F_X^u in [2]. Let F_X^1 and F_X^{u1} denote respectively the semigroups $F_{\overline{X}}$ and F_X^u with identity 1 adjoined.

Define $v \in F_{\bar{X}}$ to be a segment of $w \in F_X^u$ if w = avb for some $a, b \in F_X^1$. The segment v

Glasgow Math. J. 25 (1984) 241-254.

of w is said to be maximal with respect to a property P if and only if v satisfies P and for any final segment c of a and initial segment d of b then cv, vd and cvd do not satisfy P.

If $u = b(a \text{ or } u = a)^{-1}b$ where $a \in F_X^{u,1}$ we say that the occurrence of (or)⁻¹ respectively is *unmatched*. Let $\mathbf{v} \in F_X^u$ denote the word obtained from $v \in F_{\bar{X}}$ by successively deleting unmatched occurrences of (and)⁻¹.

The content of $w \in F_X^1$ is the set

 $C(w) = \{$ letters of X appearing in $w \}$.

The left indicator L(w) of $w \in F_x^u$ is given by $L(w) = \mathbf{a}$ where a is the shortest initial segment of w such that C(a) = C(w). Dually the right indicator is $R(w) = \mathbf{b}$ where b is the shortest final segment of w such that C(w) = C(b). Define **c** to be an indicator of w if there is a segment c of w such that C(c) = C(w) and $L(\mathbf{c}) = \mathbf{R}(\mathbf{c}) = \mathbf{c}$.

For $w \in F_x^i$ let $\{c_i; 1 \le j \le r\}$ denote the set of successive segments of w such that \mathbf{c}_i is an indicator and \mathbf{c}_i is not derivable from a proper subsegment of c_i . Let d_i denote the final segment of w beginning with c_i , and let e_i denote the segment beginning and ending with c_i and c_{i+1} respectively. Define $I_i(w) = \mathbf{c}_i$, $W_i(w) = \mathbf{d}_i$ and $M_i(w) = \mathbf{e}_i$ to be respectively the *it indicator, jth remainder* and *jth link* of w.

EXAMPLE 1.1. Let
$$w = x_1(x_2((x_4x_1)^{-1}x_3)^{-1}(x_2)^{-1}x_1x_4x_3)^{-1}$$
. Then

$$\begin{split} L(w) &= x_1 x_2 (x_4 x_1)^{-1} x_3, \qquad R(w) = x_2 x_1 x_4 x_3, \qquad I_1(w) = x_2 (x_4 x_1)^{-1} x_3, \\ I_2(w) &= x_4 x_1 x_3 x_2, \qquad I_3(w) = x_3 (x_2)^{-1} x_1 x_4, \qquad I_4(w) = x_2 x_1 x_4 x_3, \\ M_1(w) &= x_2 ((x_4 x_1)^{-1} x_3)^{-1} x_2, \qquad M_2(w) = x_4 x_1 x_3 (x_2)^{-1} x_1 x_4, \qquad M_3(w) = x_3 (x_2)^{-1} x_1 x_4 x_3, \\ W_1(w) &= x_2 ((x_4 x_1)^{-1} x_3)^{-1} (x_2)^{-1} x_1 x_4 x_3, \dots, W_4(w) = x_2 x_1 x_4 x_3. \end{split}$$

Note that $I_j(w) = L(W_j(w)) = L(M_j(w)) = R(M_{j-1}(w))$ (if the links exist) and $I_1(w) = R(L(w))$.

We next provide a simple characterization of indicators and links. Suppose $v \in F_X^u$ and C(v) = Y. For any $u \in F_X^{u1}$ and $x, y \in Y \setminus C(u)$ define v to be

- (i) a left [right] Y-indicator if v = uy [v = xu],
- (ii) a Y-indicator if v = xuy, $x \neq y$ (or if v = x when |Y| = 1), or
- (iii) a Y-link if v = xux.

LEMMA 1.2. Let $v \in F_X^u$ and C(v) = Y. Then v is a left or right Y-indicator, Y-indicator or Y-link if and only if v is a left or right indicator, indicator or link respectively of some $w \in F_X^u$.

Proof. Let v = xux be a Y-link as in the definition. Since $C(u) \neq Y$ and $x \in Y \setminus C(u)$ then L(v) and R(v) are successive indicators of v, so v is a link of itself. Conversely let Mbe the *j*th link of w where C(w) = Y. So M has exactly two indicators, namely $I_i(w) = xa$ and $I_{i+1}(w) = by$ for some $a, b \in F_X^{u,1}$, $x \in Y \setminus C(a)$ and $y \in Y \setminus C(b)$. So M = xcy for some $c \in F_X^{u,1}$. If C(c) = C(w) then R(L(c)) and L(R(c)) are indicators of w. Hence since $I_i(w)$ and $I_{i+1}(w)$ are successive indicators then $C(c) \neq C(w)$ while C(xc) = C(w) = C(cy). But

242.

then, since $x \in C(cy)$, if $x \neq y$ we get $x \in C(c)$ and C(c) = C(w), a contradiction. Thus x = y and M is a Y-link. The other cases follow directly from the definitions.

Let ρ be the least congruence on F_X^u containing $(w(w)^{-1}w, w)$, $(w(w)^{-1}, (w)^{-1}w)$ and $(((w)^{-1})^{-1}, w)$ for all $w \in F_X^u$.

THEOREM 1.3. (Clifford [2]). Let $u, v \in F_X^u$. Then

(i) $F_X^{\rm cr} \cong F_X^u / \rho$,

(ii) $u \rho \mathcal{D} v \rho$ if and only if C(u) = C(v), and

(iii) $u \rho \mathcal{R} v \rho$ if and only if L(u) = ax and L(v) = bx for some $x \in X$ and $a, b \in F_X^{u1}$ such that $a \rho b$ or a = b = 1.

COROLLARY 1.4. Suppose $u, v \in F_X^u$ and p is an initial segment of u. If $u \rho v$ then v has an initial segment q such that $L(\mathbf{p}) \rho L(\mathbf{q})$.

Proof. Assume $1 \neq |C(u)| \neq |C(p)|$: otherwise the result follows directly from the theorem. Let u, v, a, b be as in Theorem 1.3(iii). So $a \rho b$ and by [2, Lemma 5.1], $a \rho \mathbf{p} a_1$ for some $a_1 \in F_X^{u_1}$. Since |C(a)| < |C(u)| the result follows by induction on |C(u)|.

NOTATION. For $w \in F_X^u$ define w^n to be the product of *n* copies of *w*. Define $w^{-1} = (w)^{-1}$, w^{-n} to be the product of *n* copies of w^{-1} and $w^0 = ww^{-2}w$.

Throughout the paper assume that X is a well ordered set. We will always denote by Y the subset $Y = \{x_1, \ldots, x_n\}$ of X where $x_i < x_j$ in X if and only if i < j. Define

$$\hat{f} = x_1 \dots x_n \text{ and } f = \hat{f}^0. \tag{1}$$

The symbol \subset denotes proper inclusion of sets.

2. Some ρ -relationships. In this section we determine some relationships in F_X^u/ρ and review Clifford's models for $|X| \le 2$.

LEMMA 2.1. Let $w \in F_X^u$ and $u, v \in F_X^{u^1}$ such that $C(uv) \subseteq C(w)$. Let $a = L(w)u(vR(w)wL(w)u)^{-1}vR(w)$. Then $w^{-1}\rho a$.

Proof. Clearly $(aw)\rho$ is an idempotent. By Theorem 1.3(iii) and its dual $a\rho \mathcal{H} w\rho \mathcal{H} (aw)\rho$. So $awa\rho a$ and $waw\rho w$. By Theorem 1.3(i), $w^{-1}\rho$ is the unique \mathcal{H} -related inverse of $w\rho$ so $a\rho w^{-1}$.

