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VARIETIES OF ORTHOMODULAR LATTICES. II 

GUNTER BRUNS AND GUDRUN KALMBACH 

I n t r o d u c t i o n . In this paper we continue the s tudy of equationally defined 
classes of or thomodular lattices s tar ted in [1]. 

T h e only a tom in the lattice of varieties of or thomodular lattices is the 
var ie ty of all Boolean algebras. Every nontrivial var ie ty contains it. I t follows 
from B. Jônsson [4, Corollary 3.2] t h a t the var ie ty [M02] generated by the 
or thomodular lattice M 0 2 of Figure 1 covers the var ie ty of all Boolean algebras. 
I t was first shown by R. J. Greechie (oral communicat ion) and is not difficult 
to see t h a t every var ie ty not consisting of Boolean algebras only contains 
[ M 0 2 ] . Again it follows from the result of Jônsson's mentioned above t h a t the 
varieties generated by one of the or thomodular lattices of Figures 2 to 5 
cover [MO2]. T h e Figures 4 and 5 are to be understood in such a way t h a t the 
or thocomplement of every element is on the vertical line through this element. 
Note t h a t in Figure 5 the left and the r ight endpoints are "identified". I t is 
the aim of this paper to prove the following 

T H E O R E M . Every finite orthomodular lattice which does not belong to [MO2] 
has one of the lattices of Figures 2 to 5 as the homomorpic image of a sub algebra. 

This theorem has the following 

COROLLARY. Every variety of orthomodular lattices which is not contained in 
[M02] and is generated by its finite members contains a variety generated by one of 
the orthomodular lattices of Figures 2 to 5. 

Actually, the proof of our theorem goes through wi thout modifications for 
all (possibly infinite) or thomodular lattices of finite height. We do not know, 
however, whether the theorem or its corollary is t rue wi thout this restriction. 

Our proof consists of a careful analysis of lattices of dimension 3 making 
extensive use of the results in Greechie [2] and [3]. T h e general result is then 
obtained by an inductive argument . 

For general background information we refer to [1]. 
Our thanks go to M. Janowitz for comments which have influenced the set-up 

of this paper. 

1. B locks a n d the ir i n t e r a c t i o n . As in [1] an or thomodular lattice 
(abbreviated: O M L ) is considered as a universal algebra (L; V , A , ' , 0 , 1) 
with binary latt ice operations V and A , the unary or thocomplementat ion 
operation ', and the two nullary operations (constants) 0 and 1, smallest and 
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ORTHOMODULAR LATTICES 329 

largest element of the lattice. All universal algebraic notions like subalgebra, 
homomorphic image etc. are to be understood in this sense. 

If d is an element of an OML we will frequently consider the interval [0, d] 
as an OML. In this case the orthocomplement a# of an element a £ [0, d] is 
defined by a# = a' A d. Equipped with an orthomodular structure in this 
way the interval [0, d] becomes the homomorphic image of a subalgebra of L, 
namely the subalgebra S of all elements of L which commute with d. Since d 
is in the center of this subalgebra the interval [0, d] is a homorphic image of S. 

Throughout this paper L is a finite OML, Se (L) is the set of all maximal 
Boolean subalgebras (blocks) of L, and n{L) is the maximum of the cardinal 
numbers \B\ of the blocks B G Së{L). If C is a maximal chain in L then the 
subalgebra of L generated by C is a block. Conversely, every maximal chain 
in a block is also a maximal chain in L. In particular, every atom of a block is 
also an atom of L. 

We frequently use the fact that a finite OML is simple if and only if it is 
subdirectly irreducible, if and only if it is directly irreducible, i.e. has a center 
consisting of 0 and 1 only. 

Given an element e £ L we define S(e) = [0, e'] \J [e, 1]. The sets S(e) are 
called sections (Greechie [2]) of L. 

(1.1) Definition. The blocks B, C are said to meet in the section S(e) if 
and only if B ^ C, e £ (B C\ C) - {1}, and 5 C\ C = S(e) Pi (B \J C). 

1 

a< a'\ )b >b' 

0 
(M02) 
Figure 1. 

Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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(1.2) (Greechie [2, Lemma 4.3]). Two {different) blocks B and C of L meet in 
the section S(e) if and only if e is an atom of B C\ C, e 9e 1, and [0, e'] H B = 
[0, e'] C\ C. 

Note that if the blocks B and C meet in the section S(e), then e is not an 
atom of L. 

