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Abstract
We construct measures whose Fourier coefficients exhibit extreme behaviour among those whose support have
Hausdorff h-measure zero.

1. Introduction

We work on the circle T = R/Z and write |𝐼 | for the length of an interval I. We shall only look a closed
subsets E of T. All measures will be bounded positive Borel measures, and we write P (𝐸) for the
collection of probability measures with support contained in E. We recall the definition of the Hausdorff
h-measure.

Definition 1.1. If ℎ : [0,∞) → [0,∞) is a continuous strictly increasing function with ℎ(0) = 0, we
say that a closed set E has Hausdorff-h measure

ℎ(𝐸) = lim
𝛿→0+

inf
⎧⎪⎨⎪⎩

𝑛∑
𝑗=1

ℎ(|𝐼 𝑗 |) :
𝑛⋃
𝑗=1

𝐼 𝑗 ⊇ 𝐸, 𝐼 𝑗 an interval, |𝐼 𝑗 | ≤ 𝛿
⎫⎪⎬⎪⎭.

If 1 ≥ 𝛼 > 0, we write ℎ𝛼 (𝑡) = 𝑡𝛼.

It is not difficult to see that, given E, there exists a number d (with 1 ≥ 𝑑 ≥ 0) called the Hausdorff
dimension dim𝐻 (𝐸) of E such that ℎ𝛼 (𝐸) = ∞ for 𝑑 > 𝛼 and ℎ𝛼 (𝐸) = 0 for 𝛼 > 𝑑. It is often hard
to compute the Hausdorff dimension of a given set, and an important tool is provided by Frostman’s
theorem [2], which asserts that

dim𝐻 (𝐸) = sup
{
𝛼 : ∃𝜇 ∈ P (𝐸)with

∫ ∫
𝑑𝜇(𝑥)𝑑𝜇(𝑦)

|𝑥 − 𝑦 |𝛼
< ∞

}
.

Using Parseval’s theorem (for details, see [6] Section 3.5), we can express the result in Fourier analytic
form as

dim𝐻 (𝐸) = sup

{
𝛼 : ∃𝜇 ∈ P (𝐸) with

∑
𝑟≠0

| �̂�(𝑟) |2

|𝑟 |1−𝛼
< ∞

}
.

Some further, more precise, information along these lines is obtained as Theorem V of Chapter III
of the book of Kahane and Salem [3]. (The authors acknowledge inspiration from a talk by Beurling [1].
See also [8].)
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2 Körner T. W.

Theorem 1.2 (Kahane and Salem). Suppose that 1 ≥ 𝛼 > 0. Then, if 𝜇 is a probability measure with∑
𝑟≠0

| �̂�(𝑟) |2

|𝑟 |1−𝛼
< ∞,

the support of 𝜇 has strictly positive ℎ𝛼-measure.

In the first part of this paper, we show that Theorem 1.2 is sharp in the following sense.

Theorem 1.3. Suppose that 1 > 𝛼 > 0, 𝛾𝑟 > 0 and 𝛾𝑟 → 0 as 𝑟 → ∞. Then we can find a probability
measure 𝜇 with support of zero ℎ𝛼-measure, but∑

𝑟≠0
𝛾 |𝑟 |

| �̂�(𝑟) |2

|𝑟 |1−𝛼
< ∞.

We actually go a little further. The arguments of [3] go through essentially unchanged to give the
following version of Theorem 1.2.

Theorem 1.4. Suppose that ℎ : [0, 1] → [0,∞) is an increasing concave function with ℎ(0) = 0.
Suppose, in addition, that there exists an 𝛼 with 1 ≥ 𝛼 > 0 such that ℎ(𝑡)𝑡−𝛼 increases with t.

Then, if 𝜇 is a probability measure with∑
𝑟≠0

| �̂�(𝑟) |2

|𝑟 |ℎ(|𝑟−1 |)
< ∞,

the support of 𝜇 has strictly positive h-measure.

We prove the following.

Theorem 1.5. Suppose that ℎ : [0, 1] → [0,∞) is a continuously differentiable increasing function
with ℎ(0) = 0 and 𝑡−1ℎ(𝑡) increasing to ∞ as 𝑡 → 0+. Suppose further that there exists an 𝛼 with
1 > 𝛼 > 0 such that ℎ(𝑡)𝑡−𝛼 increases with t. Then, if 𝛾𝑟 > 0 and 𝛾𝑟 → 0 as 𝑟 → ∞, we can find a
probability measure 𝜇 with support of Hausdorff h-measure zero with∑

𝑟≠0
𝛾𝑟

| �̂�(𝑟) |2

|𝑟 |ℎ(|𝑟 |−1)
< ∞.

Notice that, for example, if ℎ(𝑡) = 𝑡𝛽
(
log(1/𝑡)

)𝛾 for t small with 1 > 𝛽 > 0 and 𝛾 real, or with 𝛽 = 1
and 0 > 𝛾, then h satisfies the conditions of Theorem 1.5. Readers will lose little if they take ℎ(𝑡) = 𝑡𝛼

throughout. On the other hand, the additional work involved to obtain the more general case is not great
and the proof of Lemma 2.3 appears as something more than a numerical coincidence.

