VANISHING THEOREMS FOR HYPERSURFACES IN THE UNIT SPHERE

HEZI LIN
School of Mathematics and Computer Science \& FJKLMAA,
Fujian Normal University, Fuzhou 350108, China
e-mail:lhz1@fjnu.edu.cn

(Received 9 February 2017; accepted 29 November 2017; first published online 28 January 2018)

Abstract

Let $M^{n}, n \geq 3$, be a complete hypersurface in \mathbb{S}^{n+1}. When M^{n} is compact, we show that M^{n} is a homology sphere if the squared norm of its traceless second fundamental form is less than $\frac{2(n-1)}{n}$. When M^{n} is non-compact, we show that there are no non-trivial L^{2} harmonic p-forms, $1 \leq p \leq n-1$, on M^{n} under pointwise condition. We also show the non-existence of L^{2} harmonic 1-forms on M^{n} provided that M^{n} is minimal and $\frac{n-1}{n}$-stable. This implies that M^{n} has only one end. Finally, we prove that there exists an explicit positive constant C such that if the total curvature of M^{n} is less than C, then there are no non-trivial L^{2} harmonic p-forms on M^{n} for all $1 \leq p \leq n-1$.

2010 Mathematics Subject Classification. 53C20, 53C42.

1. Introduction. Let M^{n} be a complete hypersurface in a Riemannian manifold N^{n+1}. Fix a point $x \in M$ and a local orthonormal frame $\left\{e_{1}, \ldots, e_{n+1}\right\}$ of N^{n+1} such that $\left\{e_{1}, \ldots, e_{n}\right\}$ are tangent fields at x. In the following, we shall use the following convention on the ranges of indices: $1 \leq i, j, k, \ldots \leq n$. The second fundamental form A is defined by $\langle A X, Y\rangle=\left\langle\bar{\nabla}_{X} Y, e_{n+1}\right\rangle$ for any tangent fields X, Y. Here, $\bar{\nabla}$ is the Riemannian connection of N^{n+1}. Denote by $h_{i j}=\left\langle A e_{i}, e_{j}\right\rangle$, then $|A|^{2}=\sum_{i, j}\left(h_{i j}\right)^{2}$, and the mean curvature vector H is defined by $H=\frac{1}{n} \sum_{i} h_{i i} e_{n+1}$. The traceless second fundamental form ϕ is defined by

$$
\phi(X, Y)=\langle A X, Y\rangle-\langle X, Y\rangle H .
$$

It is easy to see that

$$
|\phi|^{2}=|A|^{2}-n|H|^{2},
$$

which measures how much the immersion deviates from being totally umbilical. For $0<\delta \leq 1$, a minimal hypersurface M^{n} in the sphere \mathbb{S}^{n+1} is called δ-stable if

$$
\left.\delta \int_{M}\left(n+|A|^{2}\right) f^{2}\right) d v \leq \int_{M}|\nabla f|^{2} d v, \quad \forall f \in C_{0}^{\infty}(M)
$$

When $\delta=1, M$ is also said to be stable.
We recall that the classification of stable constant mean curvature surfaces in \mathbb{S}^{3} is completely known. It is well-known that there is no stable complete minimal surface in \mathbb{S}^{3} (this can be proved by Theorem 4 in [13]) and Theorem 5.1.1 in [16]). In
[6], Frensel proved that there is no weakly stable complete non-compact surface with constant mean curvature in \mathbb{S}^{3}. For the higher dimensional case, very little is known about complete non-compact stable hypersurfaces with constant mean curvature in the sphere $\mathbb{S}^{n+1}, n>2$.

In [2], Cao-Shen-Zhu showed that a complete immersed stable minimal hypersurface M^{n} in \mathbb{R}^{n+1} with $n \geq 3$ must have only one end. This result was generalized by Li-Wang [15], they proved that if a complete minimal hypersurface M^{n} in \mathbb{R}^{n+1} has finite index, then the dimension of the space of L^{2} harmonic 1-forms on M^{n} is finite, and M^{n} must have finitely many ends. In [19], Yun proved that for a complete-oriented minimal hypersurface M^{n} in \mathbb{R}^{n+1} with $n \geq 3$, if the L^{n}-norm of its second fundamental form is less than an explicit constant, then there are no non-trivial L^{2} harmonic 1forms on M^{n}, which implies that M^{n} has only one end. Fu-Xu [8] proved that if an oriented complete submanifold $M^{n}(n \geq 3)$ in \mathbb{R}^{n+m} has finite total curvature and finite total mean curvature, then the space of L^{2} harmonic 1-form on M^{n} has finite dimension and M^{n} has finitely many ends. Recently, Cavalcante-Mirandola-Vitório [4] proved vanishing and finiteness theorems for L^{2} harmonic 1-forms on a complete noncompact submanifold in a Hadamard manifold with finite total curvature, without any additional hypothesis on the mean curvature. Later, Zhu-Fang [20] obtained a generalized version of Cavalcante-Mirandola-Vitorio's results for submanifolds in \mathbb{S}^{n+m}. On the other hand, for the case of L^{2} harmonic p-forms of higher order, Tanno [17] proved that if M^{n} is a complete-oriented stable minimal hypersurface in \mathbb{R}^{n+1}, $n \leq 4$, then there exist no non-trivial L^{2} harmonic p-forms on M^{n} for all $0 \leq p \leq n$. In [11, 12], the author proved vanishing and finiteness theorems for L^{2} harmonic p-forms, $0 \leq p \leq n$, on submanifolds of Euclidean space, under pointwise or integral conditions.