(1.3) If B and C are blocks of L, then there exists at most one element 
e Ç B C\ C such that B and C meet in the section S(e). 

Proof. Assume there were elements e, f £ {B C\ C) — j l ) , g ^ / , such that 
B C\C = S(e) r\ (B KJ C) = s (J) H (B U C). Since e and / are both atoms 
of B C\ C we would have e % f and, hence, / ^ e'. Since e is not an atom of B 
there exists an atom p £ B, p < e. It would follow that / V p < f V e and 
/ V p e B, and hence, / V p G S(J) H (B U C) C 5(e). But / V £ ^ e is 
impossible since/ V p < f V e a n d / V £ ^ e! is impossible because of p S e. 

By a hyperatom of L we mean an element e £ L with the property that 
every maximal chain in the interval [0, e] has exactly three elements. 

(1.4) Definition. L is called homogeneous if and only if, whenever two 
blocks B and C meet in the section S(e), e is a hyperatom of L. 

(1.5) / / L is homogeneous and the blocks B and C of L meet in a section S(e), 
then \B\ = \C\. 

Proof. Let M be a maximal chain in B P\ [e, 1] = Cf\ [e, 1]. Let b < e be 
an atom of .£> and let c < e be an atom of C. Then M U {0, &J is a maximal 
chain in .£> and ikT W {0, c} is a maximal chain in C. Since they have obviously 
the same number of elements, it follows that B and C have the same number 
of elements. 

(1.6) Definition. A path in L is a finite sequence C5i)*=o, i, . . . w (n ^ 0) of 
blocks in L such that B t andi^+i meet in a section S (et) (i = 0, 1, . . . n — 1). 
The path (Bi)i=ot i, . . . n is said to connect the blocks B0 and J3n. The natural 
number n is called the length of the path. For blocks A,B G &(L), define 
r(A, B) to be the smallest length of a path connecting A and .£>. If no such 
path exists we put r(A, B) = co. For a block A in L and an element b in L 
we define r(^4,ô) = min{r(^4,^)| b £ B £ Së{L)). For elements a and è of 
L we define r(a,&) = min{r(,4,£) | a £ A e @(L), b G B G ^ ( L ) } . The 
OML L is said to be connected if and only if r(A, B) < oo holds for any two 
blocks A and B of L. 

The following statement (1.7) is a consequence of [2, Theorem 4.6]. 

(1.7) If B and C are blocks in L and if B C\ C 9e- {0, 1}, then there exists a 
path connecting B and C. 
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(1.8) If L is homogeneous and connected, then any two blocks of L have the same 
number of elements. 

Proof. This follows from (1.5) by induction. 

(1.9) Let (B0, B\, . . . Bn) be a path in L such that Bt and Bi+\ meet in the 
section S(et), and let e £ L satisfy e S eô A . . . A e'n-\. Then B0 P [0, e] = 
Bnr\[0,e]. 

Proof. This follows from (1.2) by induction. 

(1.10) Let L be subdirectly irreducible and connected and assume n(L) è 23. 
Then there exists a path (B0, B\, . . . Bn) of length n ^ 2 in L with the following 
properties: If S(ei) (i = 0, 1, . . . n — 1) is the section in which Bt and Bi+i 

meet, then e0 ^ <v_i, e0 ^ e'w_i, e0 ^ e\ A . . . A e'n-2, and en_i ^ e'w_2 A . . . A e\. 
(Note that the meet of the empty family is 1. ) 

Proof. As the first step we prove the existence of a path satisfying all condi
tions of the theorem except possibly en-X ^ e'w_2 A . . . A e±. 

Let Di be an arbitrary block in L. Since L is subdirectly irreducible and 
n(L) ^ 23, L is not Boolean. Since L is also connected there exists a block 
D2 9e Di in L which meets Di in some section S(di). Since L is subdirectly 
irreducible, di is not in the center of L and there exists a block C not con
taining d\. Since L is connected there exists a path (D2, . . . Dt) with Dt = C, 
t ^ 3. Let S(di) (i = 2, 3, . . . t — 1) be the section in which Dt and Di+1 

meet and let j be the largest index i for which dt = d±. Since d\ (? Dtwe have 
j < t — 1. Define (B0, Bly . . . £ ,) = (£>,,., Dj+1, . . . Dt) and e, = di+j 

(0 ^ i < s). Then 5 è 2, e0 ^ e* (1 ^ i < 5), and e0 Z Bs. By (1.9), e0 ^ 
<?/ A . . • A eVi would imply e0 Ç 5 i Pi [0, e0] = BSC\ [0, e0], which would 
contradict e0 € ^s- Hence e0 ^ e/ A . . . A e's_i. It follows that there exists a 
natural number n, 2 ^ n ^ s, such that e0 ^ e'w_i and e0 ^ e\ A • . . /\e' n_2. 
This establishes the existence of a path with all the desired properties except 
possibly the last. 

