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SUMMARY
This paper proposes an analytical method of solving the inverse kinematic problem for a humanoid
manipulator with five degrees-of-freedom (DOF) under the condition that the target orientation of the
manipulator’s end-effector is not constrained around an axis fixed with respect to the environment.
Since the number of the joints is less than six, the inverse kinematic problem cannot be solved
for arbitrarily specified position and orientation of the end-effector. To cope with the problem, a
generalized unconstrained orientation is introduced in this paper. In addition, this paper conducts the
singularity analysis to identify all singular conditions.

KEYWORDS: Inverse kinematics; 5-DOF manipulator; Unconstrained orientation; Singular
configuration; Humanoid robots.

1. Introduction
General robotic manipulators have six or more joints, since six degrees-of-freedom (DOFs) are
required to locate the end-effector at any position and orientation in space. Therefore, solving the
inverse kinematic problem for such manipulators has been intensively studied over several decades
(e.g., refs. [1–6]). To date, various analytical as well as numerical methods for inverse kinematic
computation have been developed.

Although a manipulator involving six or more joints is versatile, the six or more DOF manipulator
is not always necessary for performing a task. A well-known example is the arc welding task. Since
any rotation about the center line of the welding torch does not affect the task, a 5-DOF manipulator
is sufficient to accomplish the task. Thus, even manipulators with less than six joints are usable for
achieving practical tasks.

This paper addresses the inverse kinematic problem for a 5-DOF manipulator. This work is
motivated by an attempt to accomplish practical tasks by using a small humanoid robot. The robot,
shown in Fig. 1, consists of two 6-DOF legs, two 4-DOF arms, and 1-DOF waist. Since all the leg
joints are devoted to keeping the standing balance of the robot, the dimension of the workspace of
a single arm’s tip is less than six. Since the waist joint can be employed to augment the dimension
of the workspace of the single arm tip, this paper considers exploiting the waist joint to maximize
the workspace dimension. Hence, the resultant workspace dimension of the single arm is five. Note
that since the waist joint is shared with both arms, the waist joint is dedicated to a single arm only.
Hence, this paper assumes that only a single arm is used for task execution, and the remaining arm
is not used. Thus, an appropriate inverse kinematic computation method is required for the 5-DOF
manipulator to carry out the tasks.

1.1. Related work
The inverse kinematic problem for serial manipulators with five or less DOFs has been addressed by a
number of researchers. Sugimoto and Duffy7 analyzed the kinematics of a general 5-DOF manipulator
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Fig. 1. Humanoid robot “Choromet2”.

by introducing hypothetical joints and links. Tsai and Morgan8 proposed a numerical approach to
solving the inverse kinematics for a general 6R or 5R manipulator by using continuation methods.
Angeles9 employed the least-squares approximation technique to solve the inverse kinematics of
general 5-DOF manipulators in a numerical way.

Manseur and Doty10 showed that the inverse kinematic solution for a general 4R manipulator is
unique and can be analytically derived in a closed-form. In contrast, they also revealed that there
are special structures. If a manipulator includes such a special structure, the inverse solution is not
unique. One of the special structures is the wrist structure, where three consecutive joint axes intersect
at a point. This wrist structure is incorporated in most commercial manipulators. Interestingly, this
implies that solving inverse kinematics for a commercial manipulator may be more complicated than
for a general manipulator without the special structures. Using the closed-form solution for the 4R
manipulator, they also developed an efficient numerical method to compute an inverse kinematic
solution for a general 5R manipulator.11

Zhou et al.12 proposed a vector algebraic approach to representing kinematic equations. With this
method, they derived an eighth order polynomial equation as a closed-form solution for a general 5R
manipulator. In general, however, the eighth order polynomial cannot be solved analytically. Later,
Zhou and Xi13 showed that the inverse kinematic solution can be described by a set of first order
polynomials for a general 5R manipulator without special geometries.
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Normal direction
fixed wrt table

Fig. 2. Table wiping task.

Chen and Gao14 developed a computer program which provides closed-form inverse solutions for
a given nonredundant manipulator. Their method relies on the existence of a special geometry in the
manipulator structure, hence not all types of manipulators can be treated by their method.

For several commercial and special 5-DOF manipulators, closed-form inverse solutions have been
obtained. Goel15 developed a closed-form solution for the AdeptOne robot, which is a SCARA-
type 5-DOF manipulator. For the Pioneer 2 arm, several researchers have tackled to obtain closed-
form solutions and to identify singular configurations.16,17,18 Wang and Ishimatsu19 analyzed the
kinematics of a 5-DOF prosthetic arm that has a special shoulder mechanism. Wang20 analytically
solved the inverse kinematics of a 5-DOF arm attached to an amusement robot to identify the reachable
position and orientation of the arm1.

1.2. Problem statement
The aim of this work is to carry out practical tasks by a 5-DOF manipulator, which is composed of
the waist and a single arm of the humanoid robot shown in Fig. 1. Specifically, one of the target tasks
is to wipe a table with a cloth, as shown in Fig. 2. Moreover, this project attempts to achieve not only
the table wiping task but also other similar tasks, such as window cleaning, cleaning a whiteboard
with an eraser, and ironing clothes on an ironing board.

Recently, Sato et al.21 performed a whiteboard cleaning task by a small humanoid robot equipped
with a 4-DOF arm. They attached a 2-DOF special passive end-effector to the arm’s tip in order to
compensate insufficient DOFs, because they considered that a 6-DOF arm is required for performing
the task. However, actually, a 5-DOF arm suffices to perform the task, since the task is not thwarted
by any rotation about the normal axis of the table or whiteboard. Therefore, the special device is not
required if a 5-DOF arm is available. In this paper, no special device is used, since the DOF of the
arm is five.