LEMMA 2.2. Let $w \in F_X^u$ have an initial segment u. Then $uu^{-1}w \rho w$.

Proof. By [2, Lemma 5.1], $w \rho u v$ for some $v \in F_X^{u1}$.

The next lemma is the major step towards a decomposition of elements of F_X^u in terms of their left and right indicators, indicators and links.

LEMMA 2.3. Suppose $w \in F_X^u$ has no segment u^{-1} such that $u \in F_X^u$ and C(u) = C(w). Let $I_j = I_j(w)$ and $M_h = M_h(w)$, $1 \le j \le r$, $1 \le h < r$, be respectively the indicators and links of w. Then

$$w \rho L(w) I_1^{-1} M_1 \dots I_{r-1}^{-1} M_{r-1} I_r^{-1} R(w).$$

Proof. Let $W_i = W_i(w)$ be the *j*th remainder of *w*. By the definitions of section 1, $L(W_i) = I_i$ and since $L(R(w)) = I_r$ then $W_r = R(w)$. Furthermore since $W_i = \mathbf{W}_i$ then there is a $z_i \in X$ and $w_i \in F_X^{u_1}$ such that $W_i = z_i w_i$. Then $I_{i+1} = R(L(w_i))$ and $M_i = z_i L(w_i)$ (if they exist).

If w = L(w)a for some a then since $I_1 = R(L(w))$ we get $W_1 = I_1a$ and, by the dual of Lemma 2.2, $w \rho (L(w)I_1^{-1}I_1)a = L(w)I_1^{-1}W_1$. Alternatively $w = cd^{-1}e$ for some c, d, $e \in F_X^{u_1}$ where $C(d) \neq C(w)$ and $L(w) = c\mathbf{g}$ for some initial segment g of d^{-1} . Since $I_1 = R(L(w))$ and $C(w) \neq C(d) \supseteq C(g)$ then $I_1 = h\mathbf{g}$ and $W_1 = hd^{-1}e$ for some h. So by Lemma 2.2 and its dual

$$w \rho c(\mathbf{g}\mathbf{g}^{-1}d^{-1}e) = L(w)\mathbf{g}^{-1}d^{-1}e \rho (L(w)I_1^{-1}I_1)\mathbf{g}^{-1}d^{-1}e$$

= $L(w)I_1^{-1}h(\mathbf{g}\mathbf{g}^{-1}d^{-1})e \rho L(w)I_1^{-1}hd^{-1}e = L(w)I_1^{-1}W_1.$

Hence we have $w \rho L(w)I_1^{-1}W_1$. If r > 1 then by applying the argument to w_1 and using the initial comments of the proof, $w \rho L(w)I_1^{-1}M_1I_2^{-1}W_2$. Since $W_r = R(w)$ we get the result by repeating the argument for w_2, \ldots, w_{r-1} .

Recall the definition of Y and f in section 1.

COROLLARY 2.4. Let w be as in Lemma 2.3 with C(w) = Y. Then

 $w \rho L(w) f(fI_1f)^{-1} fM_1 f \dots (fI_{r-1}f)^{-1} fM_{r-1} f(fI_rf)^{-1} fR(w).$

Proof. Since $I_1 = R(L(w))$ then by Theorem 1.3(iii) the idempotent $(f(fI_1f)^{-1}fI_1)\rho$ is \mathscr{L} -related to $(L(w))\rho$. Hence since $I_1 = L(M_1)$ then by Lemma 2.2

 $L(w)I_1^{-1}M_1 \rho L(w)f(fI_1f)^{-1}fI_1I_1^{-1}M_1 \rho L(w)f(fI_1f)^{-1}fM_1.$

Likewise $I_j = R(M_{j-1}) = L(M_j)$ if $j \neq r$ so

$$M_{j-1}I_j^{-1}M_j \rho M_{j-1}f(fI_jf)^{-1}fM_j$$

and since $I_r = R(M_{r-1}) = L(R(w))$ then

$$M_{r-1}I_r^{-1}R(w) \rho M_{r-1}f(fI_rf)^{-1}fR(w).$$

The result is now a consequence of Lemma 2.3.

Notice that if $w \in F_X^u$ and C(w) = Y then by Lemma 2.1

$$w^{-1} \rho L(w) f(fR(w)wL(w)f)^{-1} fR(w).$$
(2)

Hence by Corollary 2.4 any $w \in F_X^u$ where C(w) = Y can be expressed modulo ρ as a product of left and right Y-indicators, Y-indicators, Y-links and \hat{f} .

LEMMA 2.5. Suppose $u, v, w \in F_X^{u,1}$, C(w) = Y and $1 \le i \le n$, $1 \le j \le n$. (i) If $w = ux_1 \ldots x_j$ and $R(w) = vx_1 \ldots x_j$ then $w \rho uf(fvf)^{-1}fR(w)$. (ii) If $w = x_1 \ldots x_n ux_1 \ldots x_j$ then $w \rho x_1 \ldots x_n uf(fuf)^{-1}fux_1 \ldots x_j$.

Proof. (i) By Theorem 1.3 the idempotent $(x_{j+1} \dots x_n \hat{f}^{-1}(fvf)^{-1} fR(w))\rho$ is \mathscr{L} -related

to wp. So

$$w \rho w x_{j+1} \dots x_n \hat{f}^{-1} (fvf)^{-1} f R(w) \rho u f (fvf)^{-1} f R(w)$$

(ii) Let $R(w) = vx_1 \dots x_j$. Since $R(fux_1 \dots x_j) = R(w)$ then by (i) $w \rho x_i \dots x_n uf(fvf)^{-1}fR(w)$ and $fux_1 \dots x_j \rho fuf(fvf)^{-1}fR(w)$. The result follows.

DEFINITION 2.6. (i) A segment u of $w \in F_X^u$ is v-excluded, for $v \in F_{\bar{X}}$, if and only if v is not a subsegment of u.

(ii) An \hat{f} -excluded segment u of $w \in F_X^u$ is \hat{f} -bounded if and only if either w = u, $w = a\hat{f}u$, $w = u\hat{f}b$ or $w = a\hat{f}u\hat{f}b$ for some $a, b \in F_X^{u^1}$.

(iii) Denote by G_{Y} the free group freely generated by

$$\{fuf, \hat{f}; u \in F_X^u, C(u) \subseteq Y \text{ and } u \text{ is } \hat{f}\text{-excluded}\}\$$

where $(fuf)^{-1}$ and \hat{f}^{-1} denote respectively the inverses of fuf and \hat{f} , and f is the identity. If $Y = \{x\}$ then $\hat{f} = x$, so there exists no \hat{f} -excluded $u \in F_X^u$ such that $C(u) \subseteq Y$. Hence $G_{\{x\}}$ is the free group on $\{x\}$. Let G_f denote the subgroup of G_Y generated by \hat{f} . We will regard $v \in F_X^u$ as an alternative expression for $u \in G_Y$ if and only if a common expression can be obtained by replacing segments of u and v that are words of G_f by their reduced forms. For example $(fa\hat{f})^{-1}fb\hat{f}^{-1}$ denotes $(faf\hat{f})^{-1}fbf\hat{f}^{-1} = \hat{f}^{-1}(faf)^{-1}fbf\hat{f}^{-1}$ in G_Y .

EXAMPLE 2.7. (i) Let $X = \{x\}$. By [2] $F_X^{cr} \cong G_X$. Let $w\theta$ be the reduced form in G_X of $w \in F_X^u$. By [2], for any $u, v \in F_X^u$, $u \rho v$ if and only if $u\theta = v\theta$. So $G_X = \{w\theta, w \in F_X^u\}$ with multiplication given by $u\theta \cdot v\theta = (u\theta(v\theta))\theta$.