Among the paths satisfying these conditions now take a path (BQ, Blt . . . Bn) 
of smallest length n ^ 2 and assume ew_i ^ e'w-2 A . . . A e\. Let 7 be the 
largest index i, 1 ^ ^ ^ ^ — 2, for which ^_x ^ e/ . We then have en_i JÇ e/, 

A . . . A ^0+i- Since £0 S e ' n~\ and e0 ^ g / A . . . A tf'w-2 we also 
have ew_i ^ e;-. This means that the path (Bn, Bn_\, . . . B f) satisfies all the 
conditions of our theorem except possibly the last one and has a length strictly 
less than n. This contradicts the choice of n and proves that our path 
(B0t Bi, . . . Bn) has all the desired properties, proving (1.10). 

2. The case n(L) < 23. In this section we prove our theorem for an OML L 
satisfying n(L) ^ 23. If n(L) ^ 22, then L either belongs to [M02] or it 
contains the OML M03 of Figure 2 as a subalgebra. Hence we may and will 
assume throughout this section that L is an OML satisfying n(L) = 23. In 
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this case two blocks A and B meet in a section if and only if A P B consists 
of 0, 1, an atom and a co-atom of L. Moreover, the blocks A and B meet in a 
section if and only if A ~é B and A C\B ^ {0,1}. 

Note that a four-element block does not meet any block in a section and, 
consequently, that for every four-element block A and any other block B, 
r(A,B) = oo holds. 

(2.1) If the blocks A,B satisfy r(A,B) = 1, then a V b 9e 1 holds for all 
atoms a G A, b G B. 

Proof. If a G B or b G ̂ 4, then clearly a V & 9e 1. If not, let c be the co-atom 
in 4̂ P f>. Then a ^ c and & ^ c; hence a V b = c 9e I. 

(2.2) / / a , b are atoms of L and a 9e b', then a V b = \ if and only if r (a, b) ^ 2. 

Proof. If a V & = 1, then no block contains both a and & and it follows that 
r(a, b) ^ 1. But r(a, b) = 1 is impossible by (2.1). Assume now a V b < 1. 
Then a and a \/ b are contained in a block 4̂ and & and a V 0 are contained in 
a block 5 . Since 0 , l ^ a V K i n ^ this gives r(a, b) ^ 1. 

(2.3) Let A be a block and d an atom of L. If a S d' for some a G A — {0}, 
then r(a, d) ^ 1. / / a V d 9e- 1 for some a £ A — {0}, then r(A, d) ^ 2. 

Proof. Ii a tk dr there exists a block B containing a and #3' (and hence d) 
such that 0, 1 9+ a G A P B, implying r (a, d) ^ 1. Assume a V d 9e 1 for some 
a G A — {0}. Then there exist blocks B, C with a, a V d (z B and d, a V d £C. 
Since 0, 1 ^ a G 4 H B and 0,1 ^ a V d G 5 P C, it follows that r(A,d) ^ 2. 

(2.4) Let A, B be blocks in L with A P B = {0, 1}. Then r(a, b) = 0 Ao«s 
/or a/ wos/ tme pair of atoms a £ A, b (z B. 

Proof. Assume that (a, b), (x, y) G A X -5 are different pairs of atoms with 
r(a, b) = r(x,y) = 0. We may assume w.l.o.g. that b 9e y. Let a = x. Since 
r(a} b) = r(x,y) = 0 there exist a block C containing a and b and a block .D 
containing x and 3/. It follows that b ^ a' and y ^ x' = a', which implies 
b\/y = afÇ_AC\B, contradicting A P B = {0, 1}. If a 5̂  x, we obtain by 
a similar argument: x' = a V )» = &' Ç i H 5 , again contradicting A C\ B = 
}o,i!. 

(2.5) For an OML L with n(L) = 23, the following are equivalent'. 
1. TTze OML 0/ Figure S is a subalgebra of L. 
2. There exist A £ 3$ (L) and d G L with r{A}d) ^ 3. 

