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Abstract. Let Mn, n ≥ 3, be a complete hypersurface in �n+1. When Mn is
compact, we show that Mn is a homology sphere if the squared norm of its traceless
second fundamental form is less than 2(n−1)

n . When Mn is non-compact, we show that
there are no non-trivial L2 harmonic p-forms, 1 ≤ p ≤ n − 1, on Mn under pointwise
condition. We also show the non-existence of L2 harmonic 1-forms on Mn provided
that Mn is minimal and n−1

n -stable. This implies that Mn has only one end. Finally, we
prove that there exists an explicit positive constant C such that if the total curvature
of Mn is less than C, then there are no non-trivial L2 harmonic p-forms on Mn for all
1 ≤ p ≤ n − 1.

2010 Mathematics Subject Classification. 53C20, 53C42.

1. Introduction. Let Mn be a complete hypersurface in a Riemannian manifold
Nn+1. Fix a point x ∈ M and a local orthonormal frame {e1, . . . , en+1} of Nn+1 such
that {e1, . . . , en} are tangent fields at x. In the following, we shall use the following
convention on the ranges of indices: 1 ≤ i, j, k, . . . ≤ n. The second fundamental form
A is defined by 〈AX, Y〉 = 〈∇X Y, en+1〉 for any tangent fields X , Y . Here, ∇ is the
Riemannian connection of Nn+1. Denote by hij = 〈Aei, ej〉, then |A|2 = ∑

i,j(hij)2, and
the mean curvature vector H is defined by H = 1

n

∑
ihiien+1. The traceless second

fundamental form φ is defined by

φ(X, Y ) = 〈AX, Y〉 − 〈X, Y〉H.

It is easy to see that

|φ|2 = |A|2 − n|H|2,

which measures how much the immersion deviates from being totally umbilical. For
0 < δ ≤ 1, a minimal hypersurface Mn in the sphere �n+1 is called δ-stable if

δ

∫
M

(n + |A|2)f 2)dv ≤
∫

M
|∇f |2dv, ∀f ∈ C∞

0 (M).

When δ = 1, M is also said to be stable.
We recall that the classification of stable constant mean curvature surfaces in

�3 is completely known. It is well-known that there is no stable complete minimal
surface in �3 (this can be proved by Theorem 4 in [13]) and Theorem 5.1.1 in [16]). In
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[6], Frensel proved that there is no weakly stable complete non-compact surface with
constant mean curvature in �3. For the higher dimensional case, very little is known
about complete non-compact stable hypersurfaces with constant mean curvature in
the sphere �n+1, n > 2.

In [2], Cao–Shen–Zhu showed that a complete immersed stable minimal
hypersurface Mn in �n+1 with n ≥ 3 must have only one end. This result was generalized
by Li–Wang [15], they proved that if a complete minimal hypersurface Mn in �n+1 has
finite index, then the dimension of the space of L2 harmonic 1-forms on Mn is finite,
and Mn must have finitely many ends. In [19], Yun proved that for a complete-oriented
minimal hypersurface Mn in �n+1 with n ≥ 3, if the Ln-norm of its second fundamental
form is less than an explicit constant, then there are no non-trivial L2 harmonic 1-
forms on Mn, which implies that Mn has only one end. Fu–Xu [8] proved that if
an oriented complete submanifold Mn (n ≥ 3) in �n+m has finite total curvature and
finite total mean curvature, then the space of L2 harmonic 1-form on Mn has finite
dimension and Mn has finitely many ends. Recently, Cavalcante–Mirandola–Vitório [4]
proved vanishing and finiteness theorems for L2 harmonic 1-forms on a complete non-
compact submanifold in a Hadamard manifold with finite total curvature, without
any additional hypothesis on the mean curvature. Later, Zhu–Fang [20] obtained a
generalized version of Cavalcante–Mirandola–Vitorio’s results for submanifolds in
�n+m. On the other hand, for the case of L2 harmonic p-forms of higher order, Tanno
[17] proved that if Mn is a complete-oriented stable minimal hypersurface in �n+1,
n ≤ 4, then there exist no non-trivial L2 harmonic p-forms on Mn for all 0 ≤ p ≤ n. In
[11, 12], the author proved vanishing and finiteness theorems for L2 harmonic p-forms,
0 ≤ p ≤ n, on submanifolds of Euclidean space, under pointwise or integral conditions.