(ii) Let $X = Y = \{x, y\}$, so $\hat{f} = xy$. Let $A = \{x^i, y^i; j \text{ is a non-zero integer}\}$ and H_Y be the subgroup of G_Y freely generated by $\{fuf, \hat{f}; u \in A\}$. Let $D_x = G_{\{x\}}, D_y = G_{\{y\}}$ and

$$D_{xy} = \{pfhfq; p \in A \cup \{y^0, 1\}, q \in A \cup \{x^0, 1\}, h \in H_Y\}.$$

Let $S = D_x \cup D_y \cup D_{xy}$. Note that $x^0 f \rho f \rho f y^0$ and for integers *i*, *j* that $x^i y^j \rho x^{i-1} f \hat{f} f y^{j-1}$ and by Lemma 2.5(ii) $y^i x^j \rho y^i f f x^j$. With these relations we can uniquely choose $w \theta \in S$ such that $w \rho w \theta$ for all $w \in F_x^u$. It follows easily from [2, section 6] that for $u, v \in F_x^u$, $u \rho v$ if and only if $u\theta = v\theta$ and $F_x^{x} \cong S = \{u\theta; u \in F_x^u\}$ with multiplication $u\theta \cdot v\theta = (u\theta(v\theta))\theta$. The \mathcal{D} -classes of S are D_x , D_y and D_{xy} and H_Y is the \mathcal{H} -class of f.

3. θ -forms. An element $w\theta \in F_X^u$ will be constructed from any $w \in F_X^u$. It will be shown that $w\theta \rho w$, $w\theta\theta = w\theta$ and for $u, v \in F_X^u$ that $(uv)\theta = (u\theta(v\theta))\theta$. These properties will be used in the next section to show that $S = \{w\theta; w \in F_X^u\}$, under the multiplication $u\theta \cdot v\theta = (u\theta(v\theta))\theta$, is a semigroup isomorphic to F_X^{cr} , and that $w\theta$ is a unique representative of the ρ -class $w\rho$.

The construction of $w\theta$ will depend on the following assumption. Recall the definition of Y and f from section 1.

ASSUMPTION 3.1. In the remainder of the paper assume for each $w \in F_X^u$ where $C(w) \subset Y$ that a unique representative $w\theta$ of the ρ -class $w\rho$ has been constructed. In particular if $|C(w)| \leq 2$ let $w\theta$ be as in Examples 2.7.

The following definition is needed for our selection of representatives of the ρ -classes fw, wf and fwf, where $C(w) \subset Y$.

DEFINITION 3.2. Define $x_0 = x_{n+1} = 1$. For $w \in F_X^u$ where $C(w) \subset Y$ let i(w) and j(w) be respectively the least and greatest integer such that whenever $0 \le i \le j(w)$ or $i(w) \le i \le n+1$ then $x_i \in C(w) \cup \{1\}$. Define $w_L \in F_X^{u,1}$ to be the shortest initial segment of $(w(x_0 \ldots x_{j(w)})^0)\theta$ such that $wx_0 \ldots x_{j(w)} \rho w_L x_0 \ldots x_{j(w)}$. Define $w_R \in F_X^{u,1}$ dually to be the shortest final segment of $((x_{i(w)} \ldots x_{n+1})^0 w)\theta$ such that $x_{i(w)} \ldots x_{n+1} w \rho x_{i(w)} \ldots x_{n+1} w_R$. Define

 $w_l = [(x_{i(w)} \dots x_{n+1})^0 w]_L, \qquad w_r = [w(x_0 \dots x_{j(w)})^0]_R \text{ and } w_M = w_{lr}.$

The next lemma indicates the need for Definition 3.2. To facilitate its proof we make another assumption.

ASSUMPTION 3.3. Suppose $v \in F_X^u$, $u = (x_i, \ldots, x_{n+1})^0 v$ for some *i* and $Y \supset C(u) \supset C(v)$. Assume that v_R is a final segment of $u\theta$. Dually assume that if $u = v(x_0 \ldots x_i)^0$ for some *j* then v_L is an initial segment of $u\theta$.

The assumption can be seen to be valid, by Examples 2.7, if $|C(w)| \le 2$. We will define θ such that the assumption will be valid when C(u) = Y (see comment after Lemma 3.11).

LEMMA 3.4. Suppose $v, w \in F_X^{u_1}$ and $C(x_i \ldots x_{n+1}wx_0 \ldots x_j) \subset Y$ for some i, j. Then

- (i) $wf \rho w_L f$, $fw \rho f w_R$ and $fwf \rho f w_M f$;
- (ii) if $wx_0 \ldots x_i \rho vx_0 \ldots x_j$ then $w_L = v_L$;
- (iii) if $x_i \ldots x_{n+1} w x_0 \ldots x_j \rho x_i \ldots x_{n+1} v x_0 \ldots x_j$ then $w_M = v_M$;
- (iv) $w_{LL} = w_L$, $w_{LM} = w_{RM} = w_{MM} = w_M$.

Proof. (i) Since $(x_0 \ldots x_{j(w)})^0 f \rho f$ and $w(x_0 \ldots x_{j(w)})^0 \rho w_L(x_0 \ldots x_{j(w)})^0$ then $wf \rho w_L f$ and dually $fw \rho f w_R$. Hence (with duals) $fw_l f \rho f(x_{i(w)} \ldots x_{n+1})^0 wf \rho f w f$, so $fw_M f = fw_{lr} f \rho f w_l f \rho f w_l f \rho f w_l$.

(ii) Since $C(x_i \ldots x_{n+1}wx_0 \ldots x_j) \subset Y$ then $0 \le j < i \le n+1$, $i \ne 1$ and $j \ne n$. Suppose $vx_0 \ldots x_j \rho wx_0 \ldots x_j$. Assume $j(w) \ge j(v)$. Also assume $j \ge j(w)$; otherwise multiply both sides of the relation by suitable elements of Y. Since $x_{j(w)+1} \notin C(w)$ then $wx_0 \ldots x_{j(w)+1} = L(wx_0 \ldots x_{j(w)+1})$. If j > j(w) then by Corollary 1.4 there is a segment a of $vx_0 \ldots x_j$ such that $L(\mathbf{a}) = \mathbf{a} \rho wx_0 \ldots x_{j(w)+1}$. Since $x_{j(w)+1} \notin C(v)$ it follows by Theorem 1.3(iii) that $\mathbf{a} = vx_0 \ldots x_{j(w)+1}$ and $wx_0 \ldots x_{j(w)} \rho vx_0 \ldots x_{j(w)}$. So assume j = j(w). The result is then immediate if j(w) = j(v), so assume j(w) > j(v). Then $C(v) \subset C(w)$ and by Assumption 3.3, v_L is an initial segment of $(w(x_0 \ldots x_j)^0)\theta$. But $v_Lx_0 \ldots x_j \rho vx_0 \ldots x_j \rho wx_0 \ldots x_j$, so w_L is an initial segment of v_L . Since $C(v) \supseteq C(v_L)$ then $j(w_L) \le j(v_L) \le j(v)$. Since $vx_0 \ldots x_j \rho w_Lx_0 \ldots x_j$ then as above v_L and hence w_L are initial segments of w_{LL} . By the definition of w_{LL} this is possible only if $w_L = w_{LL}$. So $v_L = w_L$.