Proof. 1 =» 2. Assume that the OML of Figure 3 is a subalgebra of L. With 
the notation of Figure 3 put A = {0, 1, a, a', b, V, c, c'). Then A is a block of 
L. We may assume w.l.o.g. that d is an atom of L. Clearly r ( 4 , d) ^ 1. By 
(2.1), r(,4, d) ^ 2. Assume r(i4, d) = 2. Then there exists a path (4, 5 , C) 
with d £ C and by symmetry we may assume that a G -£>, i.e. r(a, d) = 1. By 
(2.2) it would follow that a V d 9^ 1, contradicting the assumption that the 
OML of Figure 3 is a subalgebra of L. This proves r(A, d) ^ 3. 
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2 =>1. Assume the block A in condition 2 is a four-element Boolean algebra. 
Since n(L) = 23 there exists an eight-element block B. If a is an atom in A 
we have r (B, a) = oo ^ 3. Hence we may assume in condition 2 w.l.o.g. that 
4̂ is an eight-element Boolean algebra. Furthermore, we may assume that d 

is an atom of L. We claim that i U j ^ , ^ ) is a subalgebra of L isomorphic 
with the OML of Figure 3. Let a be an atom of A. By symmetry and duality 
it is enough to show that a\/d = a\/df = l. This is a consequence of (2.3) 
and r(A,d) ^ 3 since dr is a co-atom and hence a V d' = 1 if and only if 
a ^ d'. 

(2.6) For an OML L with n(L) = 23, the following are equivalent: 
1. 77ze OML M03 is a subalgebra of L. 
2. There exist elements a,b, c £ £ satisfying r(a, b) ^ 2, r(&, c) ^ 2 aw^ 

r(6, c) ^ 2. 

Proof. 1 =» 2. With the notation of Figure 2 we may assume w.l.o.g. that 
a, fr, c are atoms of L. Application of (2.2) gives the desired result. 

2 => 1. We may assume w.l.o.g. that a, b, c are atoms of L. By (2.2), a V b = 
aVc = bVc = l. Since a ^ bf would imply r(a, b) = 0 and since 6' is a 
co-atom of L, it follows that a V V = 1. Using symmetry and duality we 
obtain that {0, 1, a, a', b, V, c, cf} is a subalgebra of L isomorphic with M03 . 

(2.7) Definition (Greechie [3]). A loop of order n (n ^ 3) in L is a sequence 
(Bi)i=ot i, . . . n-i of blocks in L satisfying: 

1. Bi and Bi+\ meet in a section (i = 0, 1, . . . n — l(mod n)), 
2. BiC\Bù = {0, 1} if \i -j\ ^ 2 and {i,j} ^ {0, w - 1}, 
?,.Bir\Bjr\Bk= {0, 1} if 0 ^ i < 7 < è ^ w - 1. 

Note that the condition 2 is vacuous if w = 3 and that condition 2 implies 
condition 3 if n ^ 4. 

As a special case of Greechie [3] we have: 

(2.8) L does not contain a loop of order 3 or 4. 

(2.9) Let Bi (i = 0, 1, 2, 3) be pairwise different blocks of L and let at 

(i = 0, 1, 2) be pairwise different atoms of L such that a i £ ^z f \B i + i (i = 0, 1, 2). 
ThenB0r\B2 = BQf~\ Bz = Bxr\ Bz = {0, 1}. 

Proo/. If B0r\B2^ {0, 1}, then (J30, Bu B2) would be a loop of order 3 
contradicting (2.8). Hence B0 r\ B2 = {0, 1} and, by symmetry, Bi Pi B3 = 
{0, 1}. If B*r\Bz 3* {0, 1}, then (BQ, Blf B2, B*) would be a loop of order 4, 
again contradicting (2.8). Hence BQ C\ Bs = {0, 1}. 

We consider the following condition: 

(a) No element a ^ 0, 1 in L is contained in at least three blocks. 

(2.10) Assume that L satisfies (a), let (Ci)o^4 be a loop in L, and let 
a G C3 P C4 awd 6 G Ci — (Co W C2) 6e atoms of L. Then r(a, b) = 2. 
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(2.11) Assume that L satisfies (a), let (G)og*^5 be a loop in L, and let 
a G G C\ G and b G Co C\ Ci be atoms of L. Then r(a, b) = 2. 