In this paper, we investigate vanishing theorems for harmonic p-forms on
complete submanifold of �n+1. We denote the space of all L2 harmonic p-forms
on a Riemannian manifold Mn by Hp(L2(M)). These spaces have a (reduced) L2-
cohomology interpretation. For more results concerning L2 harmonic p-forms on
complete non-compact manifolds, one can consult [3].

Our main results in this paper are stated as follows.

THEOREM 1.1. Let Mn, n ≥ 3, be a compact hypersurface in �n+1. Assume that

|φ|2 <
2(n − 1)

n
.

Then, the Betti number βp(M) = 0 for all 1 ≤ p ≤ n − 1, and M is a homology sphere.

THEOREM 1.2. Let Mn, n ≥ 3, be a complete non-compact hypersurface in �n+1.
Assume that

|φ|2 ≤ 2p(n − p)
n

+ 1
n

min{p, n − p}|A|2

for 1 ≤ p ≤ n − 1. Then, every harmonic p-form ω on M with lim inf
r→∞

1
r2

∫
Bx0 (r) |ω|2βdv =

0, β > 1 − Kp, vanishes identically. In particular, Hp(L2(M)) = {0}.

THEOREM 1.3. Let Mn, n ≥ 3, be a complete non-compact n−1
n -stable minimal

hypersurface in �n+1. Then, H1(L2(M)) = {0}, and M has only one end.
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THEOREM 1.4. Let Mn, n ≥ 3, be a complete non-compact hypersurface in �n+1.
Then, there exists a positive constant C such that if∫

M
|φ|ndv < C,

then every harmonic p-form ω, 1 ≤ p ≤ n − 1, on M with lim inf
r→∞

1
r2

∫
Bx0 (r) |ω|2dv = 0

vanishes identically. In particular, Hp(L2(M)) = {0} for all 1 ≤ p ≤ n − 1.

REMARK 1.1. Zhu–Fang [20] and Zhu [21] proved vanishing theorems for L2

harmonic 1-forms or 2-forms on submanifolds of �n+m. Theorem 1.2 can be seen as
generalizations of their results.

2. Estimates for the Weitzenböck curvature operator. Let Mn be an n-dimensional
complete hypersurface in �n+1, and let � be the Hodge Laplace–Beltrami operator of
Mn acting on the space of differential p-forms. Given two p-forms ω and θ , we define
a pointwise inner product

〈ω, θ〉 =
n∑

i1,...,ip=1

ω(ei1 , . . . , eip )θ (ei1, . . . , eip ).

Note that we omit the normalizing factor 1/p!. Denote by Rij and Rijkl the components
of the Ricci tensor and the curvature tensor of Mn, respectively, then the Weitzenböck
formula [18] gives

1
2
�|ω|2 = |∇ω|2 + 〈θk ∧ iej R(ek, ej)ω,ω〉

= |∇ω|2 + pW (ω), (2.1)

where

W (ω) = Rijω
ii2...ipωj

i2...ip − p − 1
2

Rijklω
iji3...ipωkl

i3...ip . (2.2)

Here, repeated indices are contracted and summed£‹ and the indices 1 ≤ i1, i2, . . . , in ≤
n are distinct with each other in the following discussion.

To estimate W (ω), noting that Mn has flat normal bundle, we can choose
an orthonormal frame {ei} such that hij = λiδij. Then, the Gauss equation implies
that

Rijkl = (δikδjl − δilδjk) + λiλj(δikδjl − δilδjk).