(iii) Let $\mathbf{U} = \{u; x_i \dots x_{n+1}ux_0 \dots x_j \rho x_i \dots x_{n+1}wx_0 \dots x_j\}$. Select $a, b \in \mathbf{U}$ such that $i(a) \ge i(u)$ and $j(b) \le j(u)$ for all $u \in \mathbf{U}$. We first prove the existence of $d \in \mathbf{U}$ such that i(d) = i(a), j(d) = j(b). Suppose j(a) > j(b); otherwise put d = a. So $x_{j(b)+1} \in C(a)$ and a

has a shortest initial segment p that includes $x_{j(b)+1}$. So $\mathbf{p} = cx_{j(b)+1} = L(\mathbf{p})$ for some $c \in F_X^{u,1}$. By Corollary 1.4 and Theorem 1.3(iii) applied to $x_i \dots x_{n+1} a x_0 \dots x_j$ and $x_i \dots x_{n+1} b x_0 \dots x_j$ we get $x_i \dots x_{n+1} c \rho x_i \dots x_{n+1} b x_0 \dots x_{j(b)}$. It follows that with $d = c(x_0 \dots x_{j(b)})^{-1}$ then $d \in \mathbf{U}$. We have $i(c) \ge i(a) \ge i > j \ge j(b) \ge j(c)$ by the choice of i(a) and j(b), hence since $d \in \mathbf{U}$ then i(d) = i(a) and j(d) = j(b).

It sufficies to prove $w_M = d_M$; by the same proof $v_M = d_M$. As in the proof of (ii) we assume j = j(w) and likewise i = i(w). Since $(x_1 \dots x_{n+1})^0 w x_0 \dots x_j \rho (x_1 \dots x_{n+1})^0 dx_0 \dots x_j$ then by (ii), $w_l = ((x_1 \dots x_{n+1})^0 d)_L$. So $j(d) = j((x_1 \dots x_{n+1})^0 d) \ge j(w_l)$. Since $w_l \in U$ then by the choice of d, $j(d) = j(w_l)$. By these observations

$$\begin{aligned} x_{i} \dots x_{n+1} w_{l}(x_{0} \dots x_{j(d)})^{0} \\ &= x_{i} \dots x_{n+1} ((x_{i} \dots x_{n+1})^{0} d)_{L} (x_{0} \dots x_{j(d)})^{0} \rho x_{i} \dots x_{n+1} (x_{i} \dots x_{n+1})^{0} d(x_{0} \dots x_{j(d)})^{0} \\ &\rho x_{i} \dots x_{n+1} (x_{i(d)} \dots x_{n+1})^{0} d(x_{0} \dots x_{j(d)})^{0} \rho x_{i} \dots x_{n+1} d_{l} (x_{0} \dots x_{j(d)})^{0}. \end{aligned}$$

Since $w_M = (w_l(x_0 \dots x_{j(d)})^0)_R$ and similarly for d_M , then by the dual of (ii), $w_M = d_M$.

(iv) We have $w_L x_0 \ldots x_{j(w)} \rho w x_0 \ldots x_{j(w)}$ and for $z = w_L$, w_R or w_M then $x_{i(w)} \ldots x_{n+1} z x_0 \ldots x_{j(w)} \rho x_{i(w)} \ldots x_{n+1} w x_0 \ldots x_{j(w)}$. The result follows by (ii) and (iii).

We now extend Definition 3.2 to include some cases where C(w) = Y.

DEFINITION 3.5. Let u be a segment of $w \in F_X^u$ where C(u) = C(w) = Y. Let $v \in F_X^{u1}$ and x, $y \in Y \setminus C(v)$. Define

 $u_{L} = v\theta y \quad \text{if } u = vy \text{ is a left } Y\text{-indicator,} \\ u_{R} = x(v\theta) \quad \text{if } u = xv \text{ is a right } Y\text{-indicator, and} \\ u_{M} = \begin{cases} x(v\theta)y & \text{if } u = xvy \text{ is a } Y\text{-indicator or } Y\text{-link,} \\ v_{R}y & \text{if } u = vy \text{ is a left (not right) } Y\text{-indicator,} \\ xv_{L} & \text{if } u = xv \text{ is a right (not left) } Y\text{-indicator.} \end{cases}$

By Lemma 3.4 and Assumption 3.1 we easily get the following.

LEMMA 3.6. If they exist $u_{LL} = u_L$, $u_{RR} = u_R$ and $u_{MMM} = u_{MM}$ for any $u \in F_X^u$, $C(u) \subseteq Y$.

Suppose $w \in F_X^u$ and C(w) = Y. The following operations will be used in the selection of $w\theta$. Recall the definitions of section 1 and Definitions 2.6, 3.2 and 3.5.

(θ 1) Construct $w\theta_1$ from w by replacing each segment that is maximal with respect to being a word in $G_{\{x\}}$, for any $x \in X$, by its reduced form in $G_{\{x\}}$. Clearly $w\theta_1 \rho w$.

(θ 2) Construct $w\theta_2$ from $w\theta_1$ by replacing each segment u^{-1} , where C(u) = Y and $\hat{f}^i \neq u \neq faf$ for any *i* and *a*, by $L(u)f(fR(u)uL(u)f)^{-1}fR(u)$. Likewise replace segments v^{-1} of *u* where C(v) = Y, and so on. If $u = \hat{f}^i$ or faf and u^{-1} is not preceded and succeeded by \hat{f} in the spelling of *w* then replace u^{-1} by $fu^{-1}f$.

By (2), $w\theta_2 \rho w$. Note that if u^{-1} is a segment of $w\theta_2$ and C(u) = Y then $u^{-1} \in G_Y$ and $\hat{f}u^{-1}\hat{f}$ is also a segment of $w\theta_2$.

(θ 3) Construct $w\theta_3$ from $w\theta_2$ by replacing each \hat{f} -bounded segment u, where

C(u) = Y and u has r Y-indicators, by

$L(u)f(fI_1(u)f)^{-1}fM_1(u)f\dots(fI_{r-1}(u)f)^{-1}fM_{r-1}(u)f(fI_r(u)f)^{-1}fR(u).$

By Corollary 2.4, $w\theta_3 \rho w$. Note that $w\theta_3$ is a product in F_X^u of \hat{f} and \hat{f} -bounded segments. We see by Definitions 3.2 and 3.5 that u_M exists for any \hat{f} -bounded segment u of $w\theta_3$, where u is not an initial or final segment; otherwise u_L or u_R respectively exist. This property is invariant under the operations on $w\theta_3$ that follow.

(θ 4) Construct $w\theta_4$ from $w\theta_3$ by replacing each \hat{f} -bounded segment $u = x_i a$, where C(u) = Y, a has initial segment p such that $\mathbf{p} \rho x_{i+1} \dots x_{n+1}$ and $L(u) = x_i b \neq u$ for some i, by $L(u)f(f\mathbf{p}^{-1}bf)^{-1}f\mathbf{p}^{-1}a$. Since $u \rho x_i \dots x_n \mathbf{p}^{-1}a$ then by the dual of Lemma 2.5(i), $w\theta_4 \rho w$.

(θ 5) Construct $w\theta_5$ from $w\theta_4$ by replacing each \hat{f} -bounded segment $u = ax_i$, where C(u) = Y, a has final segment q such that $\mathbf{q} \rho x_0 \dots x_{j-1}$ and $R(u) = bx_j \neq u$ for some j, by $a\mathbf{q}^{-1}f(fb\mathbf{q}^{-1}f)^{-1}fR(u)$. Then $w\theta_5 \rho w$.

(θ 6) Construct $w\theta_6$ from $w\theta_5$ by replacing each \hat{f} -bounded segment $u = x_i a x_j$, where a has initial and final segments p and q respectively such that $\mathbf{p} \rho x_{i+1} \dots x_{n+1}$ and $\mathbf{q} \rho x_0 \dots x_{j-1}$ for some i and j, by $x_i a \mathbf{q}^{-1} f(f \mathbf{p}^{-1} a \mathbf{q}^{-1} f) f \mathbf{p}^{-1} a x_j$. By Lemma 2.5(ii), $w\theta_6 \rho w$.