Proofs of (2.10) and (2.11). Clearly r(a, b) ^ 2. Since G H C3 = {0, 1} it 
follows from (2.4) t ha t r(a,b) è 1. Assume r(a,b) = 1. Then there exists a 
pa th (C, D) with a G C and b £ D. By (a) one has C = G or C = C4. By 
symmet ry we may assume C = C3. Since C C\ D 9^ {0, 1} there exists an 
a tom g G G with r(e,b) = 0. For the a toms c f G Pv G and J G G P\ G one 
also has r(c,d) = 0. Since b 9^ c this contradicts (2.4). I t follows t h a t 
r(a,b) = 2. 

(2.12) Let L satisfy (a) and assume that there are no elements e,f, g in L 
satisfying r(e,f) ^ 2, r(e, g) ^ 2, and r ( J , g) è 2. Le/ (G)o^i^4 fre & /oo^? m a 
L. Then U*=oG ^ a subalgebra of L. 

Proof. Assume tha t Uj=o^i is not a subalgebra of L. Then, by symmetry 
and dual i ty we may assume t h a t there exist a toms b G G — G and c G G — 
(Ci U G ) such t ha t b V c g Ut=oG. Bu t 6 G C4, by (2.10), would imply 
r(b, c) = 2 which, by (2.2), would give b V c = 1 G U*=oG. Hence we may 
also assume & G G — (Ci \J C4). From (2.2) and (2.4) we obtain r(b, c) = 1. 
Let C be the block containing b and b V c and let D be the block containing 
c and b \/ c. Using (2.9) it is easy to check t h a t (Co, C, D, C2, G ) and (Co, C, 
-t*, C2, C3, C4) are loops in L. Pick a toms e, / , g such t ha t g G C3 P\ C4,/ G G — 
(Co W C2), and g G C H D . Then (2.10) and (2.11) give r(e,f) = r(e, g) = 

r(fig) = 2, contradicting the assumptions of (2.12). Hence U i = =oG is a 
subalgebra of L. 

(2.13) Let L satisfy (a) and let ( G , C2, C3) be a path in L such that U L i G 
is not a subalgebra of L. Then there exists a loop (Co, G , C2, C3, C4) in L. 

Proof. Because of (a) and the fact t ha t L does not contain a loop of order 3, 
it is G P\ C3 = {0, 1}. Since G U C2 and C2 VJ C3 are subalgebras of L there 
exist a toms c G Ci — G and d G G — G with c V d (l G VJ G U C3. From 
(2.2) and (2.4) it follows tha t r(c,d) = 1. Let Co be the block containing c 
and c V d and let G be the block containing d and c V d. I t is obvious t ha t 
(Co, G , G , G , G ) is a loop. 

(2.14) L ^ L be an O M L which is not contained in [M02] and satisfies 
n (L) S 23. Then one of the OMLs of Figures 3, 4, 5 is a subalgebra of L or M 0 3 
is the homomorphic image of a subalgebra of L. 

Proof. We may assume w.l.o.g. t ha t L is subdirectly irreducible and t h a t 
n(L) = 23. If condition (a) is not satisfied then there exists a co-atom e in L 
which is contained in a t least three blocks. Then M 0 3 is a subalgebra of [0, e], 
hence the homomorphic image of a subalgebra of L. We assume now t h a t 
M 0 3 is not a homomorphic image of a subalgebra of L. Then, as we have jus t 
seen, (a) is satisfied and by (2.6) there are no elements a, b, c in L satisfying 
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r(a, b) ^ 2, r(a, c) ^ 2, and r(b, c) ^ 2. If L is not connected there exist a 
block A and an a tom d G L with r (-4, d) ^ 3 and by (2.5) the O M L of Figure 3 
is a subalgebra of L. If L is connected, then, by (1.10), there exists a pa th 
( G , C2, C3) in L. Since L satisfies (a) we have d P C3 = { 0 , 1 } . If 
Ci VJ C2 W C3 is a subalgebra of L then this subalgebra is isomorphic with 
the O M L of Figure 4. If i t is not a subalgebra of L, then, by (2.13), there 
exists a loop (Ci)o^*g4 in L. By (2.12), {Jl=oCt is a subalgebra of L and this 
subalgebra is obviously isomorphic with the O M L of Figure 5. This proves 
(2.14). 