Substituting into (2.2) yields

W (ω) = (n − 1)δijω
ii2...ipωj

i2...ip − p − 1
2

(δikδjl − δilδjk)ωiji3...ipωkl
i3...ip

+ λiλk(δkkδij − δikδjk)ωii2...ipωj
i2...ip − p − 1

2
λiλj(δikδjl − δilδjk)ωiji3...ipωkl

i3...ip

= (n − p)|ω|2 + nHλiω
ii2...ipωi

i2...ip − λ2
i ω

ii2...ipωi
i2...ip − (p − 1)λiλjω

iji3...ipωij
i3...ip
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= (n − p)|ω|2 + nH
p

(λi + λi2 + λi3 + · · · + λip )ωii2...ipωi
i2...ip

− 1
p

(λi + λj + λi3 + · · · + λip )2ωiji3...ipωij
i3...ip

= (n − p)|ω|2 + 1
p

[
nH(λi1 + · · · + λip ) − (λi1 + · · · + λip )2]ωi1i2...ipωi1i2...ip

≥ (n − p)|ω|2 + 1
p

inf
i1,...,in

[
(λi1 + · · · + λip )(λip+1 + · · · + λin )

]|ω|2. (2.3)

By a direct computation, we have

(λi1 + · · · + λip )(λip+1 + · · · + λin )

= 1
2

[
(λi1 + · · · + λin )2 − (λi1 + · · · + λip )2 − (λip+1 + · · · + λin )2]

≥ 1
2

(
n2|H|2 − max{p, n − p}|A|2) . (2.4)

Substituting (2.4) into (2.3), and combining with (2.1) yields

1
2
�|ω|2 ≥ |∇ω|2 + p(n − p)|ω|2 + 1

2

(
n2|H|2 − max{p, n − p}|A|2) |ω|2

= |∇ω|2 + p(n − p)|ω|2 − n
2
|φ|2|ω|2 + 1

2
min{p, n − p}|A|2|ω|2. (2.5)

Using Kato’s inequality [1], it follows from (2.5) that

|ω|�|ω| ≥ Kp|∇|ω||2 + p(n − p)|ω|2 − n
2
|φ|2|ω|2 + 1

2
min{p, n − p}|A|2|ω|2, (2.6)

where Kp = 1
n−p if 1 ≤ p ≤ n/2, and Kp = 1

p if n/2 ≤ p ≤ n − 1.

3. Proof of Theorems 1.1–1.3. By using the relation (2.5) for harmonic p-forms,
we have the following general vanishing theorem.

THEOREM 3.1. Let Mn, n ≥ 3, be a compact hypersurface of �n+1. Assume that

|φ|2 ≤ 2p(n − p)
n

+ 1
n

min{p, n − p}|A|2 (3.1)

for 1 ≤ p ≤ n − 1. Then, every harmonic p-form ω on M is parallel. Assume further that
the inequality (3.1) is strict at a point, then the Betti number βp(M) = 0.

Proof. Given a harmonic p-form ω on M. By (2.5) and the hypothesis (3.1), we
conclude that

1
2
�|ω|2 ≥ |∇ω|2 +

[
p(n − p) + 1

2
min{p, n − p}|A|2| − n

2
|φ|2

]
|ω|2 ≥ 0. (3.2)

By the compactness of M and the maximum principle, |ω| = constant. Hence, (3.2)
implies that |∇ω| = 0, which means that ω is parallel. If (3.1) is strict at some point
x0 ∈ M, it follows from (3.2) that ω(x0) = 0. Since ω is parallel, ω = 0 on M. �
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Since min
1≤p≤n−1

2p(n−p)
n = 2(n−1)

n , the conclusion of Theorem 1.1 follows immediately

from Theorem 3.1.