(θ 7) Construct $w\theta_7$ from $w\theta_6$ by replacing each \hat{f} -bounded segment u by u_L , u_R or u_{MM} according as u is an initial, final or other type of segment. By Lemma 3.4(i) and Definition 3.5, $w\theta_7 \rho w$.

(ϕ) For $w \in F_X^u$ where C(w) = Y, construct $w\phi$ from w by replacing the segment of w that is maximal with respect to being a word of G_Y by its reduced form in G_Y .

(θ) Define $w\theta = w\theta_7\phi$. Then $w\theta\rho w$.

Notice that each \hat{f} -bounded segment of $w\theta$ of content Y is a left Y-, right Y- or Y-indicator or Y-link. Furthermore $w\theta$ is a product in F_X^u of \hat{f} and \hat{f} -bounded segments. By (θ 3), $w\theta$ has a segment that is a word in G_Y . We have $w\theta = phq$ where $h \in G_Y$, p = 1 or p = uf and q = 1 or q = fv where u and v are respectively the \hat{f} -bounded initial and final segments (if they exist) of $w\theta$.

The next result follows easily from the definitions.

LEMMA 3.7. Let w = phkq where $h, k \in G_Y$, $p, q \in F_X^{u^1}$ and C(w) = Y. Then $w\theta = ((ph)\theta(kq)\theta)\phi$.

LEMMA 3.8. If $w \in F_X^u$ then $w\theta\theta = w\theta$.

Proof. The result is immediate by Assumption 3.1 if $C(w) \subset Y$ and it is easy to check that $h\theta = h$ for any $h \in G_f$ (see Definition 2.6(iii)) and that $u^{-1}\theta = (u\theta)^{-1}$ for any $u \in G_Y$. Clearly $w\theta\theta_2 = w\theta$. Assume C(w) = Y and v is an \hat{f} -bounded segment of $w\theta$. By (θ 7), $v = u_L$, u_R or u_{MM} for some $u \in F_X^u$ and by Lemma 3.6 $v_L = v$, $v_R = v$ or $v_M = v$ respectively. Assume $w\theta = vf$ or fvf: by duality and Lemma 3.7 we need only prove the result in these cases. If $C(v) \subset Y$ then we easily see $w\theta\theta = w\theta$. So assume C(v) = Y. Since $(\theta 4)$, $(\theta 5)$ and $(\theta 6)$ are used in the construction of v it can be easily checked that if $v = x_i pa$ for some i, where $\mathbf{p} \rho x_{i+1} \dots x_{n+1}$ then L(v) = v. Hence if v is a segment of $w\theta\theta_3$ then v is not modified by $(\theta 4)$; similarly v is invariant under $(\theta 5)$ and $(\theta 6)$. If $w\theta = vf$ then

v = L(v), so $w\theta\theta_3 = vf(fR(v)f)^{-1}fR(v)f$ and since v is invariant under ($\theta4$), ($\theta5$), ($\theta6$) and ($\theta7$) then $w\theta\theta = w\theta$. Now suppose w = fvf. If v is a left Y-, right Y-, or Y-indicator then we likewise get $w\theta\theta = w\theta$. Alternatively if v is a Y-link then $w\theta\theta_3 = fL(v)f(fL(v)f)^{-1}fvf(fR(v)f)^{-1}fR(v)f$ and as above we get the result.

Reasoning in a similar way we get the following.

COROLLARY 3.9. If $w \in F_X^u$ and C(w) = Y then $w\theta_i \theta = w\theta$ for $1 \le i \le 7$.

The last three results will be used several times without comment in the following lemmas. The next result is like Corollary 2.4 but without restrictions on inverses.

LEMMA 3.10. Let $w \in F_x^w$ where C(w) = Y and $w = w\theta_2$. Then $w\theta = (L(w)f(fI_1(w)f)^{-1}fW_1(w))\theta$ and $(fw)\theta = (fL(w)f(fI_1(w)f)^{-1}fW_1(w))\theta$. Furthermore if $W_1(w) = w \neq R(w)$ and \hat{f} is not an initial segment of w then $(fW_1(w))\theta = (fM_1(w)f(fI_2(w)f)^{-1}fW_2(w))\theta$.

Proof. Let b be the \hat{f} -bounded initial segment of w; if no such segment exists then, by (θ 2), w has initial segment \hat{f} and the results follow. If L(b) = L(w) then the expressions for $w\theta$ and $(fw)\theta$ are consequences of (θ 3). Suppose $L(b) \neq L(w)$. So $w = b\hat{f}c$ for some $b, c \in F_x^w$ such that $C(b) \subset Y$. Then $L(w) = bqx_i$ for some j < n, $q = x_0 \dots x_{j-1}$ and $R(L(w)) = I_1(w) = dqx_i$ for some d. By (θ 5) and (ϕ), $(L(w)f)\theta = (bqq^{-1}f(fdqq^{-1}f)^{-1}fdqx_if)\theta$. Since $(bqq^{-1})_L = b_L$ and $(dqq^{-1})_M = d_M$ by Lemma 3.4(ii), (iii) then by (θ 7) $(L(w)f)\theta = (bf(fdf)^{-1}fI_1(w)f)\theta$. We have $(fW_1(w))\theta = (fd\hat{f}c)\theta = (fdf\hat{f}c)\theta$. So by (ϕ), $(L(w)f(fI_1(w)f)^{-1}fW_1(w))\theta = (bf\hat{f}c)\theta = w\theta$. To get the second equality pre-multiply by f throughout the proof.

With the additional restrictions b and $I_2(w)$ exist. To prove the result for $(fW_1(w))\theta$ proceed as above, using (θ 3) if $I_2(w)$ is an indicator of b or (θ 5) applied to $M_1(w)$ otherwise.

We now deduce a result for θ like Lemma 2.5(i).

LEMMA 3.11. Let $w = x_i a \in F_X^u$ where C(w) = Y, $L(w) = x_i b$ and a has initial segment p such that $x_i p \neq \hat{f}$ and $\mathbf{p} \rho x_{i+1} \dots x_{n+1}$ for some i. Then

(i) $w\theta = (L(w)f(f\mathbf{p}^{-1}bf)^{-1}f\mathbf{p}^{-1}a)\theta$ and $(fw)\theta = (fL(w)f(f\mathbf{p}^{-1}bf)^{-1}f\mathbf{p}^{-1}a)\theta$ and

(ii) if $r = x_1 \dots x_{n+1}$ and w = rs then $(fr^{-1}w)\theta = (fs)\theta$.

Proof. (i) We may assume $w = w\theta_2$, since $w\theta_2\theta = w\theta$, $L(w\theta_2) = L(w)$ and $(f\mathbf{p}^{-1}(a\theta_2))\theta = (f\mathbf{p}^{-1}a)\theta$. By Lemma 3.10(i) $w\theta = (L(w)f(fI_1(w)f)^{-1}fW_1(w))\theta$. If $W_1(w) \neq w$ then $L(w) \neq I_1(w)$ so C(b) = Y and $L(\mathbf{p}^{-1}a) = \mathbf{p}^{-1}b$. Hence by Lemma 3.10(i) $(f\mathbf{p}^{-1}a)\theta = (f\mathbf{p}^{-1}bf(fI_1(w)f)^{-1}fW_1(w))\theta$ and the result follows, using (ϕ). Suppose $W_1(w) = w$, so $L(w) = I_1(w)$. If w = R(w) then w is \hat{f} -excluded so by (θ 3) and (θ 4) (acting in particular on R(w)) $w\theta_4 = L(w)f(fI_1(w)f)^{-1}fL(w)f(f\mathbf{p}^{-1}bf)^{-1}f\mathbf{p}^{-1}a$ and the result follows. If $w \neq R(w)$ then by Lemma 3.10

$$w\theta = (L(w)f(fI_1(w)f)^{-1}fM_1(w)f(fI_2(w)f)^{-1}fW_2(w))\theta.$$

Let $M_1(w) = x_i c$. Then by $(\theta 4)$, $(fM_1(w)f)\theta = (fI_1(w)f(f\mathbf{p}^{-1}bf)^{-1}f\mathbf{p}^{-1}cf)\theta$. Since

 $L(\mathbf{p}^{-1}a) = \mathbf{p}^{-1}c$ then by Lemma 3.10(i) $(f\mathbf{p}^{-1}a)\theta = (f\mathbf{p}^{-1}cf(fI_2(w)f)^{-1}fW_2(w))\theta$. Combining these expressions we get the result.