To achieve the table wiping task, we have to solve a special inverse kinematic problem for the
5-DOF manipulator. More specifically, we have to determine five joint displacements so that given
target position and orientation of the end-effector are ensured except a rotation about the normal axis
of the tabletop. In the following, this axis and its direction are referred to as an unconstrained axis and
unconstrained direction, respectively. The difficulty in solving the problem is that the unconstrained
direction is fixed with respect to the environment. Furthermore, the direction varies depending on the
task and environment. For example, the unconstrained direction will be vertical when wiping a table
on the floor, whereas it may be horizontal for window cleaning.

The conventional inverse kinematic solving methods for a 5-DOF manipulator are not applicable
to the above problem. Some methods12,13,14 request that reachable position and orientation of the
end-effector be given by the user. However, the reachable position and orientation are not easily found
for the 5-DOF manipulator, as discussed in ref. [20]. In some other methods,7, 8, 18 the unconstrained

1 In this paper, the reachable position and orientation means that the position and orientation is actually
achievable by the manipulator. In contrast, the desired position and orientation means that the position and
orientation may not be achieved, though the user wishes to achieve it.
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axis is fixed with respect to the end-effector, hence it varies as the manipulator changes the end-
effector’s orientation. Although the unconstrained direction is fixed with respect to the environment
in several methods,15,16,17,20 the direction is absolutely fixed, and the user cannot change it. Since the
unconstrained direction is dependent on the task and environment, the direction should be variable.

To clarify why the conventional methods do not work, let us briefly consider how to solve the
inverse kinematic problem. Let χi (i = 1, . . . , 6) be independent parameters representing the end-
effector’s position and orientation. Also, let θj (j = 1, . . . , 5) be the joint displacements of the 5-DOF
manipulator. Assume that the forward kinematic equations are given by

χi = fi (θ1, . . . , θ5), (i = 1, . . . , 6). (1)

Notice that the number of the kinematic equations is six, while that of the joint displacements is five.
To solve this problem, two approaches can be taken. One is to reduce the number of the kinematic

equations, while the other is to increase the number of the joint displacements. In the former approach,
for example, refs. [15–17, 20], one of the kinematic equations is neglected, and the remaining five
simultaneous equations are solved. However, the derived solution does not satisfy the neglected
kinematic equation, if the given set of χi is kinematically unreachable by the manipulator. Thus, this
approach may not provide the feasible inverse solution. In the latter approach, for example, refs. [7,
8, 18], a virtual or hypothetical joint is added to the manipulator, and the six simultaneous equations
are solved.

To see this more specifically, suppose that the virtual joint is added to the kinematic equations
Eq. (1):

χi = fi (θ1, . . . , θ5, θv), (i = 1, . . . , 6) (2)

where θv denotes the virtual joint displacement. Furthermore, suppose that the solution to this
simultaneous equations is given by

θj = gj (χ1, . . . , χ6), (j = 1, . . . , 5)
θv = gv (χ1, . . . , χ6). (3)

Notice that the virtual joint displacement θv should have a fixed value, denoted as θv0, because the
virtual joint is immobilized. Thus, we have to solve the nonlinear equation

gv (χ1, . . . , χ6) − θv0 = 0 (4)

to obtain the feasible solution.
Let φ be the rotation angle about the unconstrained axis. Since φ is completely represented by χi

(i = 1, . . . , 6), it is described in the function form

φ = h (χ1, . . . , χ6). (5)

From this, we can represent χi (i = 1, . . . , 6) explicitly by introducing slack variables ηi (i =
1, . . . , 5):

χi = h−1
i (η1, . . . , η5, φ), (i = 1, . . . , 6) (6)

Substituting (6) into (4), we have

gv (η1, . . . , η5, φ) − θv0 = 0. (7)

Thus, φ must satisfy this constraint equation. Letting φ0 be the solution to the constraint equation,
and substituting it into (6), χi can be represented by the slack variables ηi only:

χi = h−1
i (η1, . . . , η5, φ0), (i = 1, . . . , 6) (8)

Finally, substituting (8) into (3), we can obtain the feasible inverse solution.
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Fig. 3. 5-DOF manipulator model.

It is obvious that some difficulties lie in this approach. For example, it may be difficult to compute
the inverse mapping h−1

i in (6) in an analytical way. Furthermore, it may be difficult or impossible to
derive the analytical solution of the nonlinear Eq. (7). To avoid these difficulties, the unconstrained
axis is deliberately aligned with the virtual joint axis in the previous methods. In addition, if the
virtual joint is attached to the tip of the manipulator, θv is equal to φ. Then, the inverse mapping h−1

i

can be chosen as the direct one, namely, ηi = χi (i = 1, . . . , 5). This restriction drastically simplifies
the problem, and the analytical solution has already been derived as shown in the previous methods.
However, in the case that the unconstrained axis is not fixed and arbitrarily chosen, the conventional
approach is not applicable.

1.3. Objective of this paper
The objective of this paper is to develop an analytical inverse kinematic computation methodology
for a 5-DOF manipulator to achieve target position and orientation except an orientation about the
unconstrained axis. A distinctive feature of this solving method is that the unconstrained direction
can be arbitrarily specified with reference to the environment, which is impossible in the previous
methods. In addition, this paper performs the singularity analysis to derive all singular conditions.
Since the inverse kinematic problem depends on the unconstrained direction, the singular conditions
also depend on it.

This paper is organized in the following manner. Section 2 describes the 5-DOF manipulator
model and the inverse kinematic problem addressed in the paper. Section 3 computes the forward
kinematics. Then, the inverse kinematic problem is solved in Section 4. In Section 5, the singular
conditions are derived in an analytic way. Finally, the validity of the proposed method is verified
by numerical examples in Section 6. The extension and limitation of the method is discussed in
Section 7.

2. Problem Definition

2.1. Manipulator model
The kinematic structure of the 5-DOF manipulator handled in this paper is illustrated in Fig. 3. It
is generated from the kinematic model of the waist and right arm of the humanoid robot shown in
Fig. 1. In Fig. 3, all five joints are revolute, and three consecutive joint axes 2, 3, and 4 intersect
at a point, which corresponds to the right shoulder of the humanoid robot. Hence, these three joints
can be regarded as a virtual spherical joint. Note that the existence of a virtual spherical joint is the
sufficient condition to guarantee the solvability of the inverse kinematics for a 5-DOF manipulator,
as proven in ref. [11].