By choosing ℎ̃ in such a way that

ℎ̃(𝑡)/ℎ(𝑡) → 0, but 𝛾𝑛ℎ(1/𝑛)/ℎ̃(1/𝑛) → 0

and then applying Theorem 1.5 to ℎ̃, we may replace the condition 𝑡−1ℎ(𝑡) increasing to ∞ as 𝑡 → 0+
in Theorem 1.5 by the condition 𝑡−1ℎ(𝑡) nondecreasing as as 𝑡 → 0+. This allows us to take ℎ(𝑡) = 𝑡
and recover a result of Salem (see [9] and Theorem VI of Chapter 3 in [3]).

The individual Fourier coefficients of the particular measure 𝜇 that we construct to prove
Theorem 1.5 are not all small. In particular, we have lim sup |𝑛 |→∞ | �̂�(𝑛) | = 1 (see the remark at the end of
Sub-section 2.3). However, this is not an inherent feature, and by modifying our construction, we can
obtain a new proof of a result obtained in [5] concerning individual coefficients.

Theorem 1.6. Suppose that ℎ : [0, 1] → [0,∞) is an increasing function with ℎ(0) = 0 and 𝑡−1ℎ(𝑡)
increasing to ∞ as 𝑡 → 0+. Suppose further that there exists an 𝛼 with 1 > 𝛼 > 0 such that ℎ(𝑡)𝑡−𝛼
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increases with t. Let 𝐿 : [1,∞) → [1,∞) be a continuous increasing function such that 𝑥−1𝐿(𝑥)
decreases with x and there exists a 𝛾 with 𝛾 > 𝛼, a K with 𝐿(𝑥3/𝛾) ≤ 𝐾𝐿(𝑥) for all 𝑥 ∈ [1,∞) and,
further, ∫ ∞

1

1
𝑥𝐿(𝑥) log 𝑥

𝑑𝑥 = ∞.

Then there exists a probability measure 𝜇 with support of Hausdorff h-measure zero with

| �̂�(𝑟) |2 ≤
1

ℎ(1/𝑟)𝐿(𝑟)

for all 𝑟 ≠ 1.

Notice that if 𝐿(𝑥) = log log 𝑥 for x large and ℎ(𝑡) = ℎ𝛼, this gives a probability measure 𝜇 with
support of Hausdorff-𝛼 measure zero, but

| �̂�(𝑟) |2 ≤
|𝑟 |−𝛼

log log |𝑟 |

for |𝑟 | sufficiently large that the formula makes sense.
The reader will see from the proofs that we could prove a portmanteau theorem to the effect that if

the conditions of Theorems 1.5 and 1.6 apply, then we can find a measure satisfying the conclusions
of both. However, I think that although the two proofs have many points in common, the ideas become
clearer if we look at them separately. (The reader will also see, without surprise, that if the conditions
of Theorems 1.5 and 1.6 apply, we can find a measure 𝜇 satisfying the conclusion of Theorems 1.6 such

that there exists a sequence 𝛾𝑟 > 0 with 𝛾𝑟 → 0 as 𝑟 → ∞, but
∑
𝑟≠0

𝛾𝑟
| �̂�(𝑟) |2

|𝑟 |ℎ(|𝑟 |−1)
= ∞.)

The condition that 𝑡−𝛼ℎ(𝑡) increases for some𝛼 with𝛼 > 0 (or something very close to that condition)
is essential for our proofs (and seems to be needed for proving Theorem 1.4). Section 3, where we see
that the corresponding results for Hausdorff logarithmic measure take a different form, shows that the
restriction is not artificial. The following example from [4] confirms this.

Theorem 1.7. We can find a decreasing positive convex sequence 𝑐𝑛 with 𝑐𝑛 → 0 as 𝑛 → ∞ such that∑∞
𝑛=1 𝑐

2
𝑛 diverges, but if 𝜇 is a nonzero measure with | �̂�(𝑛) | ≤ 𝑐𝑛, then supp 𝜇 = T.

In my opinion, the central idea of the paper is contained in Lemma 2.3, which states that there exists
a well-behaved function 𝑔𝑀 whose behaviour echos the behaviour that we desire from the measure 𝜇 in
Theorem 1.5 and is such that

�̂�𝑀 (𝑟) = 0 for all 1 ≤ |𝑟 | ≤ 𝑀 − 1,

where we can choose M as large as we want. We now choose an extremely rapidly increasing sequence
of 𝑀 ( 𝑗) and seek to show (see Lemma 2.8) that

∏𝑛+1
𝑗=1 𝑔𝑀 ( 𝑗) preserves the desirable properties of∏𝑛

𝑗=1 𝑔𝑀 ( 𝑗) . Standard limiting arguments complete the proof of Theorem 1.5. However, our proof of
Lemma 2.8 depends on an estimate described in Definition 2.4 and Lemma 2.5, so we need to obtain
this first.

A search for information on problems related to those discussed in this paper could start with [6].

2. Proof of Theorem 1.5

2.1. The building blocks

Several of our formulae take a slightly simpler form if we work with 𝑘 (𝑥) = 1/ℎ(1/𝑥) and make use of
the following remark.
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4 Körner T. W.

Lemma 2.1. Suppose that ℎ : [0, 1] → [0,∞) is a continuously differentiable increasing function with
ℎ(0) = 0 and 𝑘 (𝑥) =

1
ℎ(1/𝑥)

.

(A) If 1 ≥ 𝛼 > 0, the following statements are equivalent:

(i) ℎ(𝑡)𝑡−𝛼 increases with t.
(ii) 𝑘 (𝑥)𝑥−𝛼 increases with x.