(ii) Let L(w) = rt. We first prove that $(fr^{-1}rtf)\theta = (ftf)\theta$. Since $L(r^{-1}rt) = r^{-1}rt$ then by $(\theta 3)$, (ϕ) and $(\theta 7)$, we need to show $(r^{-1}rt)_{MM} = t_{MM}$. We have t = dx for some d and $x \in Y \setminus C(d)$ so $(r^{-1}rdx)_M = (r^{-1}rd)_R x = d_R x$ by Definition 3.5 and the dual of Lemma 3.4(ii). If $C(dx) \subset Y$ then by Lemma 3.4(iii) $(dx)_M = (d_R x)_M$. If C(dx) = Y and $R(dx) \neq dx$ then by Definition 3.5 $(dx)_M = d_R x$. Suppose C(dx) = Y and R(dx) = dx. We have $x_{i(d)} \ldots x_{n+1} d_R \rho x_{i(d)} \ldots x_{n+1} d$. If $C(d_R) \subset C(d)$ then by comparing right indicators we get $x_k \ldots x_n d_R \rho d$ for some $k \leq n$. But then $x_{i(d)} \ldots x_{n+1} d_R \rho x_{i(d)} \ldots x_{k-1} (x_k \ldots x_n)^2 d_R$. This is not possible since there exists a homomorphism from F_X^u / ρ onto the free cyclic group $G_{\{x\}}$ taking generators to x. Hence $C(d_R) = C(d)$ and $R(d_R) \rho R(d) = d$ so by its definition $d_R = R(d_R)$. Thus $d_R x$ and dx are ρ -related Y-indicators and by Theorem 1.3(iii) and Definition 3.5 $(d_R x)_M = (dx)_M$. Thus in all cases $(r^{-1}rt)_{MM} = t_{MM}$.

We have $(fr^{-1}w)\theta = (fs)\theta$ when i = 1 or n, by (ϕ) and $(\theta 1)$. Assume the result for i > j > 1. Let i = j and proceed by induction. Since $r = x_i p$ then by comparing expressions for $w\theta$ from (i) and Lemma 3.10(i) we get $((fI_1(w)f)^{-1}fW_1(w))\theta = ((fp^{-1}bf)^{-1}fp^{-1}a)\theta = ((ftf)^{-1}fs)\theta$, by Lemma 3.7 and induction. So by Lemma 3.10(i) and the first part of the proof

$$(fr^{-1}w)\theta = (fr^{-1}rtf(fI_1(w)f)^{-1}fW_1(w))\theta = (ftf(ftf)^{-1}fs)\theta = (fs)\theta.$$

Recall Assumption 3.3. We can now see that it is valid when C(u) = Y. Say $u = (x_i \dots x_{n+1})^0 v$ where $C(u) \supset C(v)$. By Lemmas 3.10 and 3.11 $u\theta = (L(u)f(ftf)^{-1}fv)\theta$ where $L(u) = (x_i \dots x_{n+1})^0 t$. Since $C(v) \subset Y$ then $(fv)\theta = fv_R$, so $u\theta$ has final segment v_R .

LEMMA 3.12. Suppose $a, b \in F_X^u$, $x, y \in Y \setminus C(a)$ and $a \rho b$. If xay is a Y-indicator or Y-link then $(fxayf)\theta = (fxbyf)\theta$. If ay is a left Y-indicator then $(ayf)\theta = (byf)\theta$.

Proof. If $(\theta 4)$, $(\theta 5)$ and $(\theta 6)$ do not vary the segments xay and xby then the result is easy to check, using Definition 3.5. A similar statement applies for left Y-indicators. Let xay be a Y-indicator. Since $(\theta 4)$ and $(\theta 5)$ do not vary Y-indicators assume $x = x_i$, $y = x_j$ and a = pcq where $\mathbf{p} \rho x_{i+1} \dots x_{n+1}$ and $\mathbf{q} \rho x_0 \dots x_{j-1}$ for some *i* and *j*. Since xay is a Y-indicator then i > j and xay is \hat{f} -excluded so by $(\theta 6)$, $(\theta 7)$ and (ϕ) , $(fxayf)\theta =$ $f(xaq^{-1})_M f(f(\mathbf{p}^{-1}a\mathbf{q}^{-1})_M f)^{-1} f(\mathbf{p}^{-1}ay)_M f$. But by Corollary 1.4 b = rds for some *r*, *d*, *s* such that $\mathbf{r} \rho \mathbf{p}$ and $\mathbf{s} \rho \mathbf{q}$ (with r = 1 or s = 1 if and only if p = 1 or q = 1 respectively). By Lemma 3.4(iii) then $(xaq^{-1})_M = (xbs^{-1})_M$, $(\mathbf{p}^{-1}a\mathbf{q}^{-1})_M = (\mathbf{r}^{-1}bs^{-1})_M$ and $(\mathbf{p}^{-1}ay)_M =$ $(\mathbf{r}^{-1}by)_M$ so $(fxayf)\theta = (fxbyf)\theta$.

Now let xay be a Y-link with $x = y = x_i$ for some *i*, where *p* is an initial segment of *a*, $\mathbf{p} \rho x_{i+1} \dots x_{n+1}$ and L(xay) = xd. By Lemma 3.11(i) $(fxayf)\theta = (fxdf(f\mathbf{p}^{-1}df)^{-1}f\mathbf{p}^{-1}ayf)\theta$. This equation still holds if $xp = \hat{f}$, by Lemma 3.11(ii) and (ϕ) . We have xby = xqe and L(xby) = xg where $\mathbf{p} \rho \mathbf{q}$. Since xd and xg are ρ -related Y-indicators (so $d\rho g$) and $C(\mathbf{p}^{-1}d) \subset Y$ we need only show that $(f\mathbf{p}^{-1}ayf)\theta = (f\mathbf{q}^{-1}byf)\theta$. This follows since $(\mathbf{p}^{-1}ay)_M = (\mathbf{p}^{-1}a)_R y = (\mathbf{q}^{-1}b)_R y = (\mathbf{q}^{-1}by)_M$ by the dual of Lemma 3.4(ii). By an analysis similar to the first paragraph we get the left Y-indicator result.

LEMMA 3.13. Let $w \in F_X^u$ and $x \in Y$. Then (i) $(xw)\theta = (x(w\theta))\theta$ and (ii) $(fw)\theta = (f(w\theta))\theta$.

Proof. (i) We may assume $w = w\theta_2$. Suppose C(xw) = Y: otherwise the result follows by Assumption 3.1. By Theorem 1.3(iii) and Lemma 3.12 $(fL(xw)f(fI_1(xw)f)^{-1})\theta = (fL(x(w\theta))f(fI_1(x(w\theta))f)^{-1})\theta$. So by Lemma 3.10 we need to show $(fW_1(xw))\theta = (fW_1(x(w\theta)))\theta$. If $W_1(xw) \neq xw$ then $I_1(xw) = I_1(w)$. Using Theorem 1.3(iii) it is easy to check, since $w\theta \rho w$ that $I_1(x(w\theta)) = I_1(w\theta)$. Then $W_1(xw) = W_1(w)$ and $W_1(x(w\theta)) = W_1(w\theta)$. Equating the expressions for $w\theta$ and $w\theta\theta$ from Lemma 3.10(i) we get $(fW_1(w))\theta = (fW_1(w\theta))\theta$ and hence the result. If $W_1(xw) = xw = R(xw)$ we get the result by the dual of Lemma 3.12.

