CERTAIN INTEGRALS FOR CLASSES OF p-VALENT MEROMORPHIC FUNCTIONS

Vinod Kumar and S.L, Shukla

In this paper we introduce two classes, namely $\Gamma_{p}(m, M)$ and $\Sigma_{p}(m, M)$, of functions

$$
f(z)=\frac{1}{z^{p}}+\frac{a_{0}}{z^{p-1}}+\ldots+a_{n+p-1} z^{n}+\ldots
$$

regular and p-valent in $D-\{0\}$ where $D=\{z:|z|<1\}$. We show that, for suitable choices of real constants α, β and γ, the integral operators of the form

$$
F(z)=\left[\frac{\gamma-p(\alpha+\beta)+2}{z^{\gamma-p \beta+2}} \int_{0}^{z} t^{\gamma+1} f(t)^{\alpha} g(t)^{\beta} d t\right]^{1 / \alpha}
$$

$\operatorname{map} \Gamma_{p}^{*}(\rho) \times \Gamma_{p}(m, M)$ into $\Gamma_{p}^{*}(\rho)$, where $\Gamma_{p}^{*}(\rho)$ is the class of p-valent meromorphically starlike functions of order ρ, $0 \leq \rho<1$. For the classes $\Gamma_{p}(m, M)$ and $\Sigma_{p}(m, M)$, we obtain class preserving integral operators of the form

$$
F(z)=\left[\frac{\Upsilon-p \alpha+1}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} f(t)^{\alpha} d t\right]^{1 / \alpha}
$$

with suitable restrictions on real constants α and γ.
Our results generalize almost all known results obtained so far in this direction.

1. Introduction

Let I^{+}denote the set of positive integers. We denote by Γ_{p}, $p \in I^{+}$, the set of the functions

$$
f(z)=\frac{1}{z^{p}}+\frac{a_{0}}{z^{p-1}}+\ldots+a_{n+p-1} z^{n}+\ldots,
$$

regular and p-valent in $D-\{0\}$, where $D=\{z:|z|<1\}$ and $f^{\prime}(z) \neq 0$ there. A function f of Γ_{p} is said to belong to Γ_{p}^{*}, the class of p-valent meromorphically starlike functions, if and only if $\operatorname{Re}\left\{z\left(f^{\prime}(z) / f(z)\right)\right\}<0, \quad z \in D$. A function f of Γ_{p} is said to belong to $\Gamma_{p}^{*}(\rho)$, the class of p-valent meromorphically starlike functions of order $\rho, 0 \leq \rho<1$, if and only if $\operatorname{Re}\left\{z\left(f^{\prime}(z) / f(z)\right)\right\}<-p \rho, z \in D$. A function f of Γ_{p} is said to belong to $\Sigma_{p}(\rho)$, the class of p-valent meromorphically convex functions of order $\rho, 0 \leq \rho<1$, if and only if $\operatorname{Re}\left\{1+z\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)\right\}<-p \rho, \quad z \in D$. The class Σ_{p} of p-valent meromorphically convex functions is identified by $\Sigma_{p} \equiv \Sigma_{p}(0)$.

Now we define two subclasses, namely $\Gamma_{p}(m, M)$ and $\Sigma_{p}(m, M)$, of Γ_{p}^{*} and Σ_{p} respectively.

A function f of Γ_{p} belongs to the class $\Gamma_{p}(m, M)$ if and only if $\left|z\left(f^{\prime}(z) / f(z)\right)+m\right|<M, \quad z \in D$ where

$$
(m, M) \in E_{p}=\{(m, M):|m-p|<M \leq m\}
$$

A function f of Γ_{p} belongs to the class $\Sigma_{p}(m, M)$ if and only if $\left|1+z\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)+m\right|<M, \quad z \in D$, where

$$
(m, M) \in E_{p}=\{(m, M):|m-p|<M \leq m\}
$$

It is clear that $\Gamma_{p}(m, M) \subset \Gamma_{p}^{*}((m-M) / p) \subset \Gamma_{p}^{*} \subset \Gamma_{p}$ and $\Sigma_{p}(m, M) \subset \Sigma_{p}((m-M) / p) \subset \Sigma_{p} \subset \Gamma_{p}$. Also, a function f belongs to $\Sigma_{p}(m, M)$ if and only if $z f^{\prime}(z) /-p$ belongs to $\Gamma_{p}(m, M)$.