(iii) 𝑥𝑘 ′(𝑥) ≥ 𝛼𝑘 (𝑥) for all x.

(B) The following statements are equivalent:

(i) ℎ(𝑡)𝑡−1 increases to ∞ as 𝑡 → 0+.
(ii) 𝑘 (𝑥)𝑥−1 increases to ∞ as 𝑥 → ∞.

Proof. Immediate. �

(In the typical case ℎ(𝑡) = 𝑡𝛼, then 𝑘 (𝑥) = 𝑥𝛼, but we are interested in what happens when t is small
and when x is large.) Notice that the final formula of Theorem 1.5 can be rewritten as∑

𝑟≠0
𝛾𝑟

𝑘 (|𝑟 |)

|𝑟 |
| �̂�(𝑟) |2 < ∞,

and we shall use that form in proving the theorem.
Many of the constants we introduce will depend on 𝛼, but we shall usually suppress the reference to

𝛼 and write 𝐶 = 𝐶 (𝛼). We shall use the convention that constants with suffices like 𝐶 𝑗 have only local
importance.

We fix some positive function 𝑢 ∈ 𝐶∞(R) with
∫
T
𝑢(𝑡) 𝑑𝑡 = 1 and supp 𝑢 ⊆ [−1/4, 1/4]. The

following lemma is standard.

Lemma 2.2. If 𝑅 ≥ 1 and we define 𝑢𝑅 : T→ R by

𝑢𝑅 (𝑡) = 𝑅−1𝑢(𝑅𝑡) for |𝑡 | ≤ 1/2,

then 𝑢𝑅 is a positive 𝐶∞(T) function with the following properties:

(i) |�̂�𝑅 ( 𝑗) | ≤ �̂�𝑅 (0) = 1 for all j.
(ii) There are constants 𝛽𝑞 with |�̂�𝑅 (𝑟) | ≤ 𝛽𝑞𝑅

𝑞 |𝑟 |−𝑞 for all 𝑟 ≠ 0.
(iii) supp 𝜇 ⊆ [−𝑅−1/4, 𝑅−1/4].

Proof. Use change of variables and integration by parts. �

Here is our basic building block.

Lemma 2.3. Let 1 > 𝛼 > 0. Then if the conditions of Theorem 1.5 hold, there exists an 𝐴 = 𝐴(𝛼) for
which the following is true. There exists an 𝑀0 (depending on h) such that, if 𝑀 ≥ 𝑀0, there exists a
positive function 𝑔 ∈ 𝐶∞(T) with the following properties:

(i) �̂�(0) = 1.
(ii) �̂�(𝑟) = 0 if r is not divisible by M.

(iii)
∑
𝑟≠0

𝑘 (|𝑟 |)

|𝑟 |
|�̂�(𝑟) |2 ≤ 𝐴.

(iv) There is a finite collection of intervals I such that⋃
𝐼 ∈I

𝐼 ⊇ supp 𝑔, but
∑
𝐼 ∈I

ℎ(|𝐼 |) ≤ 1.
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Proof. Chose 𝑀0 such that 𝑘 (𝑟) ≤ 𝑟 for all 𝑟 ≥ 𝑀0. If 𝑀 ≥ 𝑀0, take 𝑅 = 𝑘−1 (𝑀) and

𝑔(𝑡) = 𝑢𝑅 ∗
𝛿0 + 𝛿1/𝑀 + 𝛿2/𝑀 + . . . + 𝛿 (𝑀−1)/𝑀

𝑀

with 𝑢𝑅 as in Lemma 2.2, ∗ denoting convolution and 𝛿𝑡 the Dirac delta measure at t. We observe that

�̂�(𝑟) =

{
�̂�𝑅 ( 𝑗𝑀) if 𝑟 = 𝑗𝑀 for some 𝑗 ∈ Z,

0 otherwise.

Conditions (i) and (ii) are immediate. Condition (iv) follows on choosing I to be the collection of
intervals

[ 𝑗𝑀−1 − 𝑅−1/2, 𝑗𝑀−1 + 𝑅−1/2] with 0 ≤ 𝑗 ≤ 𝑀 − 1.

We now look at condition (iii). We have∑
𝑟≠0

𝑘 (|𝑟 |)

|𝑟 |
|�̂�(𝑟) |2 =

∑
𝑗≠0

𝑘 (| 𝑗𝑀 |)

| 𝑗𝑀 |
|�̂�( 𝑗𝑀) |2

=
∑

1≤ | 𝑗 |<𝑅/𝑀

𝑘 (| 𝑗𝑀 |)

| 𝑗𝑀 |
|�̂�𝑅 ( 𝑗𝑀) |2 +

∑
| 𝑗 | ≥𝑅/𝑀

𝑘 (| 𝑗𝑀 |)

| 𝑗𝑀 |
|�̂�𝑅 ( 𝑗𝑀) |2.