In this paper, we investigate vanishing theorems for harmonic p-forms on complete submanifold of \mathbb{S}^{n+1}. We denote the space of all L^{2} harmonic p-forms on a Riemannian manifold M^{n} by $H^{p}\left(L^{2}(M)\right)$. These spaces have a (reduced) L^{2} cohomology interpretation. For more results concerning L^{2} harmonic p-forms on complete non-compact manifolds, one can consult [3].

Our main results in this paper are stated as follows.
Theorem 1.1. Let $M^{n}, n \geq 3$, be a compact hypersurface in \mathbb{S}^{n+1}. Assume that

$$
|\phi|^{2}<\frac{2(n-1)}{n}
$$

Then, the Betti number $\beta_{p}(M)=0$ for all $1 \leq p \leq n-1$, and M is a homology sphere.
Theorem 1.2. Let $M^{n}, n \geq 3$, be a complete non-compact hypersurface in \mathbb{S}^{n+1}. Assume that

$$
|\phi|^{2} \leq \frac{2 p(n-p)}{n}+\frac{1}{n} \min \{p, n-p\}|A|^{2}
$$

for $1 \leq p \leq n-1$. Then, every harmonic p-form ω on M with $\liminf _{r \rightarrow \infty} \frac{1}{r^{2}} \int_{B_{x_{0}(r)}}|\omega|^{2 \beta} d v=$ $0, \beta>1-K_{p}$, vanishes identically. In particular, $H^{p}\left(L^{2}(M)\right)=\{0\}$.

Theorem 1.3. Let $M^{n}, n \geq 3$, be a complete non-compact $\frac{n-1}{n}$-stable minimal hypersurface in \mathbb{S}^{n+1}. Then, $H^{1}\left(L^{2}(M)\right)=\{0\}$, and M has only one end.

Theorem 1.4. Let $M^{n}, n \geq 3$, be a complete non-compact hypersurface in \mathbb{S}^{n+1}. Then, there exists a positive constant C such that if

$$
\int_{M}|\phi|^{n} d v<C
$$

then every harmonic p-form $\omega, 1 \leq p \leq n-1$, on M with $\liminf _{r \rightarrow \infty} \frac{1}{r^{2}} \int_{B_{x_{0}}(r)}|\omega|^{2} d v=0$ vanishes identically. In particular, $H^{p}\left(L^{2}(M)\right)=\{0\}$ for all $1 \leq p \leq n-1$.

Remark 1.1. Zhu-Fang [20] and Zhu [21] proved vanishing theorems for L^{2} harmonic 1 -forms or 2 -forms on submanifolds of \mathbb{S}^{n+m}. Theorem 1.2 can be seen as generalizations of their results.
2. Estimates for the Weitzenböck curvature operator. Let M^{n} be an n-dimensional complete hypersurface in \mathbb{S}^{n+1}, and let Δ be the Hodge Laplace-Beltrami operator of M^{n} acting on the space of differential p-forms. Given two p-forms ω and θ, we define a pointwise inner product

$$
\langle\omega, \theta\rangle=\sum_{i_{1}, \ldots, i_{p}=1}^{n} \omega\left(e_{i_{1}}, \ldots, e_{i_{p}}\right) \theta\left(e_{i_{1}}, \ldots, e_{i_{p}}\right)
$$

Note that we omit the normalizing factor $1 / p!$. Denote by $R_{i j}$ and $R_{i j k l}$ the components of the Ricci tensor and the curvature tensor of M^{n}, respectively, then the Weitzenböck formula [18] gives

$$
\begin{align*}
\frac{1}{2} \Delta|\omega|^{2} & =|\nabla \omega|^{2}+\left\langle\theta^{k} \wedge i_{e_{j}} R\left(e_{k}, e_{j}\right) \omega, \omega\right\rangle \\
& =|\nabla \omega|^{2}+p W(\omega), \tag{2.1}
\end{align*}
$$

where

$$
\begin{equation*}
W(\omega)=R_{i j} \omega^{i i_{2} \ldots i_{p}} \omega_{i_{2} \ldots i_{p}}^{j}-\frac{p-1}{2} R_{i j k l} \omega^{i i_{3} \ldots i_{p}} \omega_{i_{3} \ldots i_{p}}^{k l} . \tag{2.2}
\end{equation*}
$$

Here, repeated indices are contracted and summed£< and the indices $1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq$ n are distinct with each other in the following discussion.

To estimate $W(\omega)$, noting that M^{n} has flat normal bundle, we can choose an orthonormal frame $\left\{e_{i}\right\}$ such that $h_{i j}=\lambda_{i} \delta_{i j}$. Then, the Gauss equation implies that

$$
R_{i j k l}=\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\lambda_{i} \lambda_{j}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)
$$

Substituting into (2.2) yields

$$
\begin{aligned}
W(\omega)= & (n-1) \delta_{i j} \omega^{i i_{2} \ldots i_{p}} \omega_{i_{2} \ldots i_{p}}^{j}-\frac{p-1}{2}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) \omega^{i i_{3} \ldots i_{p}} \omega_{i_{3} \ldots i_{p}}^{k l} \\
& +\lambda_{i} \lambda_{k}\left(\delta_{k k} \delta_{i j}-\delta_{i k} \delta_{j k}\right) \omega^{i i_{2} \ldots i_{p}} \omega_{i_{2} \ldots i_{p}}^{j}-\frac{p-1}{2} \lambda_{i} \lambda_{j}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) \omega^{i i_{3} \ldots i_{p}} \omega_{i_{3} \ldots i_{p}}^{k l} \\
= & (n-p)|\omega|^{2}+n H \lambda_{i} \omega^{i i_{2} \ldots i_{p}} \omega_{i_{2} \ldots i_{p}}^{i}-\lambda_{i}^{2} \omega^{i i_{2} \ldots i_{p}} \omega_{i_{2} \ldots i_{p}}^{i}-(p-1) \lambda_{i} \lambda_{j} \omega^{i i_{3} \ldots i_{p}} \omega_{i_{3} \ldots i_{p}}^{j}
\end{aligned}
$$