In [1], [2], [3], the integral operators of the forms

$$
F(z)=\left[\frac{\gamma-2 \beta+2}{z^{\gamma-\beta+2}} \int_{0}^{z} t^{\gamma+1} f(t)^{\beta} g(t)^{\beta} d t\right]^{1 / \beta}
$$

and

$$
F(z)=\left[\frac{\gamma-\alpha+1}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} f(t)^{\alpha} d t\right]^{1 / \alpha},
$$

with suitable restrictions on the real constants α, β and γ, and for f and g belonging to some favoured classes of meromorphic functions have been studied. The purpose of this paper is to obtain the integral operators that are more general and transform $\Gamma_{p}^{*}(\rho) \times \Gamma_{p}(m, M)$ into $\Gamma_{p}^{*}(\rho), \Gamma_{p}(m, M)$ into $\Gamma_{p}(m, M)$, and $\Sigma_{p}(m, M)$ into $\Sigma_{p}(m, M)$. Our results generalize almost all known results obtained so far in this direction [1], [2], [3].

2. Preliminary lemmas

Let $S(m, M)$ be the class of functions $h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ regular and satisfying

$$
\begin{equation*}
\left|z \frac{h^{\prime}(z)}{h(z)}-m\right|<M \text { in } D, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
(m, M) \in E=\left\{(m, M): m>\frac{1}{2},|m-1|<M \leq m\right\} . \tag{2.2}
\end{equation*}
$$

This class $S(m, M)$ was introduced by Jakubowski [5]. It is worth mentioning here that the requirement $m>\frac{3}{2}$ in (2.2) is superfluous and may be dropped since it follows directly from the inequality $|m-1|<m$ in (2.2).

The proof of the following lemma is based on the lines of a result of Silverman [7, Theorem 1], the only difference is that in the definition of $S(m, M)$ Silverman [7] has taken equality also in (2.1) and restricted m, M by the inequalities

$$
\begin{equation*}
m+M \geq 1, \quad M \leq m \leq M+1 \tag{2.3}
\end{equation*}
$$

which are equivalent to the inequalities

$$
|m-1| \leq M \leq m .
$$

However we follow the definition of $S(m, M)$ given by Jakubowski [5].
LEMMA 2.1. The function $h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ belongs to $S(m, M)$ if and only if there exists a function $w(z)$ regular in D and satisfying $w(0)=0,|w(z)|<1$ for z in D, such that

$$
\begin{equation*}
z \frac{h^{\prime}(z)}{h(z)}=\frac{1+a^{\prime} w(z)}{1-b^{\prime} w(z)}, \quad z \in D, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
a^{\prime}=\frac{M^{2}-m^{2}+m}{M} \text { and } b^{\prime}=\frac{m-1}{M} \tag{2.5}
\end{equation*}
$$

Proof. First suppose that $h \in S(m, M)$. Then

$$
\left|z \frac{h^{\prime}(z)}{M h(z)}-\frac{m}{M}\right|<1
$$

Let $g(z)=z\left(h^{\prime}(z) / M h(z)\right)-m / M$ and

$$
\begin{equation*}
w(z)=\frac{g(z)-g(0)}{1-g(0) g(z)}=\frac{z\left(h^{\prime}(z) / h(z)\right)-1}{M+((m-1) / M)\left\{z\left(h^{\prime}(z) / h(z)\right]-m\right\}} . \tag{2.6}
\end{equation*}
$$

Then $w(0)=0,|w(z)|<1$. Rearranging (2.6) and using (2.5) we get (2.4).

Conversely, suppose that $h(z)$ satisfies (2.4). Then

$$
\begin{align*}
z \frac{h^{\prime}(z)}{h(z)}-m & =M \frac{((1-m) / M)+w(z)}{1+((1-m) / M) w(z)} \tag{2.7}\\
& =M G(z), \text { say } .
\end{align*}
$$