We bound the two sums separately. Since 𝑠−1𝑘 (𝑠) decreases as s increases, we have

1
𝑀

∫ 𝑗𝑀−1

( 𝑗−1)𝑀

𝑘 (𝑠)

𝑠
𝑑𝑠 ≥

𝑘 ( 𝑗𝑀)

𝑗𝑀

for 𝑗 ≥ 2. Thus, since |�̂�𝑅 (𝑟) | ≤ 1 and 𝑘 (𝑀) ≤ 𝑀 ,∑
1≤ | 𝑗 |<𝑅/𝑀

𝑘 (| 𝑗𝑀 |)

| 𝑗𝑀 |
|�̂�𝑅 ( 𝑗𝑀) |2 ≤ 2

∑
1≤ 𝑗<𝑅/𝑀

𝑘 ( 𝑗𝑀)

𝑗𝑀

≤ 2 +
2
𝑀

∫ 𝑅

𝑀

𝑘 (𝑠)

𝑠
𝑑𝑠 ≤ 2 +

2
𝑀

∫ 𝑅

𝑀
𝛼−1𝑘 ′(𝑠) 𝑑𝑠

from Lemma 2.1 (iii). But ∫ 𝑅

𝑀
𝑘 ′(𝑠) 𝑑𝑠 = 𝑘 (𝑅) − 𝑘 (𝑀) ≤ 𝑘 (𝑅) = 𝑀,

so ∑
1≤ | 𝑗 |<𝑅/𝑀

𝑘 (| 𝑗𝑀 |)

| 𝑗𝑀 |
|�̂�𝑅 ( 𝑗𝑀) |2 ≤ 2 + 2𝛼−1.

Since 𝑠−1𝑘 (𝑠) decreases and 𝑘 (𝑅) = 𝑀 , Lemma 2.2 (ii) yields∑
| 𝑗 | ≥𝑅/𝑀

𝑘 (| 𝑗𝑀 |)

| 𝑗𝑀 |
|�̂�𝑅 ( 𝑗𝑀) |2 ≤

∑
| 𝑗 | ≥𝑅/𝑀

𝑘 (𝑅)

𝑅
|�̂�𝑅 ( 𝑗𝑀) |2

≤ 2
∑

𝑗≥𝑅/𝑀

𝑀

𝑅
𝛽2

1
𝑅2

( 𝑗𝑀)2 = 2𝛽2
1𝑀

−1𝑅
∑

𝑗≥𝑅/𝑀

1
𝑗2 = 𝐴2

for an appropriate constant 𝐴2. Condition (iv) follows. �
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Observe that | exp(𝑖𝑀𝑡) − 1| ≤ 𝑀/(2𝑅) = 𝑀/
(
2𝑘−1 (𝑀)

)
must be small when M is large and

𝑡 ∈ supp 𝑔.

2.2. An intermediate step

Before we complete the proof, we need to extract a little more information about the function g of
Lemma 2.3. We make the following ad hoc definition.

Definition 2.4. If 𝑓 ∈ 𝐶 (T), we write

𝑓 (𝑟) = | 𝑓 (𝑟) | +
∑
𝑠≠0

| 𝑓 (𝑟 − 𝑠) |

𝑠2 .

Note that | 𝑓 (𝑟) | ≤ 3‖ 𝑓 ‖∞. The object of this section is to prove the following estimate.

Lemma 2.5. Let 𝛼 > 0. Then there exists a constant K such that the function g of Lemma 2.3 satisfies
the condition ∑

𝑟≠0

𝑘 (|𝑟 |)

|𝑟 |
|�̃�(𝑟) |2 ≤ 𝐾.

We use a preliminary lemma.

Lemma 2.6. If 𝑏 𝑗 ∈ C and 𝑛, 𝑚 ≥ 1, then

∑
| 𝑗 | ≤𝑛

���|𝑏 𝑗 | +
∑

1≤ |𝑠 | ≤𝑚

|𝑏 𝑗−𝑠 |

𝑠2
���

2

≤ 24
∑

| 𝑗 | ≤𝑛+𝑚

|𝑏 𝑗 |
2.

Proof. Observe that if 0 ≤ 𝜃 ≤ 1,

(|𝑎 | + 𝜃 |𝑏 | + 𝜃 |𝑐 |)2 ≤ |𝑎 |2 + 3𝜃 (|𝑎 |2 + |𝑏 |2 + |𝑐 |2).

Thus induction on m gives

∑
| 𝑗 | ≤𝑛

���|𝑏 𝑗 | +
∑

1≤ |𝑠 | ≤𝑚

|𝑏 𝑗−𝑠 |

𝑠2
���

2

≤

𝑚∏
𝑠=1

(
1 +

9
𝑠2

) ∑
| 𝑗 | ≤𝑛+𝑚

|𝑏 𝑗 |
2.

Since

𝐵 =
∞∏
𝑠=1

(
1 +

9
𝑠2

)
=

3𝜋2

2
≤

24

9
,

we obtain the required result. �

Proof of Lemma 2.5. We start by bounding
∑

2𝑛≤𝑟<2𝑛+1 �̃�(𝑟)2. Set

�̃�1 (𝑟) = |�̂�(𝑟) | +
∑

1≤𝑠≤2𝑛−1

|�̂�(𝑟 − 𝑠) |

𝑠2 and �̃�2(𝑟) =
∑

2𝑛−1<𝑠

|�̂�(𝑟 − 𝑠) |

𝑠2 .

By Lemma 2.6, ∑
2𝑛≤𝑟<2𝑛+1

�̃�1 (𝑟)
2 ≤ 𝐵

∑
2𝑛−1≤𝑟<2𝑛+1+2𝑛−1

|�̂�(𝑟) |2.
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We know that |�̂�(𝑟 − 𝑠) | ≤ 1, so

�̃�2(𝑟) ≤
∑

𝑠>2𝑛−1

1
𝑠2 ≤ 2−𝑛+2

and thus ∑
2𝑛≤𝑟<2𝑛+1

�̃�2(𝑟)
2 ≤ 2−𝑛+4.