$$
\begin{align*}
= & (n-p)|\omega|^{2}+\frac{n H}{p}\left(\lambda_{i}+\lambda_{i_{2}}+\lambda_{i_{3}}+\cdots+\lambda_{i_{p}}\right) \omega^{i i_{2} \ldots i_{p}} \omega_{i_{2} \ldots i_{p}}^{i} \\
& -\frac{1}{p}\left(\lambda_{i}+\lambda_{j}+\lambda_{i_{3}}+\cdots+\lambda_{i_{p}}\right)^{2} \omega^{i j i_{3} \ldots i_{p}} \omega_{i_{3} \ldots i_{p}}^{i j} \\
= & (n-p)|\omega|^{2}+\frac{1}{p}\left[n H\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right)-\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right)^{2}\right] \omega^{i_{1} i_{2} \ldots i_{p}} \omega^{i_{1} i_{2} \ldots i_{p}} \\
\geq & (n-p)|\omega|^{2}+\frac{1}{p} \inf _{i_{1}, \ldots, i_{n}}\left[\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right)\left(\lambda_{i_{p+1}}+\cdots+\lambda_{i_{n}}\right)\right]|\omega|^{2} . \tag{2.3}
\end{align*}
$$

By a direct computation, we have

$$
\begin{align*}
\left(\lambda_{i_{1}}\right. & \left.+\cdots+\lambda_{i_{p}}\right)\left(\lambda_{i_{p+1}}+\cdots+\lambda_{i_{n}}\right) \\
& =\frac{1}{2}\left[\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{n}}\right)^{2}-\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right)^{2}-\left(\lambda_{i_{p+1}}+\cdots+\lambda_{i_{n}}\right)^{2}\right] \\
& \geq \frac{1}{2}\left(n^{2}|H|^{2}-\max \{p, n-p\}|A|^{2}\right) . \tag{2.4}
\end{align*}
$$

Substituting (2.4) into (2.3), and combining with (2.1) yields

$$
\begin{align*}
\frac{1}{2} \Delta|\omega|^{2} & \geq|\nabla \omega|^{2}+p(n-p)|\omega|^{2}+\frac{1}{2}\left(n^{2}|H|^{2}-\max \{p, n-p\}|A|^{2}\right)|\omega|^{2} \\
& =|\nabla \omega|^{2}+p(n-p)|\omega|^{2}-\frac{n}{2}|\phi|^{2}|\omega|^{2}+\frac{1}{2} \min \{p, n-p\}|A|^{2}|\omega|^{2} \tag{2.5}
\end{align*}
$$

Using Kato's inequality [1], it follows from (2.5) that

$$
\begin{equation*}
|\omega| \Delta|\omega| \geq K_{p}|\nabla| \omega| |^{2}+p(n-p)|\omega|^{2}-\frac{n}{2}|\phi|^{2}|\omega|^{2}+\frac{1}{2} \min \{p, n-p\}|A|^{2}|\omega|^{2}, \tag{2.6}
\end{equation*}
$$

where $K_{p}=\frac{1}{n-p}$ if $1 \leq p \leq n / 2$, and $K_{p}=\frac{1}{p}$ if $n / 2 \leq p \leq n-1$.
3. Proof of Theorems 1.1-1.3. By using the relation (2.5) for harmonic p-forms, we have the following general vanishing theorem.

Theorem 3.1. Let $M^{n}, n \geq 3$, be a compact hypersurface of \mathbb{S}^{n+1}. Assume that

$$
\begin{equation*}
|\phi|^{2} \leq \frac{2 p(n-p)}{n}+\frac{1}{n} \min \{p, n-p\}|A|^{2} \tag{3.1}
\end{equation*}
$$

for $1 \leq p \leq n-1$. Then, every harmonic p-form ω on M is parallel. Assume further that the inequality (3.1) is strict at a point, then the Betti number $\beta_{p}(M)=0$.

Proof. Given a harmonic p-form ω on M. By (2.5) and the hypothesis (3.1), we conclude that

$$
\begin{equation*}
\frac{1}{2} \Delta|\omega|^{2} \geq|\nabla \omega|^{2}+\left[p(n-p)+\left.\frac{1}{2} \min \{p, n-p\}|A|^{2}\left|-\frac{n}{2}\right| \phi\right|^{2}\right]|\omega|^{2} \geq 0 \tag{3.2}
\end{equation*}
$$

By the compactness of M and the maximum principle, $|\omega|=$ constant. Hence, (3.2) implies that $|\nabla \omega|=0$, which means that ω is parallel. If (3.1) is strict at some point $x_{0} \in M$, it follows from (3.2) that $\omega\left(x_{0}\right)=0$. Since ω is parallel, $\omega=0$ on M.

Since $\min _{1 \leq p \leq n-1} \frac{2 p(n-p)}{n}=\frac{2(n-1)}{n}$, the conclusion of Theorem 1.1 follows immediately from Theorem 3.1.