In view of $(2.2),|(1-m) / M|<1$. Thus the function

$$
G(z)=\frac{((1-m) / M)+w(z)}{1+((1-m) / M) w(z)}
$$

satisfies $|G(z)|<1$. From (2.7), it follows now that $h \in S(m, M)$.
This completes the proof of the lemma.
LEMMA 2.2. The function f is in $\Gamma_{p}(m, M)$ if and only if there exists a function $w(z)$ regular and satisfying $w(0)=0,|w(z)|<1$, for z in D such that

$$
z \frac{f^{\prime}(z)}{f(z)}=-p \frac{1+\alpha w(z)}{1-b w(z)}, \quad z \in D,
$$

where $a=\left(M^{2}-m^{2}+m p\right) / M p$ and $b=(m-p) / M$.
Proof. Since $f \in \Gamma_{p}(m, M), z\left(f^{\prime}(z) / f(z)\right)=-p+\ldots$. Let $\left(z\left(f^{\prime}(z) / f(z)\right)\right) /-p=z\left(h^{\prime}(z) / h(z)\right)=1+\ldots$, then from Lemma 2.1, for $|(m / p)-1|<M / p \leq m / p$,

$$
\left|\frac{z\left(f^{\prime}(z) / f(z)\right)}{-p}-\frac{m}{p}\right|<\frac{M}{p}
$$

if and only if

$$
\frac{z\left(f^{\prime}(z) / f(z)\right)}{-p}=\frac{1+\infty w(z)}{1-b w(z)}
$$

where

$$
a=\frac{(M / p)^{2}-(m / p)^{2}+(m / p)}{M / p} \text { and } b=\frac{(m / p)-1}{M / p} ;
$$

or, for $|m-p|<M \leq m$,

$$
\left|z \frac{f^{\prime}(z)}{f(z)}+m\right|<M
$$

if and only if

$$
z \frac{f^{\prime}(z)}{f(z)}=-p \frac{1+\infty w(z)}{1-b w(z)}
$$

where

$$
a=\frac{M^{2}-m^{2}+m p}{M p} \text { and } b=\frac{m-p}{M} .
$$

LEMMA 2.3. If the function $w(z)$ is regular for $|z| \leq r<1$, $w(0)=0$ and $\left|w\left(z_{1}\right)\right|=\max _{|z|=r}|w(z)|$, then

$$
z_{1} w^{\prime}\left(z_{1}\right)=k w\left(z_{1}\right), \quad k \geq 1 .
$$

A proof of Lemma 2.3, which is due to Jack, may be found in [4].
LEMMA 2.4. A function f belongs to $\Gamma_{p}^{*}(\rho), 0 \leq \rho<1$, if and only if there exists a function $w(z)$ regular and satisfying $w(0)=0$, $|\omega(z)|<1$ in D such that

$$
z \frac{f^{\prime}(z)}{f(z)}=-p \frac{1+(2 \rho-1) w(z)}{1+w(z)}
$$

Proof. Let $P(z)=\left(\left(z\left(f^{\prime}(z) / f(z)\right) /-p\right)-\rho\right) /(1-\rho)=1+\ldots$; then $\operatorname{Re}\{P(z)\}>0$ and hence by a well known result [6], $P(z)$ can be written as

$$
P(z)=\frac{1-w(z)}{1+w(z)}
$$

where $w(z)$ is regular and $w(0)=0,|w(z)|<1$, for z in D. Thus

$$
\frac{\left(z\left(f^{\prime}(z) / f(z)\right) /-p\right)-\rho}{1-\rho}=\frac{1-w(z)}{1+\omega(z)}
$$

and hence the result follows.
3. Integral operators that map $\Gamma_{p}^{*}(\rho) \times \Gamma_{p}(m, M)$ into $\Gamma_{p}^{*}(\rho)$

THEOREM 3.1. Let α, β and γ be real constants such that

$$
\alpha>0, \beta \geq 0 \text { and } \gamma-p(\alpha+\beta)+1>-1 .
$$

If $f \in \Gamma_{p}^{*}(\rho)$ and $g \in \Gamma_{p}(m, M),(m, M) \in E_{p}^{*}=\left\{(m, M):|m-p|<M \leq m^{*}\right\}$ where $m^{*}=\min \{m,(m-p)+(\alpha p(1-\rho) / 2 \beta(\gamma-p \beta-\alpha \rho p+2))\}$, then

$$
\begin{equation*}
F(z)=\left[\frac{\gamma-p(\alpha+\beta)+2}{z^{\gamma-p \beta+2}} \int_{0}^{z} t^{\gamma+1} f(t)^{\alpha} g(t)^{\beta} d t\right]^{1 / \alpha}=\frac{1}{z^{p}}+\ldots \tag{3.1}
\end{equation*}
$$