First, let us describe the manipulator structure. To this end, the Denavit-Hartenberg notation22 is
employed. All links and joints are numbered according to the D-H convention. The base coordinate
frame is placed on the base joint so that the y-axis coincides with the joint axis, and the z-axis directs
upward, as shown in Fig. 3. Note that this base frame is not the link frame 0 defined by the D-H
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Table I. D-H parameters of 5-DOF manipulator model.

i ai αi (rad) di θi (rad)

1 lh 0 0 θ1 + π/2
2 0 π/2 −lw θ2 + π

3 0 π/2 0 θ3 − π/2
4 0 π/2 −lb θ4 − π/2
5 0 π/2 0 θ5 + π

y

x
Desired
Orientation

Reachable
Orientation

z

φ

bn

Fig. 4. Definition of φ.

convention. The tip coordinate frame is attached to the tip so that all the frame axes are aligned with
the corresponding axes of the base frame when the manipulator is at the default configuration, which
is shown in Fig. 3. Note again that this tip frame is not the link frame 5 defined by the D-H convention.
Then, the link coordinate frames are automatically defined based on the D-H rule.

In addition, the positive rotational directions of all joints are depicted in Fig. 3. The offsets of the
joint angles are determined so that the manipulator is at the default configuration when all joint angles
are zero. Finally, all the D-H parameters of the 5-DOF manipulator are obtained as listed in Table I.

2.2. Formulation of inverse kinematic problem
As mentioned in the previous section, the inverse kinematic problem addressed in this paper can be
defined as follows: given target tip position and orientation, determine the joint displacements which
satisfy the specified tip position and orientation except an orientation about an unconstrained axis
fixed with reference to the environment.

Since the rotation about the unconstrained axis is free, it can be regarded as the augmented DOF
of the manipulator, though it is not controllable. It should be noted that the augmented DOF cannot
be replaced by a virtual joint. To incorporate the augmented DOF, the unconstrained rotation angle is
regarded as an auxiliary joint variable. With this auxiliary variable, the number of the joint variables
in the kinematic equations becomes six, which is same as the number of the independent kinematic
equations. In this way, we can make the inverse kinematic problem solvable.

Let us formulate the inverse kinematic problem. Assume that the target tip position and orientation
are given by the position vector b pd

t ∈ �3 and the rotation matrix b Rd
t ∈ SO(3), respectively. Assume

also that the unconstrained direction is given by the unit vector bn ∈ �3. Note that the superscript on
the left side of a vector/matrix denotes the reference coordinate frame in which the vector/matrix is
described. In this paper, the symbol b and t indicate the base and tip coordinate frames respectively.

Now let us introduce the auxiliary variable, denoted by φ ∈ �, which represents a rotation angle
about the unconstrained axis. The role of this new variable is to adjust a given target orientation so
that the adjusted orientation as well as the target position are reachable by the 5-DOF manipulator,
as shown in Fig. 4. Suppose that the forward kinematic equations are given by the homogeneous
transformation matrix bT t (θ) ∈ �4×4, where θ ∈ �5 is the joint displacement vector. Then, the
auxiliary variable φ as well as the joint displacements θ have to be determined to satisfy the matrix
equation

[
b RT

n
b Rd

t
b pd

t

0T 1

]
= bT t (θ) (9)
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where b Rn ∈ SO(3) is the rotation matrix, which accounts for the rotation by φ about the unconstrained
axis bn. It is important to notice that the given target orientation b Rd

t is adjusted by b RT
n so that the

resultant orientation b RT
n

b Rd
t is reachable. According to the Rodrigues rotation formula,22 the rotation

matrix b Rn is given by

b Rn = cos φ I + sin φ[bn×] + (1 − cos φ)[bn bnT ] (10)

where I ∈ �3×3 is the identity matrix, and [bn×] ∈ �3×3 is a skew-symmetric matrix composed of
bn, which is defined in ref. [23] as

[bn×] =
⎡
⎣ 0 −nz ny

nz 0 −nx

−ny nx 0

⎤
⎦ (11)

where bn = [ nx ny nz ]T .
Since b pd

t and b Rd
t are given, the unknown variables in (9) are the joint displacements θ and the

unconstrained rotation angle φ. Thus, the inverse kinematic problem can be formulated as the problem
of computing θ and φ to satisfy (9). Notice that, by introducing φ, we do not need to guarantee the
reachability of the target tip position and orientation. If they are unreachable, a nonzero φ is obtained
as the inverse solution, and the quantity of φ indicates the difference between the target and reachable
orientations.

3. Forward Kinematics
The forward kinematics of the manipulator shown in Fig. 3 is calculated from the D-H parameters
given in Table I. The homogeneous transformation matrix between the adjacent link frames i − 1 and
i is given in ref. [22] by

i−1T i =
[

i−1 Ri
i−1 pi

0T 1

]
(12)

where

i−1 Ri =
⎡
⎣ cos θi −sin θi cos αi sin θi sin αi

sin θi cos θi cos αi −cos θi sin αi

0 sin αi cos αi

⎤
⎦

i−1 pi = [ai cos θi ai sin θi di

]T
.