Proof of Theorem 1.2. Let ω be a harmonic p-form satisfying lim inf
r→∞

1
r2

∫
Bx0 (r) |ω|2βdv =

0, β > 1 − Kp. It follows from (2.6) and the hypothesis that

|ω|�|ω| ≥ Kp|∇|ω||2 +
[
p(n − p) + 1

2
min{p, n − p}|A|2 − n

2
|φ|2

]
|ω|2

≥ Kp|∇|ω||2. (3.3)

Following a calculation in [7], for any α > 0, we have

|ω|α�|ω|α = |ω|α[
α(α − 1)|ω|α−2|∇|ω||2 + α|ω|α−1�|ω|]

= α − 1
α

|∇|ω|α|2 + α|ω|2α−2|ω|�|ω|

≥
(

1 − 1 − Kp

α

)
|∇|ω|α|2. (3.4)

Let η ∈ C∞
0 (M). Multiplying both sides of (3.4) by η2|ω|2qα, q > 0, and integrating

over M, we find[
2(q + 1) − 1 − Kp

α

] ∫
M

η2|ω|2qα|∇|ω|α|2dv

≤ − 2
∫

M
η|ω|(2q+1)α〈∇η,∇|ω|α〉dv

≤ ε

∫
M

η2|ω|2qα|∇|ω|α|2dv + 1
ε

∫
M

|ω|2(1+q)α|∇η|2dv

for any ε > 0, which gives

[
2(q + 1) − 1 − Kp

α
− ε

] ∫
M

η2|ω|2qα|∇|ω|α|2dv ≤ 1
ε

∫
M

|ω|2(1+q)α|∇η|2dv. (3.5)

Let β = 2(q + 1)α. Since β > 1 − Kp, we can choose ε > 0 small enough such that
2(q + 1) − 1−Kp

α
− ε > 0. Hence, it follows from (3.5) that∫

M
η2|ω|2qα|∇|ω|α|2dv ≤C

∫
M

|ω|β |∇η|2dv (3.6)

for some constant C > 0.
Fix a point x0 ∈ M and let ρ(x) be the geodesic distance on M from x0 to x. Let

us choose ηr ∈ C∞
0 (M) satisfying

ηr(x) =
{

1 if ρ(x) ≤ r,
0 if 2r < ρ(x)

and

|∇ηr|(x) ≤ 2
r

if r < ρ(x) ≤ 2r
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for r > 0. Substituting η = ηr into (3.6) yields∫
Bx0 (R)

|ω|2qα|∇|ω|α|2dv ≤4C
R2

∫
Bx0 (2R)

|ω|βdv.

Letting R → ∞, we conclude that∫
M

|ω|2qα|∇|ω|α|2dv ≤ 0,

which gives |ω| = constant. Substituting this fact into (3.3), we find that ω = 0.
To prove Theorem 1.3, we first consider the following vanishing theorem for

harmonic p-forms of general degrees.

THEOREM 3.2. Let Mn, n ≥ 3, be a complete non-compact minimal hypersurface
immersed in �n+1. Assume that λ1(� + p(n−p)

n |A|2) ≥ 0 for 1 ≤ p ≤ n − 1. Then, every
harmonic p-form ω on M with lim inf

r→∞
1
r2

∫
Bx0 (r) |ω|2βdv = 0, 1 − √

Kp < β < 1 + √
Kp,

vanishes identically. In particular, Hp(L2(M)) = {0}.
Proof. Let ω ∈ Hp(L2(M)) with 1 ≤ p ≤ n − 1. It follows from the assumption

H = 0 that

λi1 + · · · + λip = −(λip+1 + · · · + λin ).

Using the Cauchy–Schwarz inequality, we have

|A|2 = (λi1 )2 + · · · + (λip )2 + [
(λip+1 )2 + · · · + (λin )2]

≥ 1
p

(λi1 + · · · + λip )2 + 1
n − p

(λip+1 + · · · + λin )2

= n
p(n − p)

(λi1 + · · · + λip )2.

Thus,

(λi1 + · · · + λip )(λip+1 + · · · + λin ) = −(λi1 + · · · + λip )2 ≥ −p(n − p)
n

|A|2.