Since �̃� = �̃�1 + �̃�2, it follows that∑
2𝑛≤𝑟<2𝑛+1

�̃�(𝑟)2 =
∑

2𝑛≤𝑟<2𝑛+1

(
�̃�1 (𝑟) + �̃�2 (𝑟)

)2

≤ 4
∑

2𝑛≤𝑟<2𝑛+1

(�̃�1(𝑟)
2 + �̃�2 (𝑟)

2)

≤ 26
∑

2𝑛−1≤𝑟<2𝑛+1+2𝑛−1

|�̂�(𝑟) |2 + 2−𝑛+6.

By considering sums over −2𝑛+1 < 𝑟 ≤ −2𝑛 in the same manner, we obtain∑
2𝑛≤ |𝑟 |<2𝑛+1

�̃�(𝑟)2 ≤ 27
∑

2𝑛−1≤ |𝑟 |<2𝑛+2

|�̂�(𝑟) |2 + 2−𝑛+7.

Next we observe that there are constants 𝐾1 and 𝐾2 such that

𝐾1
𝑘 (2𝑛)

2𝑛
≥

𝑘 (|𝑟 |)

|𝑟 |
≥ 𝐾2

𝑘 (2𝑛)
2𝑛

for all 2𝑛−1 ≤ |𝑟 | < 2𝑛+1; so, taking 𝐵1 = 27𝐾1/𝐾2, we have∑
2𝑛≤ |𝑟 |<2𝑛+1

𝑘 (|𝑟 |)

|𝑟 |
�̃�(𝑟)2 ≤ 𝐵1

∑
2𝑛−1≤ |𝑟 |<2𝑛+2

𝑘 (|𝑟 |)

|𝑟 |
|�̂�(𝑟) |2 + 2−𝑛+7.

Thus ∑
𝑟≠0

𝑘 (|𝑟 |)

|𝑟 |
�̃�(𝑟)2 ≤ 𝐵2 +

∑
|𝑟 | ≥4

𝑘 (|𝑟 |)

|𝑟 |
�̃�(𝑟)2

= 𝐵2 +

∞∑
𝑛=2

∑
2𝑛≤ |𝑟 |<2𝑛+1

𝑘 (|𝑟 |)

|𝑟 |
�̃�(𝑟)2

≤ 𝐵2 + 𝐵1

∞∑
𝑛=2

∑
2𝑛−1≤ |𝑟 |<2𝑛+2

𝑘 (|𝑟 |)

|𝑟 |
|�̂�(𝑟) |2

≤ 𝐵2 + 𝐵1
∑
𝑟≠0

𝑘 (|𝑟 |)

|𝑟 |
|�̂�(𝑟) |2 ≤ 𝐾

for appropriate choices of constants 𝐵2 and K. �

We can now draw an obvious conclusion.
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Lemma 2.7. Let 𝛼 > 0. Then if the conditions of Theorem 1.5 hold and 1 > 𝛿 > 0, there exists a K for
which the following is true. There exists a 𝑀0 (𝛿) (depending on h) such that, if 𝑀 ≥ 𝑀0 (𝛿), there exists
a positive function 𝑔 ∈ 𝐶∞(T) with the following properties:

(i) �̂�(0) = 1.
(ii) �̂�(𝑟) = 0 if r is not divisible by M.

(iii)
∑
𝑟≠0

𝑘 (|𝑟 |)

|𝑟 |
|�̃�(𝑟) |2 ≤ 𝐾𝛿−1.

(iv) There is a finite collection of intervals I such that⋃
𝐼 ∈I

𝐼 ⊇ supp 𝑔, but
∑
𝐼 ∈I

ℎ(|𝐼 |) ≤ 𝛿.

Proof. Replace h by ℎ̃ = 𝛿−1ℎ in Lemma 2.5. �

2.3. Completion of the proof of Theorem 1.5

The rest of the proof of Theorem 1.5 is essentially contained in the next lemma.

Lemma 2.8. Suppose that 𝛼 > 0, 𝛾𝑟 > 0 and 𝛾𝑟 → 0 as 𝑟 → ∞. Then if 𝑓 ∈ 𝐶∞(T) is a positive
function with 𝑓 (0) = 1 and 𝜖, 𝜂 > 0 and 𝑄 ≥ 1 are given, we can find a positive function 𝐹 ∈ 𝐶∞(T)

with the following properties:

(i) �̂� (0) = 1.
(ii) |�̂� (𝑟) − 𝑓 (𝑟) | ≤ 𝜖 for all |𝑟 | ≤ 𝑄.

(iii)
∑
𝑟≠0

𝛾𝑟
𝑘 (|𝑟 |)

𝑟
|�̂� (𝑟) |2 ≤ 𝜖 +

∑
𝑟≠0

𝛾𝑟
𝑘 (|𝑟 |)

𝑟
| 𝑓 (𝑟) |2.

(iv) There is a finite collection of intervals I such that⋃
𝐼 ∈I

𝐼 ⊇ supp 𝐹, but
⋃
𝐼 ∈I

ℎ(|𝐼 |) ≤ 𝜂.

(v) supp 𝐹 ⊆ supp 𝑓 .