The homogeneous transformation matrix between the base frame and the link frame 0 is

bT 0 =
[

b R0
b p0

0T 1

]
=

⎡
⎢⎣

−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎦. (13)

Similarly, the transformation between the link frame 5 and the tip frame is

5T t =
[

5 Rt
5 pt

0T 1

]
=

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −lf
0 0 0 1

⎤
⎥⎦. (14)
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Using these homogeneous transformation matrices, the forward kinematic equations are described in
the matrix form

bT t = bT 0
0T 1

1T 2
2T 3

3T 4
4T 5

5T t . (15)

Extracting the position bpt and orientation b Rt of the tip frame from (15), we obtain

bpt = bR0
(

0 R1
1 pws + 0 R4

4 pse + 0 R5
5 pet

)
(16)

bRt = bR0
0 R1

1 R2
2 R3

3 R4
4 R5

5 Rt (17)

where

0 Rm =
m−1∏
i=0

i Ri+1 (18)

1 pws = [ lh 0 −lw ]T (19)

4 pse = [ 0 −lb 0 ]T (20)

5 pet = [ 0 0 −lf ]T . (21)

4. Inverse Kinematics
Substituting (16) and (17) into (9), we have

bpd
t = bR0

(
0 R1

1 pws + 0 R4
4 pse + 0 R5

5 pet

)
(22)

bRd
t = bRn

b R0
0 R1

1 R2
2 R3

3 R4
4 R5

5 Rt . (23)

As mentioned in Section 2.1, the consecutive three joints 2, 3, and 4 are kinematically equivalent to
a spherical joint. Since any orientation can be achieved with the virtual spherical joint, the inverse
kinematic problem can be decoupled into two subproblems:22 inverse position and inverse orientation
problems.

Let us formulate the two subproblems. The rotation matrices in (23) involving θ1, θ5, and φ are
moved to the left-hand side of the equation to yield

0 RT
1

b RT
0

b RT
n

b Rd
5

4 RT
5 = 1 R2

2 R3
3 R4 (24)

where b Rd
5 = b Rd

t
5 RT

t , which is a known matrix. Substituting (24) into (22), we have

b pd
t = b R0

0 R1
1 pws + b RT

n
b Rd

5

(4 RT
5

4 pse + 5 pet

)
. (25)

Equation (25) represents the tip position involving three unknown variables θ1, θ5, and φ. Hence,
given the target tip position, the unknown variables are determined. Thus, the inverse position problem
is to derive θ1, θ5, and φ to ensure (25).

Substituting the derived θ1, θ5, and φ into (24), all the elements in the left-hand side are known.
The unknown variables in (24) are then θ2, θ3, and θ4 only. Thus, the inverse orientation problem is
to derive θ2, θ3, and θ4 to satisfy (24).

In this section, how to solve the inverse position problem is discussed first. Then, the inverse
orientation problem is solved. Lastly, the number of inverse kinematic solutions is investigated.

4.1. Solving inverse position problem
Rearranging the terms in (25) yields

b pd
t − b R0

0 R1
1 pws = b RT

n
b Rd

5

(
4 RT

5
4 pse + 5 pet

)
. (26)
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Computing the square norms on both sides of (26), we obtain

∣∣b pd
t

∣∣2 + ∣∣1 pws

∣∣2 − 2
(
b pdT

t
b R0

0 R1
1 pws

)
= ∣∣4 pse

∣∣2 + ∣∣5 pet

∣∣2 + 2
(

5 pT
et

4 RT
5

4 pse

)
. (27)

Also, premultiplying both sides of (26) by bnT , we get

bnT b pd
t − bnT b R0

0 R1
1 pws = bnT b Rd

5

(
4 RT

5
4 pse + 5 pet

)
. (28)

The equations (27) and (28) do not include the unknown variable φ. They depend only on the joint
variables θ1 and θ5. Thus, we begin by deriving θ1 and θ5 from (27) and (28). Then, we derive φ from
(26) using the derived θ1 and θ5.

4.1.1. Derivation of θ1 and θ5. Substituting the D-H parameters given in Table I into (27) and (28),
we can transform (27) and (28) into the vector form

Aq1 + Bq5 = c (29)

where qi = [cos θi sin θi]T ∈ �2, and A ∈ �2×2, B ∈ �2×2 and c ∈ �2 are given by

A = lh

[
pz px

nz nx

]
(30)

B = lb

[
lf 0

−rz rx

]
(31)

c =
⎡
⎣ 1

2

{
p2

x + (py + lw)2 + p2
z + l2

h − l2
b − l2

f

}
lf rz + nxpx + ny(py + lw) + nzpz

⎤
⎦ (32)

where

b pd
t = [ px py pz ]T

b RdT
5

bn = [ rx ry rz ]T .

Thus, we have to solve the vector Eq. (29) in order to determine θ1 and θ5.
How to solve (29) depends on the ranks of the matrices A and B. Since lb > 0 and lf > 0, the

rank of B is 1 or 2. On the other hand, the rank of A is either 0, 1, or 2. However, if rank A = 0,
i.e. A = 0, θ1 is indeterminate. Hence this is a singular case. For now, consider nonsingular cases,
because singular cases are analyzed later. As a result, four combinations of rankA and rankB are
possible:

{rankA, rankB} = {{1, 1}, {1, 2}, {2, 1}, {2, 2}}.
In the following, (29) is solved for each case.

(a) rankA = 1 and rankB = 1: Let NA ∈ �2×2 and NB ∈ �2×2 be the adjoint matrices of A and B,
respectively. Premultiplying both sides of (29) by NB yields

NB Aq1 + (det B) q5 = NB c. (33)

Similarly, premultiplication by NB provides

(det A) q1 + NA Bq5 = NAc. (34)
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Since det A = 0 and det B = 0, (33) and (34) are reduced to

NB Aq1 = NB c (35)

NA Bq5 = NAc. (36)

It can be verified that NB A is the adjoint matrix of NA B, and vice versa. Therefore,
rank NB A = rank NA B. Since the ranks of A and B are one, the ranks of NB A and NA B are
one or zero. If rank NB A = rank NA B = 0, θ1, and θ5 are indeterminate, hence this is a singular
case. This singular case is analyzed later.

Suppose that rank NB A = rank NA B = 1. Let u ∈ �2 and v ∈ �2 be nonzero basis vectors of
NB A and NA B respectively. Because det B = l2

b lf rx = 0, it is obvious that rx = 0. Also, since
NB A �= 0, it is guaranteed that

(rzpx + lf nx)2 + (rzpz + lf nz)
2 > 0. (37)

Therefore, u and v can be chosen so that

u = [ 0 1 ]T (38)

v = [ rzpx + lf nx −rzpz − lf nz ]T . (39)

Premultiplying both sides of (35) by uT , we obtain

uT NB Aq1 = uT NB c. (40)

Similarly, premultiplying both sides of (36) by vT , we have

vT NA Bq5 = vT NAc. (41)

From (40), q1 is derived (see Appendix A):

q1 = 1

xT
u xu

[
yu I2 ±

√
xT

u xu − y2
u · H

]
xu (42)

where

xu = AT NT
B u

yu = uT NB c.