Substituting into (2.3) and combining (2.5), we conclude that

|ω|�|ω| + p(n − p)
n

|A|2|ω|2 ≥ Kp|∇|ω||2 + p(n − p)|ω|2

for all 1 ≤ p ≤ n − 2. For any α > 0, we compute

|ω|α�|ω|α = |ω|α[
α(α − 1)|ω|α−2|∇|ω||2 + α|ω|α−1�|ω|]

≥
(

1 − 1 − Kp

α

)
|∇|ω|α|2 − αp(n − p)

n
|A|2|ω|2α + αp(n − p)|ω|2α. (3.7)

Let η ∈ C∞
0 (M). Multiplying both sides of (3.7) by η2|ω|2qα, q > 0, and integrating

over M, we get

[
1 − 1 − KP

α

] ∫
M

η2|ω|2qα|∇|ω|α|2dv + αp(n − p)
∫

M
η2|ω|2(1+q)αdv

≤
∫

M
η2|ω|(2q+1)α�|ω|αdv + αp(n − p)

n

∫
M

η2|A|2|ω|2(1+q)αdv
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= − (2q + 1)
∫

M
η2|ω|2qα|∇|ω|α|2dv − 2

∫
M

η|ω|(2q+1)α〈∇η,∇|ω|α〉dv

+ αp(n − p)
n

∫
M

η2|A|2|ω|2(1+q)αdv,

which gives

[
2(q + 1) − 1 − Kp

α

] ∫
M

η2|ω|2qα|∇|ω|α|2dv + αp(n − p)
∫

M
η2|ω|2(1+q)αdv

≤ − 2
∫

M
η|ω|(2q+1)α〈∇η,∇|ω|α〉dv + αp(n − p)

n

∫
M

η2|A|2|ω|2(1+q)αdv. (3.8)

On the other hand, the variational principle for λ1(� + p(n−p)
n |A|2) ≥ 0 asserts the

validity of the following inequality

p(n − p)
n

∫
M

|A|2f 2dv ≤
∫

M
|∇f |2dv, ∀f ∈ C∞

0 (M). (3.9)

By choosing f = η|ω|(1+q)α in (3.9), we have

p(n − p)
n

∫
M

η2|A|2|ω|2(1+q)αdv ≤ (1 + q)2
∫

M
η2|ω|2qα|∇|ω|α|2dv +

∫
M

|ω|2(1+q)α|∇η|2dv

+ 2(1 + q)
∫

M
η|ω|(1+2q)α〈∇η,∇|ω|α〉dv. (3.10)

Substituting (3.10) into (3.8) yields

1
α

[
2(q + 1)α − (1 − Kp) − (1 + q)2α2

] ∫
M

η2|ω|2qα|∇|ω|α|2dv

≤ 2[(1 + q)α − 1]
∫

M
η|ω|(2q+1)α〈∇η,∇|ω|α〉dv + α

∫
M

|ω|2(1+q)α|∇η|2dv

− αp(n − p)
∫

M
η2|ω|2(1+q)αdv. (3.11)

Take β = (1 + q)α. Using the Cauchy–Schwarz inequality, it follows from (3.11) that

1
α

[
2β − (1 − Kp) − β2 − |β − 1|ε

] ∫
M

η2|ω|2β−2α|∇|ω|α|2dv

≤
(
α + |β − 1|

ε

) ∫
M

|ω|2β |∇η|2dv − αp(n − p)
∫

M
η2|ω|2βdv (3.12)

for all ε > 0. Since 1 − √
Kp < β < 1 + √

Kp, we choose sufficiently small ε > 0 such
that 2β − (1 − Kp) − β2 − |β − 1|ε > 0. Hence, it follows from (3.12) that

C1

∫
M

η2|ω|2β−2α|∇|ω|α|2dv ≤ C2

∫
M

|ω|2β |∇η|2dv − αp(n − p)
∫

M
η2|ω|2βdv (3.13)

for some constants C1 > 0 and C2 > 0.
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Let ηr ∈ C∞
0 (M) be the cut-off function defined as before. Substituting η = ηr into

(3.13) yields

C1

∫
Bx0 (r)

|ω|2β−2α|∇|ω|α|2dv ≤ C1

∫
M

η2|ω|2β−2α|∇|ω|α|2dv

≤ 4C2

r2

∫
Bx0 (2r)

|ω|2βdv − αp(n − p)
∫

Bx0 (r)
|ω|2βdv.