also belongs to $\Gamma_{p}^{*}(\rho)$. In (3.1) all powers are principal ones.
Proof. Let us choose a function $w(z)$ such that

$$
\begin{equation*}
z \frac{F^{\prime}(z)}{F(z)}=-p^{\cdot} \frac{1+(2 \rho-1) w(z)}{1+w(z)}, \quad w(0)=0 \tag{3.2}
\end{equation*}
$$

and $\omega(z)$ is either regular or meromorphic in D.
From (3.1) and (3.2), we have

$$
\begin{equation*}
z^{p \beta} \frac{f(z)^{\alpha}}{F(z)^{\alpha}} g(z)^{\beta}=\frac{1+(\xi / \delta) \omega(z)}{\left.1+w^{\prime} z\right)}, \tag{3.3}
\end{equation*}
$$

where $\xi=\gamma+p(\alpha-\beta)+2(1-\alpha \rho p)$ and $\delta=\gamma-p(\alpha+\beta)+2$.
Logarithmic differentiation of (3.3) yields
(3.4) $z \frac{f^{\prime}(z)}{f(z)}=\frac{\beta}{\alpha}(m-p)-\frac{\beta}{\alpha}\left\{z \frac{g^{\prime}(z)}{g(z)}+m\right\}-p \frac{1+(2 \rho-1) w(z)}{1+w(z)}$

$$
+\frac{2 p(1-p) z \omega^{\prime}(z)}{\delta\{1+w(z)\}[1+(\xi / \delta) w(z)]} .
$$

Let r^{*} be the distance from the origin of the pole of $w(z)$ nearest the origin. Then $w(z)$ is regular in $|z|<r_{0}=\min \left\{r^{*}, 1\right\}$. By Lemma 2.3, for $|z| \leq r \quad\left(r<r_{0}\right)$ there is a point z_{0} such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right), \quad k \geq 1 \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5) we have
(3.6) $\operatorname{Re}\left\{z_{0} \frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\}$

$$
\begin{aligned}
& \begin{array}{l}
\geq \frac{\beta}{\alpha}(m-p)-\frac{\beta}{\alpha}\left|z_{0} \frac{g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}+m\right|-p \frac{\operatorname{Re}\left[\left\{1+(2 \rho-1) w\left(z_{0}\right)\right\}\left\{1+w\left(z_{0}\right)\right\}\right]}{\left|1+w\left(z_{0}\right)\right|^{2}} \\
\\
+\frac{2 p(1-\rho) k \operatorname{Re}\left[w\left(z_{0}\right)\left\{1+w\left(z_{0}\right)\right\}\left\{1+(\xi / \delta) w\left(z_{0}\right)\right\}\right]}{\delta\left|1+w\left(z_{0}\right)\right|^{2}\left|1+(\xi / \delta) w\left(z_{0}\right)\right|^{2}} \\
>\frac{\beta}{\alpha}\{(m-p)-M\}-p \frac{1+2 \rho \operatorname{Re} w\left(z_{0}\right)+(2 \rho-1)\left|w\left(z_{0}\right)\right|^{2}}{1+2 \operatorname{Re} w\left(z_{0}\right)+\left|w\left(z_{0}\right)\right|^{2}} \\
\end{array} \quad \frac{2 p(1-\rho) k \operatorname{Re}\left[w\left(z_{0}\right)+(2\{\gamma-p \beta-\alpha \rho p+2\} / \delta)\left|w\left(z_{0}\right)\right|^{2}+(\xi / \delta)\left|w\left(z_{0}\right)\right|^{2} w\left(z_{0}\right)\right]}{\delta\left[1+2 \operatorname{Re} w\left(z_{0}\right)+\left|w\left(z_{0}\right)\right|^{2}\right]\left[1+(2 \xi / \delta) \operatorname{Re} w\left(z_{0}\right)+(\xi / \delta)^{2}\left|w\left(z_{0}\right)\right|^{2}\right]} .
\end{aligned}
$$