In a similar way, q5 is derived from (41):

q5 = 1

xT
v xv

[
yv I2 ±

√
xT

v xv − y2
v · H

]
xv (43)

where

xv = BT NT
Av

yv = vT NAc.

Thus, using the arctangent function, we can compute θ1 and θ5 from (42) and (43).
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(b) rank A = 1 and rank B = 2: Since det A = 0, we can obtain θ5 from (43) as analogous to the
case (a). However, since rx �= 0, there is a special case that (37) does not hold. In such a case, v given
by (39) becomes zero vector. Hence, if (37) is not ensured, v has to be replaced with

v = [−px pz ]T . (44)

It can be verified that this is a nonzero vector, because the condition

p2
x + p2

z > 0. (45)

must be satisfied if (37) is not ensured.
From (33),

uT NB Aq1 = uT NB c − (det B)uT q5 (46)

where u is given by (38) if (37) is satisfied. If not, u has to be replaced with

u = [ 1 0 ]T . (47)

Substituting q5 given by (43) into (46), θ1 can be obtained.
Note that the ranks of NA B and NB A are always one, because B is of full rank. Hence, no

singularity occurs in this case.

(c) rankA = 2 and rankB = 1: Since det B = 0, θ1 can be obtained from (42), where u is given by
(38) if (37) holds, otherwise by (47).

From (34),

vT NA Bq5 = vT NAc − (det A) vT q1 (48)

where v is given by (39) if (37) holds, otherwise by (44). Substituting q1 given by (42) into (48), θ5

can be obtained.

(d) rank A = 2 and rank B = 2: Since B is invertible, (29) can be transformed into

q5 = −B−1(Aq1 − c). (49)

Since q5 is a unit vector, the constraint condition

qT
5 q5 − 1 = 0 (50)

must be satisfied. Substituting (49) into (50), we obtain the equation involving only θ1 as

qT
1 WT W q1 − 2cT B−T W q1 + cT B−T B−1c − 1 = 0 (51)

where W = B−1 A. Thus, θ1 can be obtained by solving (51). It can be verified that (51) is transformed
into a quartic equation by using the half angle formula. Although a quartic equation is analytically
solvable, the actual computation is an onerous work. For this reason, a smart computation method is
developed in the following.

Let λ1 and λ2 be eigenvalues of the matrix WT W . Since WT W is positive definite, λ1 and λ2 are
real positive values. Without loss of generality, λ1 ≤ λ2. Further, let u1 and u2 be unit eigenvectors
associated with λ1 and λ2, respectively. Then, since u1 and u2 are orthogonal to each other,

WT W = U�UT = λ1
[
u1uT

1

]+ λ2
[
u2uT

2

]
(52)

where U = [ u1 u2 ] and � = diag{λ1, λ2 }. How to compute the eigenvalues and eigenvectors is
presented in Appendix B. In addition, let us define a new vector k ∈ �2 described by

k = [ k1 k2 ]T = UT WT B−1c. (53)
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Substituting (52) and (53) into (51), we have

qT
1 U�UT q1 − 2kT UT q1 + kT �−1k − 1 = 0. (54)

Since U is orthonormal, there exists ψ ∈ � which satisfies

[
cos ψ

sin ψ

]
= UT q1. (55)

Substituting (55) into (54) yields

λ1C
2
ψ + λ2S

2
ψ − 2k1Cψ − 2k2Sψ + k2

1

λ1
+ k2

2

λ2
− 1 = 0 (56)

where Cψ = cos ψ and Sψ = sin ψ . If k1 = 0, (56) can be transformed into a quadratic equation in
terms of Sψ :

(λ2 − λ1) S2
ψ − 2k2Sψ + λ1 + k2

2

λ2
− 1 = 0.

Similarly, if k2 = 0, (56) is written by a quadratic equation in terms of Cψ :

(λ1 − λ2) C2
ψ − 2k1Cψ + λ2 + k2

1

λ1
− 1 = 0.

Also, if λ1 = λ2 ≡ λ, (56) reduces to a first-order trigonometric equation in terms of ψ :

2k1Cψ + 2k2Sψ − λ − k2
1 + k2

2

λ
+ 1 = 0.

Hence, if k1 = 0 or k2 = 0, or λ1 = λ2, ψ is readily derived. θ1 is then obtained from (55).
Consider a general case that k1 �= 0, k2 �= 0 and λ1 �= λ2. Since

e − e
(
C2

ψ + S2
ψ

) = 0 (57)

for any scalar e ∈ �, adding (57) to (56), we finally acquire

(λ1 − e)

(
Cψ − k1

λ1 − e

)2

+ (λ2 − e)

(
Sψ − k2

λ2 − e

)2

+ f (e) = 0 (58)

where

f (e) = e − k2
1

λ1 − e
− k2

2

λ2 − e
+ k2

1

λ1
+ k2

2

λ2
− 1. (59)

Now, let us compute e0 so that f (e0) = 0. Obviously, f (e) is indeterminate at e = λ1 and e = λ2.
Computing the right-hand and left-hand limits around λ1 and λ2, respectively, we have

lim
e→λ1+0

f (e) = +∞

lim
e→λ2−0

f (e) = −∞.

According to the intermediate value theorem, these results guarantee that there exists at least one real
solution e0 between λ1 and λ2. Thus, we can always find e0 which satisfies that λ1 < e0 < λ2. Within
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this range, f (e0) = 0 can be rewritten by

e3
0 +

{
k2

1

λ1
+ k2

2

λ2
− (λ1 + λ2) − 1

}
e2

0 −
{

λ2

λ1
k2

1 + λ1

λ2
k2

2 − (λ1 + λ2) − λ1λ2

}
e0 − λ1λ2 = 0.