Since lim inf
r→∞

1
r2

∫
Bx0 (r) |ω|2βdv = 0, letting r → ∞ in the above inequality,

we have ω = 0. �

Let us recall that an end E of a complete manifold M is non-parabolic if E admits
a positive Green’s function with Neumann boundary condition. To discuss the number
of ends of complete submanifolds, we recall the following basic lemma.

LEMMA 3.1 [14]. Let M be a complete Riemannian manifold. Let H0
D(M) be

the space of bounded harmonic functions with finite Dirichlet integral and denote by
H1(L2(M)) the space of L2 harmonic 1-forms on M. Then, the number of non-parabolic
ends of M is bounded from above by dimH0

D(M) ≤ dim H1(L2(M)) + 1.

By using Theorem 3.2 together with Lemma 3.1, we now give the proof of Theorem
1.3.
Proof of Theorem 1.3. Since n−1

n -stability implies λ1(� + n−1
n |A|2) ≥ 0, by Theorem

3.2, we have H1(L2(M)) = {0}. It also follows from n−1
n -stability that λ1(M) ≥ n − 1,

which implies that each end E of M satisfies a Sobolev type inequality of the form as

∫
E

f 2dv ≤ 1
n − 1

∫
E

|df |2dv, ∀f ∈ C∞
0 (M).

Since M is minimal, by Proposition 2.1 of [5], each end of M has infinite volume.
Hence, according to Corollary 4 in [15], each end of M is non-parabolic. Therefore, by
Lemma 3.1, M must have only one end.

4. Proofs of Theorem 1.4. Obviously, through the composition of isometric
immersions

Mn → �n+1 → �n+2,

Mn can be considered as a submanifold in �n+2. Denote by H̄ the mean curvature
vector of Mn in �n+2, then we have

|H̄|2 = |H|2 + 1. (4.1)

It is known that the following Sobolev inequality due to Hoffman and Spruck [9]

(∫
M

|f | 2n
n−2 dv

) n−2
n

≤ c(n)
∫

M
(|∇f |2 + |H̄|2f 2)dv, ∀f ∈ C∞

0 (M) (4.2)
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holds on Mn for some c(n) > 0. Substituting (4.1) into (4.2) yields(∫
M

|f | 2n
n−2 dv

) n−2
n

≤ c(n)
∫

M
|∇f |2dv + c(n)

∫
M

(1 + |H|2)f 2dv (4.3)

for any f ∈ C∞
0 (M).

Now, we are in the position to prove Theorem 1.4. It is obvious that Theorem 1.4
can be deduced immediately from the following result.

THEOREM 4.1. Let Mn, n ≥ 3, be a complete non-compact hypersurface of �n+1.
Assume that (∫

M
|φ|ndv

) 2
n

<
2(1 + Kp)

nc(n)
(4.4)

for 1 ≤ p ≤ n − 1. Then, every harmonic p-form ω on M with lim inf
r→∞

1
r2

∫
Bx0 (r) |ω|2dv = 0

vanishes identically. In particular, Hp(L2(M)) = {0}.
Proof. Given a harmonic p-form ω satisfying lim inf

r→∞
1
r2

∫
Bx0 (r) |ω|2dv = 0. Let η ∈

C∞
0 (M) be a smooth function on Mn with compact support. Multiplying (2.6) by η2

and integrating over Mn, we obtain∫
M

η2|ω|�|ω|dv ≥Kp

∫
M

η2|∇|ω||2dv + p(n − p)
∫

M
η2|ω|2dv − n

2

∫
M

|φ|2η2|ω|2dv

+ 1
2

min{p, n − p}
∫

M
|A|2η2|ω|2dv. (4.5)