Proof. Observe that it suffices to find a �̃� satisfying conditions (ii), (iii), (iv) and (v) with 𝜖 replaced by
a sufficiently small 𝜖 and then taking 𝐹 =

(
�̂� (0)

)−1
�̃�. We therefore ignore condition (i).

We observe that, since f is infinitely differentiable, we can find a 𝐶 > 1 with | 𝑓 (𝑟) | ≤ 𝐶𝑟−2 for 𝑟 ≠ 0.
Let K be as in Lemma 2.7, and choose N sufficiently large that 𝐶−2𝐾−1𝛿𝜖/2 > 𝛾𝑟 for all 𝑟 ≥ 𝑁 . Now
let M be an integer with 𝑀 > 𝑄, to be fixed later, take g to be the corresponding function satisfying the
conditions of Lemma 2.7 and set 𝐹 (𝑡) = 𝑔(𝑡) 𝑓 (𝑡). Conditions (iv) and (v) are immediate.

Since 𝑓 ∈ 𝐶∞, we have 𝑓 ∈ 𝑙1. Further, �̂�(0) = 1 and �̂�(𝑟 − 𝑗) = 0 for 1 ≤ |𝑟 − 𝑗 | < 𝑀 , so

|�̂� (𝑟) − 𝑓 (𝑟) | =

�����∑
𝑗≠𝑟

𝑓 ( 𝑗)�̂�(𝑟 − 𝑗)

����� ≤ ∑
|𝑟− 𝑗 | ≥𝑀

| 𝑓 ( 𝑗) | ≤
∑

| 𝑗 | ≥𝑀−𝑄

| 𝑓 ( 𝑗) |

and condition (ii) will hold provided only that M is sufficiently large.
Since N is fixed, we may also choose M sufficiently large∑

1≤ |𝑟 | ≤𝑁

𝛾𝑟
𝑘 (|𝑟 |)

|𝑟 |
|�̂� (𝑟) |2 ≤

𝜖

2
+

∑
1≤ |𝑟 | ≤𝑁

𝛾𝑟
𝑘 (|𝑟 |)

|𝑟 |
| 𝑓 (𝑟) |2
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so, automatically, ∑
1≤ |𝑟 | ≤𝑁

𝛾𝑟
𝑘 (|𝑟 |)

|𝑟 |
|�̂� (𝑟) |2 ≤

𝜖

2
+
∑
𝑟≠0

𝛾𝑟
𝑘 (|𝑟 |)

|𝑟 |
| 𝑓 (𝑟) |2.

Now, | 𝑓 | ≤ 𝐶𝑟−2 for 𝑟 ≠ 0 and |�̂� (𝑟) | ≤ �̃�(𝑟), so, using Lemma 2.7, we have∑
|𝑟 |>𝑁

𝛾𝑟
𝑘 (|𝑟 |)

|𝑟 |
|�̂� (𝑟) |2 ≤

𝜖

2𝐶2𝐾𝛿−1

∑
|𝑟 |>𝑁

𝑘 (|𝑟 |)

|𝑟 |
|�̂� (𝑟) |2

≤
𝜖

2𝐶2𝐾𝛿−1

∑
|𝑟 |>𝑁

𝑘 (|𝑟 |)

|𝑟 |
�̃�(𝑟)2

≤
𝜖

2𝐾𝛿−1

∑
𝑟≠0

𝑘 (|𝑟 |)

|𝑟 |
�̃�(𝑟)2 ≤

𝜖

2
.

Combining this result with the final formula of the previous paragraph, we see that condition (iii) holds
and the proof is complete. �

The rest of the argument is standard.

Proof of Theorem 1.5. Take 𝑓0 = 1. By Lemma 2.8, we can find a sequence of positive function
𝑓𝑛 ∈ 𝐶∞(T) with the following properties:

(i)n 𝑓𝑛 (0) = 1.
(ii)n | 𝑓𝑛 (𝑟) − 𝑓𝑛−1 (𝑟) | ≤ 2−𝑛 for all |𝑟 | ≤ 𝑛.

(iii)n
∑
𝑟≠0

𝛾𝑟
𝑘 (|𝑟 |)

|𝑟 |
| 𝑓𝑛 (𝑟) |

2 ≤ 1 − 2−𝑛.

(iv)n There is a finite collection of intervals I𝑛 such that⋃
𝐼 ∈I𝑛

𝐼 ⊇ supp 𝑓𝑛, but
⋃
𝐼 ∈I𝑛

ℎ(|𝐼 |) ≤ 2−𝑛.

(v)n supp 𝑓𝑛−1 ⊆ supp 𝑓𝑛.

Standard theorems now tell us that the measures 𝑓𝑛𝑚 (where m is Lebesgue measure) converge
weakly to a probability measure 𝜇 with supp 𝜇 ⊆ supp 𝑓𝑛 and that 𝜇 has the properties we require. �

Observe that the final sentence of Subsection 2.2 implies that there is a sequence 𝑀 ( 𝑗) → ∞ such
that exp(𝑖𝑀 ( 𝑗)𝑡) → 1 uniformly on supp 𝜇, so �̂�

(
𝑀 ( 𝑗)

)
→ 1 as 𝑗 → ∞.

3. A result for logarithmic Hausdorff measure

Theorem V of Chapter III of [3] also states the following result, where we write ℎ𝐿 (𝑡) =
(
log(2/𝑡)

)−1

for 𝑡 ∈ (0, 1], ℎ(0) = 0.