(60)

Thus, we have to solve the cubic Eq. (60) to get e0. Solving a cubic equation is relatively easy in
comparison with solving a quartic equation. There are several analytical methods of solving a cubic
equation, for example, Cardano’s method.24 Due to the limited space of this paper, the derivation of
e0 is omitted.

Substituting the solution e0 into (58), we have

(λ1 − e0)

(
Cψ − k1

λ1 − e0

)2

+ (λ2 − e0)

(
Sψ − k2

λ2 − e0

)2

= 0. (61)

Since λ1 − e0 < 0 and λ2 − e0 > 0, we can factorize (61) into two equations

sT
1 UT q1 = 2

sT
1 Hk

sT
2 Hs1

(62)

sT
2 UT q1 = 2

sT
2 Hk

sT
1 Hs2

(63)

where H is given by (93), and s1 ∈ �2 and s2 ∈ �2 are given by

s1 = [√e0 − λ1
√

λ2 − e0
]T

(64)

s2 = [√e0 − λ1 −√
λ2 − e0

]T
. (65)

To ensure (61), either (62) or (63) has to be satisfied. Since (62) and (63) are first-order trigonometric
equations, q1 can be derived as shown in Appendix A. Substituting the derived q1 into (49), q5 is
readily derived. Using the arctangent function, we can finally obtain θ1 and θ5.

4.1.2. Derivation of φ. Substituting (10) into (26), we have

y =
{

cos φ I − sin φ
[
bn×]+ (1 − cos φ)

[
bn bnT

]}
x (66)

where

y = b pd
t − b R0

0 R1
1 pws (67)

x = b Rd
5

(
4 RT

5
4 pse + 5 pet

)
. (68)

Since θ1 and θ5 have been determined, y and x are known vectors.
Computing the cross product with bn on both sides of (66), we obtain

bn × y = cos φ
(
bn × x

)− sin φ
{

bn × (bn × x
)}

.

From this, if bn × x �= 0, we can derive cos φ and sin φ:

cos φ =
(
bn × x

)T (bn × y
)

(
bn × x

)T (bn × x
) (69)

sin φ = xT
(
bn × y

)
xT x − (bnT x

)2 (70)
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Thus, φ is uniquely determined from (69) and (70). Note that, if bn × x = 0, φ is indeterminate,
hence this is a singular case. How to deal with this singular case is discussed later.

4.2. Solving inverse orientation problem
To this point, the inverse position problem has been solved. Hence, θ1, θ5, and φ are known.
Substitution of them into (24) makes the left-hand side of the equation known. The right-hand
side is described by

1 R2
2 R3

3 R4

=
⎡
⎣ * cos θ2 cos θ3 *

* sin θ2 cos θ3 *
− cos θ3 sin θ4 − sin θ3 cos θ3 cos θ4

⎤
⎦

where the elements denoted by ∗ are omitted. Combining some elements, we can derive

q2 = ± 1√
R2

12 + R2
22

[
R12

R22

]
(71)

q3 =
[

±
√

1 − R2
32

−R32

]
(72)

q4 = ± 1√
R2

31 + R2
33

[
R33

−R31

]
(73)

where Rij stands for the (i, j ) element of the rotation matrix on the left-hand side of (24), and all
double signs correspond to each other. Using the arctangent function, we can obtain θ2, θ3, and θ4

from (71), (72), and (73), respectively.
It should be noted that two different sets of solutions θ2, θ3, and θ4 are always possible for

nonsingular cases. As inferred from (71) and (73), there is a singular case that θ2 and θ4 are
indeterminate. This singular case is analyzed later.

4.3. Number of solutions
Since the manipulator considered in this paper has a special geometry, the inverse kinematic solution
is not unique.10 Let us evaluate the maximum number of solutions.

The first step of the inverse kinematic computation is to determine θ1 and θ5 so that (29) is ensured.
As described in Section 4.1.1, (29) is decomposed into two first-order trigonometric equations, and
each trigonometric equation has at most two different solutions. Therefore, the maximum number of
solution sets of θ1 and θ5 is four.

The second step is to compute φ for each set of θ1 and θ5. Since φ is determined from cos φ and
sin φ given by (69) and (70) respectively, φ is unique for each set of θ1 and θ5.

The last step is to determine θ2, θ3, and θ4. As shown in (71), (72), and (73), two different solution
sets are possible for each set of θ1, θ5, and φ.

Consequently, the maximum number of solution sets is given by 4 × 1 × 2 = 8. Note that selection
of a solution set is arbitrary from the mathematical perspective. The operator has to choose an
appropriate solution set by considering various physical constraints such as joint limits and the
movable space of the manipulator.

5. Singularity Analysis
In general, there are two types of singularities for a serial manipulator, as shown in ref. [25]. One is
the saturation singularity, and the other is the internal singularity. The saturation singularity occurs
when the target tip position is on or outside the boundary of the manipulator’s workspace. The internal
singularity occurs inside the workspace. In this section, the conditions for the saturation and internal
singularities are derived.
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5.1. Saturation singularity
We may encounter the saturation singularity when solving the inverse position problem. As described
in Section 4.1.1, the vector equation (29) is decomposed into two first-order trigonometric equations,
for example, (35) and (36). Each equation is of the form

xT
i qi = yi, i = 1 or 5

where xi ∈ �2 and yi are constant vector and scalar respectively. If |xi | is less than yi , no real
solutions exist. Therefore, the condition for the saturation singularity is described by

xT
i xi < y2

i .

5.2. Internal singularity
Identification of all internal singular configurations is especially important, because we have to
carefully avoid these singular configurations whenever we operate the manipulator. If the manipulator
is at a singular configuration, the inverse position or orientation problem is unsolvable. In the
following, we first derive the singular conditions at which the inverse position problem is unsolvable.
Then, we derive the singular conditions associated with the inverse orientation problem.