Suppose $W_1(xw) = xw \neq R(xw)$. If \hat{f} is not an initial segment of xw then by Lemma 3.10(ii), $(fW_1(xw))\theta = (fM_1(xw)f(fI_2(xw)f)^{-1}fW_2(xw))\theta$. This equation also holds if $xw = \hat{f}a$. To see this let $M_1(xw) = \hat{f}b$. If $W_2(xw) = x_1 \dots x_n a$ and $I_2(xw) = x_1 \dots x_n b$ for some $i \leq n$ then $(fW_2(xw))\theta = (fI_2(xw)f(fbf)^{-1}fa)\theta$ by Lemma 3.11. Alternatively if $W_2(xw)$ is a segment of a, by Lemma 3.10(i) $(fa)\theta = (fbf(fI_2(xw)f)^{-1}fW_2(xw))\theta$, and since $(fW_1(xw))\theta = (\hat{f}fa)\theta$ we get the equation. Observe that since $W_1(xw) = xw$ then $I_2(xw) = I_1(w)$ so by Lemma 3.10(i), $w\theta = (L(w)f(fI_1(w)f)^{-1}fW_2(xw))\theta$. Likewise $w\theta\theta = L(w\theta)f(fI_1(w\theta)f)^{-1}fW_2(x(w\theta)))\theta$. Since $w\theta = w\theta\theta$ then by Lemma 3.12 $(fW_2(xw))\theta = (fW_2(x(w\theta)))\theta$. Hence since $M_1(xw) = xL(w)\rho xL(w\theta) = M_1(x(w\theta))$, then by Lemma 3.12, $(fW_1(xw))\theta = (fW_1(x(w\theta)))\theta$.

(ii) It follows by straightforward induction, based on (i), that $(\hat{f}w)\theta = (x_1 \dots x_n w)\theta = (x_1 \dots x_n (w\theta))\theta = (\hat{f}(w\theta))\theta$. It is easily seen that $(\hat{f}^{-1})\theta = \hat{f}^{-1}$. So by Lemma 3.7

$$(f(w\theta))\theta = (\hat{f}^{-1}\hat{f}(w\theta))\theta = (\hat{f}^{-1}(\hat{f}(w\theta))\theta)\phi = (\hat{f}^{-1}(\hat{f}w)\theta)\phi = (\hat{f}^{-1}\hat{f}w)\theta = (fw)\theta.$$

The next result is the key lemma of the paper. It will be used to show that $\{w\theta; w \in F_x^u\}$ with multiplication $u\theta \cdot v\theta = (u\theta(v\theta))\theta$ is a semigroup.

LEMMA 3.14. Let $u, v \in F_X^u$ where $C(uv) \subseteq Y$. Then $(uv)\theta = (u\theta(v\theta))\theta$.

Proof. The result is immediate if $C(uv) \subset Y$ (by Assumption 3.1), or if |C(u)| = 1 (by Lemma 3.13(i)) since then $u\theta = u$ by Assumption 3.1. Assume the result for $C(u) \subset U$, some $U \subseteq Y$, and proceed by induction. Suppose C(u) = U and C(uv) = Y.

Suppose $C(u) \subseteq Y$. Then $L(uv) = uv_1$ and $L(u\theta(v\theta)) = u\theta v_2$ where $v_1 \rho v_2$ by Corollary 1.4. Either $I_1(uv) = RL(uv) = u_1v_1$ and $I_1(u\theta(v\theta)) = u_2v_2$ where $u_1 \rho u_2$ by Corollary 1.4 or $I_1(uv) = I_1(v) \rho I_1(v\theta) = I_1(u\theta(v\theta))$ (see Theorem 1.3(iii)). By Lemmas 3.10(i) and 3.12 we need to show $(fW_1(uv))\theta = (fW_1(u\theta(v\theta)))\theta$. If $I_1(uv) = u_1v_1$ then $W_1(uv) = u_1v$ and $W_1(u\theta(v\theta)) = u_2(v\theta)$; also $u_1 = xa_1$, $u_2 = xa_2$ for some $x \in Y \setminus C(a_1)$ and $a_1\theta = a_2\theta$ by Assumption 3.1 and Theorem 1.3(iii). By Lemmas 3.13, 3.8 and the induction assumption $(fW_1(uv))\theta = (fxa_1v)\theta = (f(xa_1v)\theta)\theta = (f(x(a_1v)\theta)\theta)\theta = (f(x(a_1\theta(v\theta))\theta)\theta)\theta = (f(x(a_2(v\theta))\theta)\theta)\theta = (f(x_1(u\theta(v\theta)))\theta)$. Alternatively $I_1(uv) = I_1(v)$, so $W_1(uv) = W_1(v)$. Since $L(v) \rho L(v\theta)$ and $I_1(v) \rho I_1(v\theta)$,

then equating the expressions from Lemma 3.10(i) for $v\theta$ and $v\theta\theta$, using Lemma 3.12, we get $(fW_1(uv))\theta = (fW_1(u\theta(v\theta)))\theta$.

Now suppose C(u) = Y and $u\theta_3 = a\hat{f}w$ where w is an \hat{f} -excluded segment or w = 1. Clearly $(uv)\theta = (u\theta_3(v\theta_3))\theta$, so by Lemmas 3.7 and 3.9 we need only prove $(\hat{f}wv)\theta = ((\hat{f}w)\theta(v\theta))\theta$, or equivalently $(fwv)\theta = ((fw)\theta(v\theta))\theta$. If $C(w) \subset Y$ then, with $p = x_{i(w)} \ldots x_{n+1}$, we get $(fwv)\theta = (fp^{-1}pwv)\theta = (f(p^{-1}pwv)\theta)\theta = (f((p^{-1}pw)\theta(v\theta))\theta)\theta = (f(p^{-1}pw)\theta(v\theta))\theta)\theta = (f(p^{-1}pw_R(v\theta))\theta)\theta = (f(p^{-1}pw_R(v\theta))\theta)\theta = (f(w)\theta(v\theta))\theta$ by Lemmas 3.11(ii), 3.13(ii), 3.8, the induction assumption, Definition 3.2 and $(\theta - fv)$. Now suppose C(w) = Y, so w = R(w) = xb for some $x \in Y \setminus C(b)$. If $(\theta + fv)(\theta + fv)(\theta) = (fx(b\theta)(v\theta))\theta = (fx(b\theta)(v\theta))\theta)\theta = (fx(b\theta)(v\theta))\theta = (fx(b\theta)(v\theta))\theta = (fx(b\theta)(v\theta))\theta = (fx(b\theta)(v\theta))\theta)\theta = (fx(b\theta)(v\theta))\theta$. Finally suppose $w = x_ib$, $L(w) = x_ic$, and p is an initial segment of b such that $\mathbf{p} \rho x_{i+1} \ldots x_{n+1}$ for some i. By Lemma 3.11 $(fwv)\theta = (fx_icf(f\mathbf{p}^{-1}cf)^{-1}f\mathbf{p}^{-1}bv)\theta$. Since $C(\mathbf{p}^{-1}b) \subset Y$ then by the above $(f\mathbf{p}^{-1}bv)\theta = ((fw)\theta(v\theta))\theta$.

REMARK. We have not yet shown, for C(w) = Y, that $w\theta$ is a unique representative of the class $w\rho$. This will follow from Theorem 4.1.

4. A model for F_X^{cr} .

THEOREM 4.1. Let $S = \{w\theta; w \in F_X^u\}$ with a binary operation defined by $u\theta \cdot v\theta = (u\theta(v\theta))\theta$. Then $S \cong F_X^{cr}$.