Proof of Theorem 1.2. Let ω be a harmonic p-form satisfying $\liminf _{r \rightarrow \infty} \frac{1}{r^{2}} \int_{B_{x_{0}}(r)}|\omega|^{2 \beta} d v=$ $0, \beta>1-K_{p}$. It follows from (2.6) and the hypothesis that

$$
\begin{align*}
|\omega| \Delta|\omega| & \geq K_{p}|\nabla| \omega| |^{2}+\left[p(n-p)+\frac{1}{2} \min \{p, n-p\}|A|^{2}-\frac{n}{2}|\phi|^{2}\right]|\omega|^{2} \\
& \geq K_{p}|\nabla| \omega| |^{2} \tag{3.3}
\end{align*}
$$

Following a calculation in [7], for any $\alpha>0$, we have

$$
\begin{align*}
|\omega|^{\alpha} \Delta|\omega|^{\alpha} & =|\omega|^{\alpha}\left[\left.\alpha(\alpha-1)|\omega|^{\alpha-2}|\nabla| \omega\right|^{2}+\alpha|\omega|^{\alpha-1} \Delta|\omega|\right] \\
& =\left.\left.\frac{\alpha-1}{\alpha}|\nabla| \omega\right|^{\alpha}\right|^{2}+\alpha|\omega|^{2 \alpha-2}|\omega| \Delta|\omega| \\
& \geq\left.\left.\left(1-\frac{1-K_{p}}{\alpha}\right)|\nabla| \omega\right|^{\alpha}\right|^{2} . \tag{3.4}
\end{align*}
$$

Let $\eta \in C_{0}^{\infty}(M)$. Multiplying both sides of (3.4) by $\eta^{2}|\omega|^{2 q \alpha}, q>0$, and integrating over M, we find

$$
\begin{aligned}
& {\left.\left.\left[2(q+1)-\frac{1-K_{p}}{\alpha}\right] \int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v} \\
& \left.\leq-\left.2 \int_{M} \eta|\omega|^{(2 q+1) \alpha}\langle\nabla \eta, \nabla| \omega\right|^{\alpha}\right\rangle d v \\
& \leq\left.\left.\epsilon \int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v+\frac{1}{\epsilon} \int_{M}|\omega|^{2(1+q) \alpha}|\nabla \eta|^{2} d v
\end{aligned}
$$

for any $\epsilon>0$, which gives

$$
\begin{equation*}
\left.\left.\left[2(q+1)-\frac{1-K_{p}}{\alpha}-\epsilon\right] \int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v \leq \frac{1}{\epsilon} \int_{M}|\omega|^{2(1+q) \alpha}|\nabla \eta|^{2} d v \tag{3.5}
\end{equation*}
$$

Let $\beta=2(q+1) \alpha$. Since $\beta>1-K_{p}$, we can choose $\epsilon>0$ small enough such that $2(q+1)-\frac{1-K_{p}}{\alpha}-\epsilon>0$. Hence, it follows from (3.5) that

$$
\begin{equation*}
\left.\left.\int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v \leq C \int_{M}|\omega|^{\beta}|\nabla \eta|^{2} d v \tag{3.6}
\end{equation*}
$$

for some constant $C>0$.
Fix a point $x_{0} \in M$ and let $\rho(x)$ be the geodesic distance on M from x_{0} to x. Let us choose $\eta_{r} \in C_{0}^{\infty}(M)$ satisfying

$$
\eta_{r}(x)= \begin{cases}1 & \text { if } \rho(x) \leq r \\ 0 & \text { if } 2 r<\rho(x)\end{cases}
$$

and

$$
\left|\nabla \eta_{r}\right|(x) \leq \frac{2}{r} \text { if } r<\rho(x) \leq 2 r
$$

for $r>0$. Substituting $\eta=\eta_{r}$ into (3.6) yields

$$
\left.\left.\int_{B_{x_{0}}(R)}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v \leq \frac{4 C}{R^{2}} \int_{B_{x_{0}}(2 R)}|\omega|^{\beta} d v .
$$

Letting $R \rightarrow \infty$, we conclude that

$$
\left.\left.\int_{M}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v \leq 0
$$

which gives $|\omega|=$ constant. Substituting this fact into (3.3), we find that $\omega=0$.
To prove Theorem 1.3, we first consider the following vanishing theorem for harmonic p-forms of general degrees.

Theorem 3.2. Let $M^{n}, n \geq 3$, be a complete non-compact minimal hypersurface immersed in \mathbb{S}^{n+1}. Assume that $\lambda_{1}\left(\Delta+\frac{p(n-p)}{n}|A|^{2}\right) \geq 0$ for $1 \leq p \leq n-1$. Then, every harmonic p-form ω on M with $\liminf _{r \rightarrow \infty} \frac{1}{r^{2}} \int_{B_{x_{0}}(r)}|\omega|^{2 \beta} d v=0,1-\sqrt{K_{p}}<\beta<1+\sqrt{K_{p}}$, vanishes identically. In particular, $H^{p}\left(L^{2}(M)\right)=\{0\}$.