5.2.1. Singular configurations at which inverse position problem is unsolvable. As described in
Section 4.1, θ1 and θ5 are determined so that (29) is satisfied, and φ is determined by solving (66).
We may encounter two singular cases in solving (29) and one singular case in solving (66).

The first singular case occurs when the rank of the matrix A given by (30) is zero. Namely, the
conditions for this singular case is given by

A = lh

[
pz px

nz nx

]
=
[

0 0
0 0

]
. (74)

In this case, θ1 is indeterminate, because q1 vanishes from (29). Since px = 0 and pz = 0, the target
tip position is on the axis of joint 1. Furthermore, since nx = 0 and nz = 0, the unconstrained axis is
parallel to the joint axis 1.

The second singular case arises when both the matrices NB A and NA B are zero matrices. In this
case, both θ1 and θ5 are indeterminate. From NB A = 0 or NA B = 0, we can derive the conditions
for this singular case:

rx = 0 (75)

rzpx + lf nx = 0 (76)

rzpz + lf nz = 0. (77)

The third singular case occurs when x given by (68) is parallel to the unconstrained axis defined
by bn. In this case, φ is indeterminate, because (66) reduces to

y =
{

cos φ I − sin φ
[
bn×]+ (1 − cos φ)

[
bn bnT

]}
x

= x.

This yields the conditions for this singular case:

bn × y = bn × b pd
t − bn × b R0

0 R1
1 pws = 0 (78)

bn × x = bn × b Rd
5

(
4 RT

5
4 pse + 5 pet

) = 0. (79)

The conditions (78) and (79) involve the joint angles θ1 and θ5 respectively. To eliminate the joint
angles, (78) and (79) are solved for θ1 and θ5 respectively, and then the obtained θ1 and θ5 are
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substituted into (29). The detailed computation is omitted due to the space limit. As a result, the
conditions for this singular case are obtained as follows:

• If ny �= 0:

{
px − nx

ny

(
py + lw

)}2

+
{
pz − nz

ny

(
py + lw

)}2

= l2
h (80)

ry = 0 (81)

rz = 1

2lf

{
ny

py + lw

(
l2
b − l2

f

)− py + lw

ny

}
(82)

• If ny = 0:

py = −lw (83)

ry = 0 (84)

l2
b − l2

f + l2
f r2

z =
{

L2
x + L2

z − l2
h + l2

b − l2
f + l2

f r2
z

2
(
nxpx + nzpz + lf rz

)
}2

. (85)

where Lx = px + lf rznx and Lz = pz + lf rznz.
Note that φ can be chosen arbitrarily in this singular case. This is because selection of φ does

not affect the joint angles θ1 and θ5. Also, the other joint angles θ2, θ3, and θ4 always exist for any
φ. Therefore, this singular case is not a kinematic singularity. This is a mathematical singularity. A
simple remedy for this singularity is to set φ to zero. When φ = 0, the achieved tip orientation is
exactly same as the desired one.

5.2.2. Singular configurations at which inverse orientation problem is unsolvable. The solutions
to the inverse orientation problem are given by (71), (72), and (73). If |R32| = 1, it is obvious that
R12 = R22 = 0 and R31 = R33 = 0. In this case, θ2 and θ4 are indeterminate. From (24), the condition
for this singular case is obtained as

∣∣eT
3

0 RT
1

b RT
0

b RT
n

b Rd
5

4 RT
5 e2

∣∣ = 1 (86)

where e2 = [ 0 1 0 ]T , and e3 = [ 0 0 1 ]T . This condition depends on θ1, θ5, and φ, which are
determined by solving the inverse position problem. Hence, substituting them into (86), we may be
able to derive the singular condition described in terms of the target tip position and orientation.
However, derivation of the condition in an explicit form is extremely difficult, because θ1 and θ5

are not given in explicit forms. From the pragmatic standpoint, however, explicit formulation of the
condition is not necessary. To check whether this singularity occurs or not, we have only to solve the
inverse position problem for given target position and orientation, and then evaluate the condition
(86).

6. Examples
Let us verify the validity of the inverse kinematic computation method derived in Section 4 by
numerical examples. In the following examples, the link lengths are fixed to

lh = 0.07 (m), lw = 0.103 (m),
lb = 0.13 (m), lf = 0.045 (m).

In addition, the unconstrained direction vector bn is assumed to be

bn = [ 0 0 1 ]T .
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To check the consistency of the inverse kinematics, we begin by computing the forward kinematics.
As an example, consider the following joint angles:

θ = [30 −30 −45 90 45]T (deg). (87)

The tip position and orientation at these joint angles are obtained from the forward kinematic Eqs.
(16) and (17). The results are

b pt =
⎡
⎣ 0.035

−0.240
−0.031

⎤
⎦ , b Rt =

⎡
⎣ 0 −1 0

0 0 1
−1 0 0

⎤
⎦ . (88)

Next, we compute the inverse kinematics by using these tip position and orientation. Since both A
and B in (29) are of full rank, θ1 is computed from (62) and (63). Computing the parameters in (62)
and (63), we obtain

[
λ1 λ2

]T = [ 0.101 0.505
]T

[
k1 k2

]T = [ 0.073 0.424
]T

U =
[

0.430 −0.903
0.903 0.430

]
e0 = 0.106.

From these values, sT
1 s1 = sT

2 s2 = 0.404, and

(
2

sT
1 Hk

sT
2 Hs1

)2

= 0.088 < sT
1 s1

(
2

sT
2 Hk

sT
1 Hs2

)2

= 2.686 > sT
2 s2.