Now suppose that it were possible to have $M(r, w)=\max _{|z|=r}|w(z)|=1$ for some $r \quad\left(r<r_{0} \leq 1\right)$. At the point z_{0} where this occurred, we would have $|\omega(z)|=1$. Then, from (3.6),

$$
\begin{aligned}
\operatorname{Re}\left\{z_{0} \frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\} & >-p \rho+\frac{2\{\gamma-p \beta-\alpha \rho p+2\}[(1-\rho) p+(2 \beta / \alpha)\{(m-p)-M\}\{\gamma-p \beta-\alpha \rho p+2\}]}{\left[\delta^{2}+2 \delta \xi \operatorname{Rew}\left(z_{0}\right)+\xi^{2}\right]} \\
& \geq-p \rho, \text { provided } \quad M \leq(m-p)+\frac{\alpha \rho(1-\rho)}{2 \beta(\gamma-p \beta-\alpha \rho p+2)} .
\end{aligned}
$$

But this is contrary to the fact that $f \in \Gamma_{p}^{*}(\rho)$. So we cannot have $M(r, \omega)=1$. Thus $|\omega(z)| \neq 1$ in $|z|<r_{0}$. Since $\omega(0)=0,|\omega(z)|$
is continuous in $|z|<r_{0}$ and $|w(z)| \neq 1$ there, $w(z)$ can not have a pole at $|z|=r_{0}$. Therefore $|w(z)|<1$ and $w(z)$ is regular in D. Hence from (3.2) and Lemma 2.4, $F \in \Gamma_{p}^{*}(\rho)$.

REMARK. Taking $p=1$, the undermentioned results follow from Theorem 3.1:
(i) for $\alpha=1, \beta=0, \gamma=0$ and $\rho=0$, a result of Bajpai [1];
(ii) for $\alpha=\beta=1$, a result of Dwivedi [2];
(iii) for $\alpha=\beta$, a result of Dwivedi, Bhargava and Shukla [3].

THEOREM 3.2. Let β and γ be real constants such that $\beta \geq 0$ and $\gamma>0$. If $f \in \Gamma_{p}^{*}(\rho)$ and $g \in \Gamma_{p}(m, M)$,

$$
(m, M) \in E_{p}^{* *}=\left\{(m, M):|m-p|<M \leq m^{*}\right\}
$$

where

$$
m^{*}=\min \left\{m, \quad(m-p)+\frac{p(1-\rho)}{2 \beta\{\gamma+p(1-\rho)\}}\right\}
$$

Then

$$
\begin{equation*}
F(z)=\frac{\gamma}{z^{\gamma+p}} \int_{0}^{z} t^{\gamma+p(1+\beta)-1} f(t) \cdot g(t)^{\beta} d t=\frac{1}{z^{p}}+\ldots \tag{3.7}
\end{equation*}
$$

also belongs to $\Gamma_{p}^{*}(\rho)$. In (3.7) all powers are principal ones.
Proof. Let us choose a function $w(z)$ such that

$$
\begin{equation*}
z \frac{F^{\prime}(z)}{F(z)}=-p \frac{1+(2 \rho-1) w(z)}{1+w(z)}, w(0)=0 \tag{3.8}
\end{equation*}
$$

$w(z)$ is either regular or meromorphic in D.
From (3.7) and (3.8), we have

$$
\begin{equation*}
\frac{z^{p \beta} f(z) g(z)^{\beta}}{F(z)}=\frac{1+((\gamma+2 p(1-\rho)) / \gamma) w(z)}{1+w(z)} \tag{3.9}
\end{equation*}
$$

Logarithmic differentiation of (3.9) yields
(3.10) $z \frac{f^{\prime}(z)}{f(z)}=-p \beta-\beta z \frac{g^{\prime}(z)}{g(z)}-p \frac{1+(2 \rho-1) \omega(z)}{1+w(z)}$

$$
+\frac{2 p(1-p) z w^{\prime}(z)}{[1+w(z)][\gamma+[\gamma+2 p(1-\rho)] w(z)]} .
$$

Let r^{*} be the distance from the origin of the pole of $w(z)$ nearest the origin. Then $w(z)$ is regular in $|z|<r_{0}=\min \left\{r^{*}, 1\right\}$. By Lemma 2.3, for $|z| \leq r \quad\left(r<r_{0}\right)$ there is a point z_{0} such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right), \quad k \geq 1 \tag{3.11}
\end{equation*}
$$