Proof. Let $\omega \in H^{p}\left(L^{2}(M)\right)$ with $1 \leq p \leq n-1$. It follows from the assumption $H=0$ that

$$
\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}=-\left(\lambda_{i_{p+1}}+\cdots+\lambda_{i_{n}}\right) .
$$

Using the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
|A|^{2} & =\left(\lambda_{i_{1}}\right)^{2}+\cdots+\left(\lambda_{i_{p}}\right)^{2}+\left[\left(\lambda_{i_{p+1}}\right)^{2}+\cdots+\left(\lambda_{i_{n}}\right)^{2}\right] \\
& \geq \frac{1}{p}\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right)^{2}+\frac{1}{n-p}\left(\lambda_{i_{p+1}}+\cdots+\lambda_{i_{n}}\right)^{2} \\
& =\frac{n}{p(n-p)}\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right)^{2} .
\end{aligned}
$$

Thus,

$$
\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right)\left(\lambda_{i_{p+1}}+\cdots+\lambda_{i_{n}}\right)=-\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right)^{2} \geq-\frac{p(n-p)}{n}|A|^{2} .
$$

Substituting into (2.3) and combining (2.5), we conclude that

$$
|\omega| \Delta|\omega|+\frac{p(n-p)}{n}|A|^{2}|\omega|^{2} \geq K_{p}|\nabla| \omega| |^{2}+p(n-p)|\omega|^{2}
$$

for all $1 \leq p \leq n-2$. For any $\alpha>0$, we compute

$$
\begin{align*}
|\omega|^{\alpha} \Delta|\omega|^{\alpha} & =|\omega|^{\alpha}\left[\alpha(\alpha-1)|\omega|^{\alpha-2}|\nabla| \omega| |^{2}+\alpha|\omega|^{\alpha-1} \Delta|\omega|\right] \\
& \geq\left.\left.\left(1-\frac{1-K_{p}}{\alpha}\right)|\nabla| \omega\right|^{\alpha}\right|^{2}-\frac{\alpha p(n-p)}{n}|A|^{2}|\omega|^{2 \alpha}+\alpha p(n-p)|\omega|^{2 \alpha} . \tag{3.7}
\end{align*}
$$

Let $\eta \in C_{0}^{\infty}(M)$. Multiplying both sides of (3.7) by $\eta^{2}|\omega|^{2 q \alpha}, q>0$, and integrating over M, we get

$$
\begin{aligned}
& {\left.\left.\left[1-\frac{1-K_{P}}{\alpha}\right] \int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v+\alpha p(n-p) \int_{M} \eta^{2}|\omega|^{2(1+q) \alpha} d v} \\
& \quad \leq \int_{M} \eta^{2}|\omega|^{(2 q+1) \alpha} \Delta|\omega|^{\alpha} d v+\frac{\alpha p(n-p)}{n} \int_{M} \eta^{2}|A|^{2}|\omega|^{2(1+q) \alpha} d v
\end{aligned}
$$

$$
\begin{aligned}
= & \left.-\left.\left.(2 q+1) \int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v-\left.2 \int_{M} \eta|\omega|^{(2 q+1) \alpha}\langle\nabla \eta, \nabla| \omega\right|^{\alpha}\right\rangle d v \\
& +\frac{\alpha p(n-p)}{n} \int_{M} \eta^{2}|A|^{2}|\omega|^{2(1+q) \alpha} d v,
\end{aligned}
$$

which gives

$$
\begin{align*}
& {\left.\left.\left[2(q+1)-\frac{1-K_{p}}{\alpha}\right] \int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v+\alpha p(n-p) \int_{M} \eta^{2}|\omega|^{2(1+q) \alpha} d v } \\
\leq & \left.-\left.2 \int_{M} \eta|\omega|^{(2 q+1) \alpha}\langle\nabla \eta, \nabla| \omega\right|^{\alpha}\right\rangle d v+\frac{\alpha p(n-p)}{n} \int_{M} \eta^{2}|A|^{2}|\omega|^{2(1+q) \alpha} d v . \tag{3.8}
\end{align*}
$$

On the other hand, the variational principle for $\lambda_{1}\left(\Delta+\frac{p(n-p)}{n}|A|^{2}\right) \geq 0$ asserts the validity of the following inequality

$$
\begin{equation*}
\frac{p(n-p)}{n} \int_{M}|A|^{2} f^{2} d v \leq \int_{M}|\nabla f|^{2} d v, \quad \forall f \in C_{0}^{\infty}(M) \tag{3.9}
\end{equation*}
$$

By choosing $f=\eta|\omega|^{(1+q) \alpha}$ in (3.9), we have

$$
\begin{align*}
\frac{p(n-p)}{n} \int_{M} \eta^{2}|A|^{2}|\omega|^{2(1+q) \alpha} d v \leq & \left.\left.(1+q)^{2} \int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v+\int_{M}|\omega|^{2(1+q) \alpha}|\nabla \eta|^{2} d v \\
& \left.+\left.2(1+q) \int_{M} \eta|\omega|^{(1+2 q) \alpha}\langle\nabla \eta, \nabla| \omega\right|^{\alpha}\right\rangle d v \tag{3.10}
\end{align*}
$$

Substituting (3.10) into (3.8) yields

$$
\begin{align*}
& \left.\left.\frac{1}{\alpha}\left[2(q+1) \alpha-\left(1-K_{p}\right)-(1+q)^{2} \alpha^{2}\right] \int_{M} \eta^{2}|\omega|^{2 q \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v \\
& \left.\leq\left. 2[(1+q) \alpha-1] \int_{M} \eta|\omega|^{(2 q+1) \alpha}\langle\nabla \eta, \nabla| \omega\right|^{\alpha}\right\rangle d v+\alpha \int_{M}|\omega|^{2(1+q) \alpha}|\nabla \eta|^{2} d v \\
& \quad-\alpha p(n-p) \int_{M} \eta^{2}|\omega|^{2(1+q) \alpha} d v \tag{3.11}
\end{align*}
$$