Integrating by parts and using the Cauchy–Schwarz inequality, we deduce that∫
M

η2|ω|�|ω|dv = − 2
∫

M
η|ω|〈∇η,∇|ω|〉dv −

∫
M

η2|∇|ω||2dv

≤ (b − 1)
∫

M
η2|∇|ω||2dv + 1

b

∫
M

|ω|2|∇η|2dv (4.6)

for all b > 0. Using (4.3) together with the Hölder and Cauchy–Schwarz inequalities,
we have

∫
M

|φ|2η2|ω|2dv ≤
(∫

supp(η)
|φ|ndv

) 2
n (∫

M
|η|ω|| 2n

n−2 dv

) n−2
n

≤ c(n)

(∫
supp(η)

|φ|ndv

) 2
n ∫

M

[|∇(η|ω|)|2 + (1 + |H|2)η2|ω|2]dv

= E(η)
∫

M

[
η2|∇|ω||2 + |ω|2|∇η|2 + (1 + |H|2)η2|ω|2]dv

+ 2E(η)
∫

M
η|ω|〈∇η,∇|ω|〉dv

≤ E(η)(1 + γ )
∫

M
η2|∇|ω||2dv + E(η)

(
1 + 1

γ

) ∫
M

|ω|2|∇η|2dv

+ E(η)
∫

M
(1 + |H|2)η2|ω|2dv. (4.7)
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for all γ > 0, where E(η) = c(n)(
∫
supp(η) |φ|ndv)

2
n . Substituting (4.6) and (4.7) into

(4.5), we conclude that

C
∫

M
η2|∇|ω||2dv ≤D

∫
M

|ω|2|∇η|2dv + n
2

E(η)
∫

M
(1 + |H|2)η2|ω|2dv

− 1
2

min{p, n − p}
∫

M
|A|2η2|ω|2dv − p(n − p)

∫
M

η2|ω|2dv,

(4.8)

where

C = 1 + Kp − b − n
2

E(η)(1 + γ ) and D = 1
b

+ n(1 + γ )
2γ

E(η). (4.9)

It follows from (4.4) that

E(η) = c(n)
( ∫

supp(η)
|φ|ndv

) 2
n

<
2(1 + Kp)

n
, (4.10)

which implies that 1 + Kp − nE(η)
2 > 0. Hence, we can choose γ and b small enough

such that

C = 1 + Kp − b − n
2

E(η)(1 + γ ) > 0.

Fix a point x0 ∈ M and let ρ(x) be the geodesic distance on M from x0 to x. Let
us choose η ∈ C∞

0 (M) satisfying

η(x) =
{

1 if ρ(x) ≤ r,
0 if 2r < ρ(x)

and

|∇η|(x) ≤ 2
r

if r < ρ(x) ≤ 2r

for r > 0. By (4.8), we have

0 ≤ C
∫

Bx0 (r)
η2|∇|ω||2dv

≤ D
∫

M
|ω|2|∇η|2dv + n

2
E(η)

∫
M

(1 + |H|2)η2|ω|2dv

− 1
2

min{p, n − p}
∫

M
|A|2η2|ω|2dv − p(n − p)

∫
M

η2|ω|2dv

≤ 4D
r2

∫
M

|ω|2dv +
∫

M

[n
2

E(η)|H|2 − 1
2

min{p, n − p}|A|2
]
η2|ω|2dv

+
[n

2
E(η) − p(n − p)

] ∫
M

η2|ω|2dv. (4.11)
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It follows from (4.10) that

n
2

E(η)|H|2 − 1
2

min{p, n − p}|A|2 ≤ 1
2

(
E(η) − min{p, n − p})|A|2 ≤ 0,

and
n
2

E(η) − p(n − p) < 0.

Letting r → ∞ in (4.11), and noting that lim inf
r→∞

1
r2

∫
Bx0 (r) |ω|2dv = 0, we have ω = 0. �
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