From (3.10) and (3.11), we have

$$
\begin{aligned}
& \operatorname{Re}\left\{z_{0} \frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\} \geq \beta(m-p)-\beta\left|z_{0} \frac{g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}+m\right|-p \frac{\operatorname{Re}\left[\left\{1+(2 \rho-1) w\left(z_{0}\right)\right\}\left\{1+\bar{w}\left(z_{0}\right)\right\}\right]}{\left|1+w\left(z_{0}\right)\right|^{2}} \\
&+\frac{2 p(1-\rho) k \operatorname{Re}\left[\omega (z _ { 0 }) \left\{\gamma+(\gamma+2 p(1-\rho)) \overline{\left.\omega\left(z_{0}\right)\right\}\left\{1+\overline{\left.\left.w\left(z_{0}\right)\right\}\right]}\right.}\right.\right.}{\left|1+\omega\left(z_{0}\right)\right|^{2}\left|\gamma+\{\gamma+2 p(1-\rho)\} \omega\left(z_{0}\right)\right|^{2}}
\end{aligned}
$$

or
(3.12)

$$
\begin{aligned}
& \operatorname{Re}\left\{z_{0} \frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\}>-\beta\{M-(m-p)\}-p \frac{1+2 \rho \operatorname{Re} \omega\left(z_{0}\right)+(2 \rho-1)\left|\omega\left(z_{0}\right)\right|^{2}}{1+2 \operatorname{Re} w\left(z_{0}\right)+\left|\omega\left(z_{0}\right)\right|^{2}} \\
&+\frac{2 p(1-\rho) \operatorname{RRe}\left[\gamma \omega\left(z_{0}\right)+2\{\gamma+p(1-\rho)\}\left|\omega\left(z_{0}\right)\right|^{2}+\{\gamma+2 p(1-\rho)\}\left|\omega\left(z_{0}\right)\right|^{2} \overline{\left.w\left(z_{0}\right)\right]}\right.}{\left[1+2 \operatorname{Re} \omega\left(z_{0}\right)+\left|\omega\left(z_{0}\right)\right|^{2}\right]\left[\gamma^{2}+2 \gamma\{\gamma+2 p(1-\rho)\} \operatorname{Re} \omega\left(z_{0}\right)+\{\gamma+2 p(1-\rho)\}^{2}\left|w\left(z_{0}\right)\right|^{2}\right]} .
\end{aligned}
$$

Now suppose that it were possible to have $M(r, w)=\max _{|z|=r}|w(z)|=1$ for some $r\left(r<r_{0}\right)$. At the point z_{0} where this occurred we would have $\left|w\left(z_{0}\right)\right|=1$. Then, from (3.12),

$$
\begin{aligned}
\operatorname{Re}\left\{z_{0} \frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right\} & >-p \rho+\frac{2\{\gamma+p(1-\rho)\}[p(1-\rho)-2 \beta\{M-(m-p)\}\{\gamma+p(1-\rho)\}]}{\left[\gamma^{2}+2 \gamma\{\gamma+2 p(1-\rho)\} \operatorname{Rew}\left(z_{0}\right)+\{\gamma+2 p(1-\rho)\}^{2}\right]} \\
& \geq-p \rho, \text { provided } M \leq(m-p)+\frac{p(1-\rho)}{2 \beta\{\gamma+p(1-\rho)\}}
\end{aligned}
$$

But this is contrary to the fact that $f \in \Gamma_{p}^{*}(\rho)$. So we can not have $M(r, w)=1$. Thus $|w(z)| \neq 1$ in $|z|<r_{0}$. Since $|w(0)|=0$,
$|w(z)|$ is continuous in $|z|<r_{0}$ and $|w(z)| \neq 1$ there, $w(z)$ can not have a pole at $|z|=r_{0}$. Therefore $|w(z)|<1$ and $w(z)$ is regular in D.