Take $\beta=(1+q) \alpha$. Using the Cauchy-Schwarz inequality, it follows from (3.11) that

$$
\begin{align*}
& \left.\left.\frac{1}{\alpha}\left[2 \beta-\left(1-K_{p}\right)-\beta^{2}-|\beta-1| \epsilon\right] \int_{M} \eta^{2}|\omega|^{2 \beta-2 \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v \\
& \quad \leq\left(\alpha+\frac{|\beta-1|}{\epsilon}\right) \int_{M}|\omega|^{2 \beta}|\nabla \eta|^{2} d v-\alpha p(n-p) \int_{M} \eta^{2}|\omega|^{2 \beta} d v \tag{3.12}
\end{align*}
$$

for all $\epsilon>0$. Since $1-\sqrt{K_{p}}<\beta<1+\sqrt{K_{p}}$, we choose sufficiently small $\epsilon>0$ such that $2 \beta-\left(1-K_{p}\right)-\beta^{2}-|\beta-1| \epsilon>0$. Hence, it follows from (3.12) that

$$
\begin{equation*}
\left.\left.C_{1} \int_{M} \eta^{2}|\omega|^{2 \beta-2 \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v \leq C_{2} \int_{M}|\omega|^{2 \beta}|\nabla \eta|^{2} d v-\alpha p(n-p) \int_{M} \eta^{2}|\omega|^{2 \beta} d v \tag{3.13}
\end{equation*}
$$

for some constants $C_{1}>0$ and $C_{2}>0$.

Let $\eta_{r} \in C_{0}^{\infty}(M)$ be the cut-off function defined as before. Substituting $\eta=\eta_{r}$ into (3.13) yields

$$
\begin{aligned}
\left.\left.C_{1} \int_{B_{x_{0}}(r)}|\omega|^{2 \beta-2 \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v & \leq\left.\left. C_{1} \int_{M} \eta^{2}|\omega|^{2 \beta-2 \alpha}|\nabla| \omega\right|^{\alpha}\right|^{2} d v \\
& \leq \frac{4 C_{2}}{r^{2}} \int_{B_{x_{0}}(2 r)}|\omega|^{2 \beta} d v-\alpha p(n-p) \int_{B_{x_{0}}(r)}|\omega|^{2 \beta} d v
\end{aligned}
$$

Since $\liminf _{r \rightarrow \infty} \frac{1}{r^{2}} \int_{B_{x_{0}}(r)}|\omega|^{2 \beta} d v=0$, letting $\quad r \rightarrow \infty \quad$ in the above inequality, we have $\omega=0$.

Let us recall that an end E of a complete manifold M is non-parabolic if E admits a positive Green's function with Neumann boundary condition. To discuss the number of ends of complete submanifolds, we recall the following basic lemma.

Lemma 3.1 [14]. Let M be a complete Riemannian manifold. Let $\mathcal{H}_{D}^{0}(M)$ be the space of bounded harmonic functions with finite Dirichlet integral and denote by $H^{1}\left(L^{2}(M)\right)$ the space of L^{2} harmonic 1-forms on M. Then, the number of non-parabolic ends of M is bounded from above by $\operatorname{dim} \mathcal{H}_{D}^{0}(M) \leq \operatorname{dim} H^{1}\left(L^{2}(M)\right)+1$.

By using Theorem 3.2 together with Lemma 3.1, we now give the proof of Theorem 1.3.

Proof of Theorem 1.3. Since $\frac{n-1}{n}$-stability implies $\lambda_{1}\left(\Delta+\frac{n-1}{n}|A|^{2}\right) \geq 0$, by Theorem 3.2, we have $H^{1}\left(L^{2}(M)\right)=\{0\}$. It also follows from $\frac{n-1}{n}$-stability that $\lambda_{1}(M) \geq n-1$, which implies that each end E of M satisfies a Sobolev type inequality of the form as

$$
\int_{E} f^{2} d v \leq \frac{1}{n-1} \int_{E}|d f|^{2} d v, \quad \forall f \in C_{0}^{\infty}(M)
$$

Since M is minimal, by Proposition 2.1 of [5], each end of M has infinite volume. Hence, according to Corollary 4 in [15], each end of M is non-parabolic. Therefore, by Lemma 3.1, M must have only one end.
4. Proofs of Theorem 1.4. Obviously, through the composition of isometric immersions

$$
M^{n} \rightarrow \mathbb{S}^{n+1} \rightarrow \mathbb{R}^{n+2}
$$

M^{n} can be considered as a submanifold in \mathbb{R}^{n+2}. Denote by \bar{H} the mean curvature vector of M^{n} in \mathbb{R}^{n+2}, then we have

$$
\begin{equation*}
|\bar{H}|^{2}=|H|^{2}+1 \tag{4.1}
\end{equation*}
$$

It is known that the following Sobolev inequality due to Hoffman and Spruck [9]

$$
\begin{equation*}
\left(\int_{M}|f|^{\frac{2 n}{n-2}} d v\right)^{\frac{n-2}{n}} \leq c(n) \int_{M}\left(|\nabla f|^{2}+|\bar{H}|^{2} f^{2}\right) d v, \quad \forall f \in C_{0}^{\infty}(M) \tag{4.2}
\end{equation*}
$$

holds on M^{n} for some $c(n)>0$. Substituting (4.1) into (4.2) yields

$$
\begin{equation*}
\left(\int_{M}|f|^{\frac{2 n}{n-2}} d v\right)^{\frac{n-2}{n}} \leq c(n) \int_{M}|\nabla f|^{2} d v+c(n) \int_{M}\left(1+|H|^{2}\right) f^{2} d v \tag{4.3}
\end{equation*}
$$

for any $f \in C_{0}^{\infty}(M)$.
Now, we are in the position to prove Theorem 1.4. It is obvious that Theorem 1.4 can be deduced immediately from the following result.