3. T h e genera l case . 

(3.1) Let L be subdirectly irreducible, homogeneous, connected and assume 
n(L) ^ 24. Then there exists an element d G L such that n([0,d]) = 23 and 
such that [0, d] is subdirectly irreducible. 

Proof. Let (B0, Bi, . . . Bn) be a pa th in L with the properties s ta ted in 
(1.10). By (1.9) we h a v e ^ i P [0, e0] = 5 n - i H [0, e0] which implies e0 G 5„_i . 
Since en-i G i2w-i, e0 ^ £»-i and e0 ^ dn-\, « = ^oA ew_i is an a tom in I?w_i. 
Let &, c be the a toms of Bn-i for which a V b = e0 and a V £ = ew-i. P u t 
d = eo V ew-i = a V b V c. Since a, b, c are pairwise different and belong 
to Bn_! we obtain from (1.8) t h a t n([0,d]) = 23. From BXC\ [0, e0] = 
Bn_i P [0, e0] it follows t h a t a,b G -Si. Bu t (1.9) also implies t h a t 
.Bw_i P [0, en_i] = JBI P [0, en_i], which gives c Ç 5 i and hence d ^ B\. Since 
by the dual of (1.2) we have £ 0 P |>o, 1] = Bi P |>0, 1], it follows t h a t 
d G >̂o- By the same a rgument we obtain d G Bn. I t follows t h a t -S0 P [ 0 , d] 
and 5W P [0, d] are blocks of [0, d]. W e show t h a t BQr\BnC\ [0, J] = {0, d) 
which proves t ha t [0, d] is directly and hence subdirectly irreducible. 

Since a < e0, a G -Si, it is a G B0. Since c ^ <?o, hence c ^ e0', it is c G ̂ o-
Since en^i G -So would imply a = (a V c) A c' = en-\ A d G -So, it is 
en_i G -So- Let ai , a2 be the a toms of i ^ which satisfy ai V a2 = en-\. Then 
a,\ V c = a2 V c = ^ _ i , which gives ai , a2 G -So- Bu t & is an a tom of i$w P [0, d] 
different from ai, a2. Consequently, ai, a2, b are the three a toms of Bn P [0, d]. 
Since b G B\ and b < e0 we have b G -S0, i.e. none of the a toms of Bn P [ 0 , d] 
belongs to B0 P [0, d] . This means t h a t B0r\Bnr\ [0, d] = {0,d}, which 
was to be proved. 

(3.2) Let L be subdirectly irreducible and n{L) ^ 24. Then the O M L c / Figure 3 
is a subalgebra of L or there exists e G L — {1} swc& that [0, e] is subdirectly 
irreducible and w([0, e]) è 23. 

Proof. Assume first t h a t L is not connected. Then there exist blocks A, B in 
L with r (-4, 5 ) = oo . If one of the blocks A, B, say 5 , consists of four elements 
only, then r(C, B) = oo holds for every block C ^ B in L. Since n{L) ^ 24 it 
follows t h a t we m a y assume t h a t A has a t least eight elements. Le t S be an 
eight-element subalgebra of A. We claim t h a t a V b = 1 and (dually) a A b = 0 
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holds for all a Ç 5 - | 0 , 1 } , K 5 - {0, 1}. Assume a V ^ l holds for at 
least one such pair of elements a, b. Then there exist blocks D, E such that 
a , a V K D a n d M V K E. Since A C\ D je ( 0 , l ) , D n £ ^ {0, 1}, and 
E C\ B y* {0, 1}, repeated application of (1.7) yields the existence of a path 
connecting A and B, which contradicts r(A, B) = oo. If d is an arbitrary 
element of B — {0, 1} it is now easily seen that S VJ {d, d'} is a subalgebra 
of L isomorphic with the OML of Figure 3. 

Assume next that L is not homogeneous. Then there exist blocks C, D in L 
which meet in a section S (e) where e y^ 0, 1 is neither an atom nor a hyperatom 
of L. It follows w([0, e]) ^ 23. Since C H [0, e] and D H [0, e] are blocks in 
[0, e] and C H D H [0, g] = |0, c}, the OML [0, e] is subdirectly irreducible. 

If, finally, L is homogeneous and connected the claim follows from (3.1). 

We are now in the position to give the 

Proof of the theorem. It is enough to prove the theorem for subdirectly 
irreducible L. Statement (2.14) gives the theorem if n(L) ^ 23 and (3.2) 
allows an obvious induction on n(L). 
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