Therefore, (62) is solvable, but (63) is not. Solving (62), we get θ1 = {30, −94.519} (deg). For each
θ1, θ5 is uniquely determined from (49): θ5 = {45, 11.441} (deg). Then, for each set of θ1 and θ5, φ is
uniquely determined from (69) and (70): φ = {0, −37.425} (deg). Lastly, θ2, θ3, and θ4 are computed
from (71), (72), and (73) respectively. As described in Section 4.2, two different sets of θ2, θ3, and
θ4 are always obtained for each set of θ1, θ5, and φ. Consequently, we have four sets of joint angles
θ and φ:

[
θ φ

]T
(deg) =⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[
30 −30 −45 90 45 0

]T[
30 150 −135 −90 45 0

]T[−94.519 −30 −45 90 11.441 −37.425
]T[−94.519 150 −135 −90 11.441 −37.425
]T

As shown, the first solution set is equal to (87). Moreover, since the target tip position and orientation
are reachable, the unconstrained rotation angle φ is zero. These results are consistent with the inverse
kinematic analysis presented in this paper.

As another example, let us consider a case that the target tip position and orientation are
unreachable. For simplicity, the target tip position b pt in (88) is reused, while the target orientation
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b Rt is rotated about bn by 90 degrees. Namely, the target tip position and orientation are

b pd
t =

⎡
⎣ 0.035
−0.240
−0.031

⎤
⎦ , b Rd

t =
⎡
⎣ 0 0 −1

0 −1 0
−1 0 0

⎤
⎦ . (89)

Since the DOF of the manipulator is five, it can be verified that these position and orientation are not
reachable.13 Also, only the target orientation is changed about the unconstrained axis by 90 degrees,
the expected inverse solution set is the joint angles θ given by (87) and φ = 90 degrees. Solving the
inverse kinematics for (89), we obtain four sets of solutions:

[
θ φ

]T
(deg) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
30 −30 −45 90 45 90

]T[
30 150 −135 −90 45 90

]T[−94.519 22.937 −51.111

165.468 11.441 52.575
]T[−94.519 −157.063 −128.889

−14.532 11.441 52.575
]T

As shown, the first solution set agrees with the expected one. Thus, the inverse kinematic computation
method proposed in this paper can properly deal with unreachable target position and orientation.

7. Discussion and Summary

7.1. Extension and limitation of inverse kinematic solving method
This paper presented an analytical approach to solving the inverse kinematics of the 5-DOF
manipulator depicted in Fig. 3. The approach itself can be applied to other manipulators if three
consecutive revolute joint axes intersect at a point. This is because existence of such joints enables
us to decouple the inverse kinematic problem into the inverse position and orientation problems. It
should be noted that such three consecutive joints usually exist for an anthropomorphic manipulator.
Therefore, the method proposed in this paper will be useful for other types of anthropomorphic
manipulators.

However, intersecting three consecutive joint axes at a point is not the necessary condition for the
inverse kinematic problem to be solvable. It is shown in ref. [11] that the inverse kinematics is solvable
for a general 5-DOF manipulator if two consecutive revolute joint axes intersect at a point. For such
a 5-DOF manipulator, the inverse kinematic problem will be decoupled into the inverse position
problem involving four variables and the inverse orientation problem involving two variables. Hence,
the approach proposed in this paper is not directly applicable to this case. Nevertheless, if the solutions
to the inverse position problem are given as functions of φ, the inverse orientation problem may be
solvable. It is shown in ref. [26] that similar approach works well for a redundant manipulator with a
wrist. But, this issue has not been addressed yet, and further research will be required.

7.2. Summary of this paper
This paper proposed an analytical methodology of solving the inverse kinematic problem for a 5-
DOF manipulator. The inverse kinematic problem was formulated in a generic form by defining
the unconstrained direction and rotation angle φ. Owing to the formulation, the target position and
orientation are achieved except an orientation about the user-defined axis, which is fixed with reference
to the environment. This paper also presented the singularity analysis. It revealed that there are three
kinematic singularities and one mathematical singularity. Finally, the validity of the proposed method
was confirmed by numerical examples.
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Appendix A
The first-order trigonometric equation in terms of θ can be represented generally by

xT q = y (90)
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where x ∈ �2 is a constant vector, y ∈ � is a constant scalar, and q = [cos θ sin θ]T . If q is given,
θ is uniquely determined by using the arctangent function with quadrant information. Hence, it is
enough to derive q from (90). Since |q| = 1,

xT q = |x| cos μ = y (91)

where μ is the angle between x and q. When the angle μ is given, q is described by

q = 1√
xT x

[cos μ I2 + sin μ H] x (92)

where I2 ∈ �2×2 is the identity matrix, and H ∈ �2×2 is a constant matrix given by

H =
[

0 −1
1 0

]
. (93)

From (91),

cos μ = y√
xT x

sin μ = ±
√

1 − cos2 μ = ± 1√
xT x

√
xT x − y2.

Substituting them into (92) gives

q = 1

xT x

[
y I2 ±

√
xT x − y2 · H

]
x. (94)

Note that the quantity under the square root must be nonnegative. This provides the existence condition
of the solution:

y2 ≤ xT x. (95)

Appendix B
Let wij be the (i, j ) element of W . Then,

WT W =
[

w2
11 + w2

21 w11w12 + w21w22

w11w12 + w21w22 w2
12 + w2

22

]
.

Since WT W is positive definite,

traceWT W = λ1 + λ2

det WT W = λ1λ2.

From these equations, the eigenvalues λ1 and λ2 can be obtained as

λ1 = t − √
t2 − 4d

2
(96)

λ2 = t + √
t2 − 4d

2
(97)

where t = traceWT W = w2
11 + w2

21 + w2
12 + w2

22 and d = det WT W = (w11w22 − w12w21)2. Note
that t2 ≥ 4d always holds, hence real eigenvalues always exist.
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Since U in (52) is orthonormal, it can be represented by

U = [ u1 u2
] =

[
cos ν − sin ν

sin ν cos ν

]
(98)

where ν is a real scalar. To satisfy WT W = U�UT , ν must ensure the relations

(λ1 − λ2) cos 2ν = w2
11 + w2

21 − w2
12 − w2

22

(λ1 − λ2) sin 2ν = 2 (w11w12 + w21w22) .

From these equations, ν is uniquely determined. Substituting it into (98), the eigenvectors u1 and u2

are obtained. Note that, if λ1 = λ2 ≡ λ, ν is arbitrary, because WT W = λI2.
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