Theorem 4.1. Let $M^{n}, n \geq 3$, be a complete non-compact hypersurface of \mathbb{S}^{n+1}. Assume that

$$
\begin{equation*}
\left(\int_{M}|\phi|^{n} d v\right)^{\frac{2}{n}}<\frac{2\left(1+K_{p}\right)}{n c(n)} \tag{4.4}
\end{equation*}
$$

for $1 \leq p \leq n-1$. Then, every harmonic p-form ω on M with $\liminf _{r \rightarrow \infty} \frac{1}{r^{2}} \int_{B_{x_{0}}(r)}|\omega|^{2} d v=0$ vanishes identically. In particular, $H^{p}\left(L^{2}(M)\right)=\{0\}$.

Proof. Given a harmonic p-form ω satisfying $\liminf _{r \rightarrow \infty} \frac{1}{r^{2}} \int_{B_{x_{0}}(r)}|\omega|^{2} d v=0$. Let $\eta \in$ $C_{0}^{\infty}(M)$ be a smooth function on M^{n} with compact support. Multiplying (2.6) by η^{2} and integrating over M^{n}, we obtain

$$
\begin{align*}
\int_{M} \eta^{2}|\omega| \Delta|\omega| d v \geq & K_{p} \int_{M} \eta^{2}|\nabla| \omega| |^{2} d v+p(n-p) \int_{M} \eta^{2}|\omega|^{2} d v-\frac{n}{2} \int_{M}|\phi|^{2} \eta^{2}|\omega|^{2} d v \\
& +\frac{1}{2} \min \{p, n-p\} \int_{M}|A|^{2} \eta^{2}|\omega|^{2} d v \tag{4.5}
\end{align*}
$$

Integrating by parts and using the Cauchy-Schwarz inequality, we deduce that

$$
\begin{align*}
\int_{M} \eta^{2}|\omega| \Delta|\omega| d v & =-2 \int_{M} \eta|\omega|\langle\nabla \eta, \nabla| \omega| \rangle d v-\int_{M} \eta^{2}|\nabla| \omega| |^{2} d v \\
& \leq(b-1) \int_{M} \eta^{2}|\nabla| \omega| |^{2} d v+\frac{1}{b} \int_{M}|\omega|^{2}|\nabla \eta|^{2} d v \tag{4.6}
\end{align*}
$$

for all $b>0$. Using (4.3) together with the Hölder and Cauchy-Schwarz inequalities, we have

$$
\begin{align*}
\int_{M}|\phi|^{2} \eta^{2}|\omega|^{2} d v \leq & \left(\int_{\operatorname{supp}(\eta)}|\phi|^{n} d v\right)^{\frac{2}{n}}\left(\int_{M}|\eta| \omega \left\lvert\, \frac{2 n}{n^{2-2}} d v\right.\right)^{\frac{n-2}{n}} \\
\leq & c(n)\left(\int_{\operatorname{supp}(\eta)}|\phi|^{n} d v\right)^{\frac{2}{n}} \int_{M}\left[|\nabla(\eta|\omega|)|^{2}+\left(1+|H|^{2}\right) \eta^{2}|\omega|^{2}\right] d v \\
= & E(\eta) \int_{M}\left[\left.\eta^{2}|\nabla| \omega\right|^{2}+|\omega|^{2}|\nabla \eta|^{2}+\left(1+|H|^{2}\right) \eta^{2}|\omega|^{2}\right] d v \\
& +2 E(\eta) \int_{M} \eta|\omega|\langle\nabla \eta, \nabla| \omega| \rangle d v \\
\leq & E(\eta)(1+\gamma) \int_{M} \eta^{2}|\nabla| \omega| |^{2} d v+E(\eta)\left(1+\frac{1}{\gamma}\right) \int_{M}|\omega|^{2}|\nabla \eta|^{2} d v \\
& +E(\eta) \int_{M}\left(1+|H|^{2}\right) \eta^{2}|\omega|^{2} d v . \tag{4.7}
\end{align*}
$$

for all $\gamma>0$, where $E(\eta)=c(n)\left(\int_{\operatorname{Supp}(\eta)}|\phi|^{n} d v\right)^{\frac{2}{n}}$. Substituting (4.6) and (4.7) into (4.5), we conclude that

$$
\begin{align*}
C \int_{M} \eta^{2}|\nabla| \omega| |^{2} d v \leq & D \int_{M}|\omega|^{2}|\nabla \eta|^{2} d v+\frac{n}{2} E(\eta) \int_{M}\left(1+|H|^{2}\right) \eta^{2}|\omega|^{2} d v \\
& -\frac{1}{2} \min \{p, n-p\} \int_{M}|A|^{2} \eta^{2}|\omega|^{2} d v-p(n-p) \int_{M} \eta^{2}|\omega|^{2} d v \tag{4.8}
\end{align*}
$$

where

$$
\begin{equation*}
C=1+K_{p}-b-\frac{n}{2} E(\eta)(1+\gamma) \text { and } \quad D=\frac{1}{b}+\frac{n(1+\gamma)}{2 \gamma} E(\eta) \tag{4.9}
\end{equation*}
$$