Hence from (3.8) and Lemma 2.4, $F \in \Gamma_{p}^{*}(\rho)$.
4. Class preserving integral operators for $\Gamma_{p}(m, M)$ and $\sum_{p}(m, M)$

THEOREM 4.1. If $f \in \Gamma_{p}(m, M)$ and $F(z)$ is defined by

$$
\begin{equation*}
F(z)=\left[\frac{\gamma-p \alpha+1}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} f(t)^{\alpha} d t\right]^{1 / \alpha}=\frac{1}{z^{p}}+\cdots \tag{4.1}
\end{equation*}
$$

$\alpha>0$. Then $F \in \Gamma_{p}(m, M)$ if $\gamma>\max \{(p \alpha(1+a)+b-1) /(1-b), p \alpha-1\}$.
In (4.1) all powers are principal ones.
Proof. From (4.1) we have

$$
\begin{equation*}
\alpha z \frac{F^{\prime}(z)}{F(z)}+(\gamma+1)=(\gamma-p \alpha+1)\left\{\frac{f(z)}{F(z)}\right\}^{\alpha} \tag{4.2}
\end{equation*}
$$

Let us choose a function $w(z)$ such that

$$
\begin{equation*}
z \frac{F^{\prime}(z)}{F(z)}=-p \frac{1+a w(z)}{1-b w(z)}, \quad w(0)=0 \tag{4.3}
\end{equation*}
$$

and $w(z)$ is either regular or meromorphic in D. From (4.2) and (4.3), we have

$$
\begin{equation*}
(\gamma-p \alpha+1)\left\{\frac{f(z)}{F(z)}\right\}^{\alpha}=\frac{(\gamma-p \alpha+1)-(a \alpha p+b+b \gamma) w(z)}{1-b w(z)} \tag{4.4}
\end{equation*}
$$

Logarithmic differentiation of (4.4) yields
(4.5) $z \frac{f^{\prime}(z)}{f(z)}+m$

$$
=\frac{\left[(m-p) k \cdots\{(m-p) \theta+(a p+b m) k\} w(z)+(a p+b m) \theta w^{2}(z)-(a+b) p z w^{\prime}(z)\right]}{\left[\kappa-\{a \alpha p+b(2-p \alpha)+2 b \gamma\} w(z)+b \theta w^{2}(z)\right]}
$$

where $k=\gamma-p \alpha+1$ and $\theta=a \alpha p+b+b \gamma$.
Let r^{*} be the distance of the pole of $w(z)$ nearest the origin. Then $w(z)$ is regular in $|z|<r_{0}=\min \left\{r^{*}, 1\right\}$. By Lemma 2.3, for
$|z| \leq r \quad\left(r<r_{0}\right)$, there is a point z_{0} such that

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right), k \geq 1 \tag{4.6}
\end{equation*}
$$

From (4.5) and (4.6), we have

$$
\begin{equation*}
z_{0} \frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}+m=\frac{N\left(z_{0}\right)}{D\left(z_{0}\right)}, \tag{4.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& N\left(z_{0}\right)=(m-p)(\gamma-p \alpha+1)-\{(m-p)(a \alpha p+b+b \gamma)+(a p+b m)(\gamma-p \alpha+1)+(a+b) p k\} w\left(z_{0}\right) \\
&+\{(a p+b m)(\alpha \alpha p+b+b \gamma)\} \omega^{2}\left(z_{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& D\left(z_{0}\right)=(\gamma-p \alpha+1)-\{a \alpha p+b(2-p \alpha)+2 b \gamma\} w\left(z_{0}\right)+b(a \alpha p+b+b \gamma) w^{2}\left(z_{0}\right) . \\
& \text { Now suppose that it were possible to have } M(r, w)=\max _{|z|=r}|\omega(z)| \text { for }
\end{aligned}
$$ some $r\left(r<r_{0}\right)$. At the point z_{0} where this occurred we would have $\left|\omega\left(z_{0}\right)\right|=1$. Then we have

$$
\begin{equation*}
\left|N\left(z_{0}\right)\right|^{2}-M^{2}\left|D\left(z_{0}\right)\right|^{2}=A-2 B \operatorname{Re}\left\{\omega\left(z_{0}\right)\right\} \tag{4.8}
\end{equation*}
$$

where

$$
A=k p(a+b)[k p(a+b)+2 M(\gamma-p \alpha+1)+2 M b(a \alpha p+b+b \gamma)]
$$

and

$$
B=k p(a+b) M[a \alpha p+b(2-p \alpha)+2 b \gamma] .
$$

From (4.8), we have

$$
\begin{equation*}
\left|N\left(z_{0}\right)\right|^{2}-M^{2}\left|D\left(z_{0}\right)\right|^{2}>0 \tag{4.9}
\end{equation*}
$$