Theorem 3.1 (Kahane and Salem). Then if 𝜇 is a probability measure with∑
𝑟≠0

| �̂�(𝑟) |2

|𝑟 |
< ∞,

the support of 𝜇 has strictly positive ℎ𝐿-measure.

Again, we can show that Theorem 3.1 is sharp in the following sense.
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Theorem 3.2. Suppose 𝛾𝑟 > 0 and 𝛾𝑟 → 0 as 𝑟 → ∞. Then we can find a probability measure 𝜇 with
support zero ℎ𝐿-measure, but ∑

𝑟≠0
𝛾 |𝑟 |

| �̂�(𝑟) |2

|𝑟 |
< ∞.

The proof depends on the following close (but simpler) analogue of Lemma 2.3.

Lemma 3.3. There exists a constant C for which the following is true. Given any 𝑀 ≥ 1, there exists
exists a positive function 𝑔 ∈ 𝐶∞(T) with the following properties:

(i) �̂�(0) = 1.
(ii) �̂�(𝑟) = 0 for 1 ≤ |𝑟 | ≤ 𝑀 − 1.

(iii)
∑
𝑟≠0

|�̂�(𝑟) |2

|𝑟 |
≤ 𝐶.

(iv) There is a finite collection of intervals I such that⋃
𝐼 ∈I

𝐼 ⊇ supp 𝑔, but
∑
𝐼 ∈I

ℎ𝐿 (|𝐼 |) ≤ 1.

Proof. We set

𝑔(𝑡) = 𝑢exp(𝑀 ) ∗
𝛿0 + 𝛿1/𝑀 + 𝛿2/𝑀 + . . . + 𝛿 (𝑀−1)/𝑀

𝑀
,

with 𝑢𝑅 as in Lemma 2.2, and follow the proof of Lemma 2.3.
Conditions (i) and (ii) are immediate. Condition (iv) follows on choosing I to be the collection of

intervals

[𝑘𝑀−1 − exp(−𝑀)/2, 𝑘 𝑝−1 + exp(−𝑀)/2] with 1 ≤ 𝑘 ≤ 𝑀.

Finally, using a sequence of inequalities that should be compared to the corresponding sequence in
Lemma 2.3, ∑

𝑟≠0

|�̂�(𝑟) |2

|𝑟 |
=
∑
𝑘≠0

|�̂�(𝑘𝑀) |2

|𝑘𝑀 |
=

1
𝑀

∑
𝑘≠0

|�̂�exp(𝑀 ) (𝑘) |
2

|𝑘 |

≤
1
𝑀

���
∑

|𝑘 | ≤exp(𝑀 )

1
|𝑘 |

+
𝑀22𝛽2

1
𝑀

∑
|𝑘 |>exp(𝑀 )

𝛽2
1
(
exp(𝑀)

)2 1
|𝑘 |3

���
≤

𝐶1
𝑀

log
(
exp(𝑀)

)
+ 𝐶2 ≤ 𝐶

for appropriate constants 𝐶1, 𝐶2 and C, so (iii) holds. �

The proof of Theorem 3.1 now follows the same path as that of Theorem 1.5.

4. Proof of Theorem 1.6

4.1. The building blocks

Our proof of Theorem 1.6 requires a more complicated building block. We start with another version of
Lemma 2.3.
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Lemma 4.1. Let 1 > 𝛼 > 0. Then if the conditions of Theorem 1.6 hold, there exist constants 𝐴 = 𝐴(𝛼)
and 𝐵 = 𝐵(𝛼) such that the following is true. If 𝑝 ≥ 2, there exists a positive function 𝑔𝑝 ∈ 𝐶∞(T) with
the following properties:

(i) �̂�𝑝 (0) =
1

𝑝𝐿(𝑝)
.

(ii) �̂�𝑝 (𝑟) = 0 if r is not divisible by p.
(iii) |�̂�𝑝 (𝑟) | ≤ 𝐵 |𝑟 |−2 for |𝑟 | ≥ 𝑝9/𝛼.

(iv) |𝑔𝑝 (𝑟) | ≤
𝐴

𝑝𝐿(𝑝)
for all 𝑟 ≠ 0.

(v) There is a finite collection of intervals I𝑝 such that⋃
𝐼 ∈I𝑝

𝐼 ⊇ supp 𝑔𝑝 , but
∑
𝐼 ∈I𝑝

ℎ(|𝐼 |) ≤
1

𝑝𝐿(𝑝)
.

Proof. We set 𝑅𝑝 = 𝑘−1(𝑝2𝐿(𝑝)) and

𝑔𝑝 (𝑡) =
1

𝑃𝐿(𝑝)
𝑢𝑅𝑝 ∗

𝛿0 + 𝛿1/𝑝 + 𝛿2/𝑝 + . . . + 𝛿 (𝑝−1)/𝑝

𝑝
,

with 𝑢𝑅 as in Lemma 2.2.
Conditions (i) and (ii) are immediate. Condition (v) follows on choosing I𝑝 to be the collection of

intervals

[ 𝑗 𝑝−1 − ℎ−1(𝑝−2𝐿(𝑝)−1)/2, 𝑗 𝑝−1 + ℎ−1 (𝑝−2𝐿(𝑝)−1)/2] with 1 ≤ 𝑗 ≤ 𝑝.