It follows from (4.4) that

$$
\begin{equation*}
E(\eta)=c(n)\left(\int_{\operatorname{supp}(\eta)}|\phi|^{n} d v\right)^{\frac{2}{n}}<\frac{2\left(1+K_{p}\right)}{n} \tag{4.10}
\end{equation*}
$$

which implies that $1+K_{p}-\frac{n E(\eta)}{2}>0$. Hence, we can choose γ and b small enough such that

$$
C=1+K_{p}-b-\frac{n}{2} E(\eta)(1+\gamma)>0 .
$$

Fix a point $x_{0} \in M$ and let $\rho(x)$ be the geodesic distance on M from x_{0} to x. Let us choose $\eta \in C_{0}^{\infty}(M)$ satisfying

$$
\eta(x)= \begin{cases}1 & \text { if } \rho(x) \leq r \\ 0 & \text { if } 2 r<\rho(x)\end{cases}
$$

and

$$
|\nabla \eta|(x) \leq \frac{2}{r} \text { if } r<\rho(x) \leq 2 r
$$

for $r>0$. By (4.8), we have

$$
\begin{align*}
0 \leq & C \int_{B_{x_{0}}(r)} \eta^{2}|\nabla| \omega| |^{2} d v \\
\leq & D \int_{M}|\omega|^{2}|\nabla \eta|^{2} d v+\frac{n}{2} E(\eta) \int_{M}\left(1+|H|^{2}\right) \eta^{2}|\omega|^{2} d v \\
& -\frac{1}{2} \min \{p, n-p\} \int_{M}|A|^{2} \eta^{2}|\omega|^{2} d v-p(n-p) \int_{M} \eta^{2}|\omega|^{2} d v \\
\leq & \frac{4 D}{r^{2}} \int_{M}|\omega|^{2} d v+\int_{M}\left[\frac{n}{2} E(\eta)|H|^{2}-\frac{1}{2} \min \{p, n-p\}|A|^{2}\right] \eta^{2}|\omega|^{2} d v \\
& +\left[\frac{n}{2} E(\eta)-p(n-p)\right] \int_{M} \eta^{2}|\omega|^{2} d v . \tag{4.11}
\end{align*}
$$

It follows from (4.10) that

$$
\frac{n}{2} E(\eta)|H|^{2}-\frac{1}{2} \min \{p, n-p\}|A|^{2} \leq \frac{1}{2}(E(\eta)-\min \{p, n-p\})|A|^{2} \leq 0
$$

and

$$
\frac{n}{2} E(\eta)-p(n-p)<0
$$

Letting $r \rightarrow \infty$ in (4.11), and noting that $\liminf _{r \rightarrow \infty} \frac{1}{r^{2}} \int_{B_{x_{0}}(r)}|\omega|^{2} d v=0$, we have $\omega=0$. \square
Acknowledgements. This work was supported by the NSFC under Grant nos. 11326045 and 11401099.

REFERENCES

1. D. M. J. Calderbank, P. Gauduchon and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173(1) (2000), 214-255.
2. H. D. Cao, Y. Shen and S. H. Zhu, The structure of stable minimal hypersurfaces in R^{n+1}, Math. Res. Lett. 4(5) (1997), 637-644.
3. G. Carron, L^{2} harmonic forms on non-compact Riemannian manifolds, Proceedings of the Centre for Mathematics and Its Applications, vol. 40 (Australian National University, 2002), 49-59.
4. M. P. Cavalcante, H. Mirandola and F. Vitório, L^{2}-harmonic 1 -forms on submanifolds with finite total curvature, J. Geom. Anal. 24 (2014), 205-222.
5. X. Cheng, L. F. Cheung and D. T. Zhou, The structure of weakly stable constant mean curvature hypersurfaces, Tohoku Math. J. 60(1) (2008), 101-121.
6. K. Frensel, Stable complete surfaces with constant mean curvature, Bull. Braz. Math. Soc. 27(2) (1996), 129-144.
7. H. P. Fu and Z. Q. Li, The structure of complete manifolds with weighted Poincaré inequalities and minimal hypersurfaces, Int. J. Math. 21 (2010), 1-8.
8. H. P. Fu and H. W. Xu, Total curvature and L^{2} harmonic 1-forms on complete submanifolds in space forms, Geom. Dedicata. 144 (2010), 129-140.
9. D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure. Appl. Math. 27 (1974), 715-727.
10. P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. École Norm. Super. 13(4) (1980), 451-468.
11. H. Z. Lin, Vanishing theorems for L^{2} harmonic forms on complete submanifolds in Euclidean space, J. Math. Anal. Appl. 425(2) (2015), 774-787.
12. H. Z. Lin, On the structure of submanifolds in Euclidean space with flat normal bundle, Results Math. 68 (2015), 313-329.
13. F. Lopez and A. Ros, Complete minimal surfaces with index one and stable constant mean curvature surfaces, Comment. Math. Helv. 64 (1989), $34-43$.
14. P. Li and L. F. Tam, Harmonic functions and the structure of complete manifolds, J. Diff. Geom. 35(2) (1992), 359-383.
15. P. Li and J. P. Wang, Minimal hypersurfaces with finite index, Math. Res. Lett. 9(1) (2002), 95-103.
16. J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968), 62-105.
17. S. Tanno, L^{2} harmonic forms and stablity of minimal hypersurfaces, J. Math. Soc. Jpn. 48 (1996), 761-768.
18. H. H. Wu, The Bochner technique in differential geometry, Math. Rep. 3(i-xii) (1988), 289-538.
19. G. Yun, Total scalar curvature and L^{2} harmonic 1-forms on a minimal hypersurface in Euclidean space, Geom. Dedicata. 89 (2002), 135-141.
20. P. Zhu and S. W. Fang, A gap theorem on submanifolds with finite total curvature in spheres, J. Math. Anal. Appl. 413 (2014), 195-201.
21. P. Zhu, Gap theorems on hypersurfaces in spheres, J. Math. Anal. Appl. 430(2) (2015), 742-754.