Proof. For any $u, v, w \in F_X^u$ we have by Lemma 3.14 that $u\theta \cdot v\theta = (uv)\theta$ so $(u\theta \cdot v\theta) \cdot w\theta = (uv)\theta \cdot w\theta = (uvw)\theta = u\theta \cdot (vw)\theta = u\theta \cdot (v\theta \cdot w\theta)$. Hence S is a semigroup.

We will now check that S is completely regular. For any $u, v \in F_x^u$, since $u\theta \rho u$ then by Theorem 1.3(iii) $u\theta \mathcal{L} v\theta$ only if $L(u) \rho L(v)$. Conversely suppose $L(u) \rho L(v)$. Since $L(u\theta) \rho L(u)$, assume $u = u\theta$ and $v = v\theta$. By Lemma 3.10(i) $u\theta =$ $(L(u)f(fI_1(u)f)^{-1}fW_1(u))\theta,$ and by Lemma 3.12 $(L(u)f)\theta = (L(v)f)\theta$ $(\theta 2)$ by and Lemma 3.9 $(fW_1(u)(fW_1(u)f)^{-1})\theta = (fW_1(u)f(fW_1(u)f)^{-1}f)\theta = f$. So with a = f $(fW_1(u)f)^{-1}fI_1(u)f(fI_1(v)f)^{-1}fW_1(v)$ we get by (ϕ) and Lemma 3.10(i) that $u\theta \cdot a\theta =$ $(ua)\theta = v\theta$. Hence $u\theta \mathcal{L}v\theta$ if and only if $L(u)\rho L(v)$. There is a dual result for \mathcal{R} . But then $u\theta \mathcal{H}(L(u)f(fR(u)L(u)f)^{-1}fR(u))\theta$, which is an idempotent. So S is a union of groups. We have $u^{-1} \theta = (u\theta)^{-1}$ in S by Theorem 1.3(iii) and (θ 2).

By Lemma 3.14 S is generated by $\{x\theta; x \in X\}$. So by the free property of $F_x^u/\rho \cong F_x^c$ there is a surjective homomorphism $\alpha: F_x^u/\rho \to S$ given by $(x\rho)\alpha = x\theta$ for all $x \in X$. By the definition of multiplication in S and Lemma 3.14 then $(w\rho)\alpha = w\theta$ for all $w \in F_x^u$. Since $w\theta \rho w$ then α is injective, so α is an isomorphism.

Notice that since α in this proof is an isomorphism then, for each $w \in F_X^u$, $w\theta$ is a unique representative of $w\rho$. This is in accordance with Assumption 3.1.

Some properties of the model S for F_X^{cr} can be easily deduced. Recall the definitions of section 1 and Definitions 2.6, 3.2 and 3.5. We first characterize the \hat{f} -bounded segments of an element of S of content Y.

Define $a \in F_x^u$ to be Y-basic if and only if a satisfies the following properties. (i) $C(a) \in X$ a = a and a is f-excluded

(i) $C(a) \subseteq Y$, $a = a_{MM}$ and a is \hat{f} -excluded.

(ii) Suppose $p, q \in F_X^u$ where $(\mathbf{p}, x_1 \dots x_n) \in \rho$ and $(\mathbf{q}, x_1 \dots x_j) \in \rho$ for some $i \ge 1$ and $j \le n$. If C(a) = Y and a = pb or a = bq for some b then a is a left or right Y-indicator respectively. If C(a) = Y then $a \ne pdq$ for any d.

Define $a \in F_X^{u1}$ to be left (right) Y-basic if and only if a satisfies (ii) and

(i') $C(a) \subseteq Y$, $a = a_L$ (respectively a_R), and a is \hat{f} -excluded.

Define H_Y to be the subgroup of G_Y freely generated by {faf, \hat{f} ; a is Y-basic}.

Define $D_Y = \{ufhfv; u \text{ and } v \text{ are respectively left } Y \text{ and right } Y \text{ basic and } h \in H_Y \}$.

COROLLARY 4.2. Let $w \in F_x^w$ and C(w) = Y. Then there is a unique left Y-basic u, a unique right Y-basic v and a unique $h \in H_Y$ such that $w\theta = ufhfv$. In S the \mathcal{D} -class of $w\theta$ is $\{r\theta; C(r) = C(w)\} = D_Y$, the \mathcal{R} -class of $w\theta$ is $\{r\theta; L(r\theta) = L(w\theta)\}$, the \mathcal{L} -class of $w\theta$ is $\{r\theta; R(r\theta) = R(w\theta)\}$, and the \mathcal{H} -class of $w\theta$ is the free group ufH_Yfv .

Proof. The expression for $w\theta$ follows from its definition; u is the \hat{f} -bounded initial segment of $w\theta$ if it exists, otherwise u = 1 (there is a dual statement for v). By Theorem 1.3(ii), $\{r\theta; C(r) = C(w)\}$ is the \mathcal{D} -class of $w\theta$. It can be directly checked that the free generators of H_Y are in S (by a proof along the lines of that for Lemma 3.8), as are uf and fv for any left Y-basic u and right Y-basic v. So by Lemma 3.7, $D_Y \subset S$ and by Theorem 1.3(ii), D_Y is the \mathcal{D} -class of $w\theta$. The \mathcal{L} and \mathcal{R} -class characterizations are by Lemmas 3.10(i) and 3.12. The \mathcal{H} -class characterization then follows by the definition of D_Y .

Notice that by Theorem 4.1, the construction of $w\theta$ from $w \in F_X^u$ may be simplified by replacing w by an alternative ρ -related element.

We observe that the representative $w\theta$ of the ρ -class of $w \in F_X^u$ is uniquely defined modulo the choice of $u\theta$ for all $u \in F_X^u$ where $C(u) \subset C(w)$. To see this first note that the operations $(\theta 1), \ldots, (\theta 6)$ and (ϕ) just manipulate the spelling of w. By Definitions 3.2 and 3.5 the application of $(\theta 7)$ requires knowledge of the spelling of $u\theta$ for some $u \in F_X^u$, $C(u) \subset C(w)$.

As mentioned in the introduction our characterization of F_X^{cr} is different from that of Gerhard [4]. He determines a set of free generators of $(H_Y)\rho$ that are unique up to solution of the word problem in F_X^u/ρ for words of content less than Y. By this approach, he gets many expressions of the form $(faf)\rho$, $faf \in F_X^u$, for a generator. It is difficult to determine, using the solution to the word problem for words of content less than Y, whether two of these expressions denote the same generator. Gerhard's model for F_X^{cr} , based on Petrich's structure theorem for completely regular semigroups [6, Theorem 3], is a union of Rees matrix semigroups. The Rees matrix semigroup corresponding to the \mathfrak{D} -class of elements of content Y has structure group $(H_Y)\rho$.

REFERENCES

1. A. H. Clifford, Semigroups admitting relative inverses, Ann. of Math. (2) 42 (1941), 1037-1049.

2. A. H. Clifford, The free completely regular semigroup on a set, J. Algebra 59 (1979), 434-451.

3. J. A. Gerhard, Free completely regular semigroups I: Representation, J. Algebra 82 (1983), 135-142.

4. J. A. Gerhard, Free completely regular semigroups II: Word problem, J. Algebra 82 (1983), 143-156.

5. D. B. McAlister, A homomorphism theorem for semigroups, J. London Math. Soc. 43 (1968), 355-366.

6. M. Petrich, The structure of completely regular semigroups, Trans. Amer. Math. Soc. 189 (1974), 211-236.

7. M. Petrich, Certain varieties and quasivarieties of completely regular semigroups, Canad. J. Math. 29 (1977), 1171-1197.

University of Tasmania Hobart Tasmania Australia