provided $A \pm 2 B>0$.
Now

$$
\begin{aligned}
A+2 B & =k p(a+b)[k p(a+b)+2 M(1+b)\{\gamma(1+b)+(1-p a+b+a p \alpha)\}] \\
& >0
\end{aligned}
$$

provided $\gamma \geq(-a p \alpha-b+p \alpha-1) /(1+b)$ and

$$
\begin{aligned}
A-2 B & =k p(a+b)[k p(a+b)+2 M(1-b)\{\gamma(1-b)+(1-p \alpha-b-a p \alpha)\}] \\
& >0,
\end{aligned}
$$

provided $\quad \gamma \geq(a p \alpha+b+p \alpha-1) /(1-b)$.
Thus from (4.7) and (4.9), it follows that

$$
\left|z_{0} \frac{f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}+m\right|>M, \text { if } \quad \gamma \geq \frac{\alpha p(1+a)+b-1}{1-b} .
$$

But this is contrary to the fact that $f \in \Gamma_{p}(m, M)$. So we can not have $M(r, w)=1$. Thus $|w(z)| \neq 1$ in $|z|<r_{0}$. Since $|w(0)|=0$, $|w(z)|$ is continuous and $|w(z)| \neq 1$ in $|z|<r_{0}, w(z)$ can not have a pole at $|z|=r_{0}$. Therefore $w(z)$ is regular and $|w(z)|<1$, for z in D.

Hence from (4.3) and Lemma 2.2, $F \in \Gamma_{p}(m, M)$.
REMARK. Taking $p=1$, the undermentioned results follow from Theorem 4.l:
(i) for $\alpha=\gamma=1, m=M$ and $m \rightarrow \infty$, a result of Bajpai [1];
(ii) for $\alpha=1$, a result of Dwivedi [2];
(iii) a result of Dwivedi, Bhargava and Shukla [3].

THEOREM 4.2. If $f \in \Sigma_{p}(m, M)$ and $F(z)$ is defined by

$$
\begin{equation*}
F(z)=\frac{\gamma-p+1}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} f(t) d t=\frac{1}{z^{p}}+\ldots \tag{4.10}
\end{equation*}
$$

Then $F \in \Sigma_{p}(m, M)$ if $\gamma>\max \{(p(1+a)+b-1) /(1-b), p-1\}$.
In (4.10) all powers are principal ones.
Proof. We can write (4.10) as

$$
\begin{equation*}
z F^{\prime}(z)=\frac{\gamma-p+1}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} t f^{\prime}(t) d t \tag{4.11}
\end{equation*}
$$

Since $f \in \Sigma_{p}(m, M)$ if and only if $z f^{\prime}(z) /-p \in \Gamma_{p}(m, M)$ and hence from

Theorem 4.1, and (4.11), we get $z F^{\prime}(z) /-p$ belongs to $\Gamma_{p}(m, M)$. So $F(z)$ belongs to $\Sigma_{p}(m, M)$.

REMARK. Taking $p=1$, the undermentioned results follow from Theorem 4.2:
(i) for $m=M$ and $m \rightarrow \infty$, a result of Bajpai [1].
(ii) a result of Dwivedi [2].

References

[1] S.K. Bajpai, "A note on a class of meromorphic univalent functions", Rev. Roumaine Math. Pures Appl. 22 (1977), 295-297.
[2] S.P. Dwivedi, "Certain classes of univalent functions and generalizations of functions with bounded boundary rotation" (PhD thesis, Indian Institute of Technology, Kanpur, India, 1975).
[3] S.P. Dwivedi, G.P. Bhargava and S.L. Shukla, "On some classes of meromorphic univalent functions", Rev. Roumaine Math. Pures Appl. 25 (1980), 209-215.
[4] I.S. Jack, "Functions starlike and convex of order α ", J. London Math. Soc. (2) 3(1971), 469-474.
[5] Zbigniew Jerzy Jakubowski, "On the coefficients of starlike functions of some classes", Ann. PoZon. Math. 26 (1972), 305-313.
[6] Zeev Nehari, Conformal mappings (McGraw Hill, New York, Toronto, London, 1952).
[7] Herb Silverman, "Subclasses of starlike functions", Rev. Roumaine Math. Pures App Z. 23 (1978), 1093-1099.

Department of Mathematics,
Janta College,
Bakewar 206124,
Etawah (U.P.),
India.