Before looking at conditions (iv) and (iii), we note that

�̂�𝑝 (𝑟) =

{
1

𝑝𝐿 (𝑝) �̂�𝑅𝑝 (𝑟) if 𝑝 divides 𝑟,

0 otherwise
.

Condition (iii) follows from condition (ii) of Lemma 2.2, which yields

|�̂�𝑝 (𝑟) | ≤
1

𝑝𝐿(𝑝)
|�̂�𝑅𝑝 (𝑟) | ≤

𝛽3
𝑝𝐿(𝑝)

𝑅3
𝑝 |𝑟 |

−3

=
𝛽3

𝑝𝐿(𝑝)

(
𝑘−1(𝑝2𝐿(𝑝)

)
)3 |𝑟 |−3 ≤

𝛽3
𝑝𝐿(𝑝)

𝑘−1 (𝑝3)3 |𝑟 |−3

≤
𝛽3
𝑝

𝑝9/𝛼 |𝑟 |−3 ≤ 𝐵𝑝−1 |𝑟 |−2 ≤ 𝐵𝑟−2

for |𝑟 | ≥ 𝑝9/𝛼, where B is some appropriate constant.
To check condition (iv), we first observe that, if 1 ≤ |𝑟 | ≤ 𝑅, then

𝑘 (|𝑟 |)𝐿(|𝑟 |) ≤ 𝑘 (𝑅𝑝)𝐿(𝑅𝑝) = 𝑝2𝐿(𝑝)𝐿
(
𝑘−1 (𝑝2𝐿(𝑝))

)
≤ 𝑝2𝐿(𝑝)𝐿(𝑘−1 (𝑝3))

≤ 𝑝2𝐿(𝑝)𝐿(𝑝3/𝛼) ≤ 𝐶𝑝2𝐿(𝑝2)

so that

𝐶

𝑘 (|𝑟 |)𝐿(|𝑟 |)
≥

1
𝑝2𝐿(𝑝)2 ≥ |�̂�(𝑟) |2.
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On the other hand, if 𝑟 ≥ 𝑅, then choosing 𝑞 > (1 + 𝛼−1)/2 using condition (ii) of Lemma 2.2, we have

|�̂�(𝑟) |2 ≤ 𝛽2
𝑞𝑅

2𝑞
𝑝 |𝑟 |−2𝑞

and

𝑘 (|𝑟 |)𝐿(|𝑟 |) ≤
|𝑟 |1+𝛼

−1

𝑅1+𝛼−1
𝑝

𝑘 (𝑅𝑝)𝐿(𝑅𝑝)

so

𝐶𝛽2
𝑞

𝑘 (|𝑟 |)𝐿(|𝑟 |)
≥ |�̂�(𝑟) |2.

Thus condition (iv) holds for an appropriate A. �

We shall make use of the following result.

Lemma 4.2. Let 𝐿 : [1,∞) → [1,∞) be a a continuous increasing function, and let P be the set of
prime numbers. Then ∫ ∞

1

1
𝑥𝐿(𝑥) log 𝑥

𝑑𝑥 = ∞, implies
∑
𝑝∈𝑃

1
𝑝𝐿(𝑝)

= ∞.

Proof. By the prime number theorem or the much more easily obtained Chebychev inequality (see, for
example, [7]), there exists a strictly positive constant K such that if n is large enough, the number of
elements in

𝑃(𝑛) = {𝑝 ∈ 𝑃 : 2𝑛 ≤ 𝑝 < 2𝑛+1}

exceeds 𝐾𝑛−12𝑛. Thus, if n is large enough,∑
𝑝∈𝑃 (𝑛)

1
𝑝𝐿(𝑝)

≥ 𝐾
2𝑛

𝑛
×

1
2𝑛+1𝐿(2𝑛+1)

≥
𝐾

2
×

2𝑛+1

(𝑛 + 1)2𝑛+1𝐿(2𝑛+1)

≥
𝐾

2

∫ 2𝑛+2

2𝑛+1

1
𝑥𝐿(𝑥) log 𝑥

𝑑𝑥,

and the result follows. �

We can now prove our central step.

Lemma 4.3. Let 𝛼 > 0. Then there exists a constant 𝐴′ = 𝐴′(𝛼) such that the following is true.
Suppose that the conditions of Theorem 1.6 hold. Then there exists an 𝑀1 such that, given any

𝑀 ≥ 𝑀1, there exists exists a positive function 𝑔 ∈ 𝐶∞(T) with the following properties:

(i) �̂�(0) = 1.
(ii) �̂�(𝑟) = 0 for 1 ≤ |𝑟 | ≤ 𝑀 .

(iii) |�̂�(𝑟) | ≤
𝐴′(

𝑘 (𝑟)𝐿(𝑟)
)1/2 for all 𝑟 ≠ 0.

(iv) There is a finite collection of intervals I such that⋃
𝐼 ∈I

𝐼 ⊇ supp 𝑔, but
∑
𝐼 ∈I

ℎ(|𝐼 |) ≤ 2.
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Proof. It is sufficient to prove the result with (i) replaced by
(i)′�̂�(0) ≥ 1.
To this end, we choose 𝑀1 such that

1
𝑟𝐿(𝑟)

≤
1
2
.

If 𝑀 ≥ 𝑀1, we consider the sequence of consecutive primes 𝑝(1), 𝑝(2), . . . starting with 𝑝(1), the
smallest prime greater than M.

By Lemma 4.2 and our choice of 𝑀1, we can find an N such that 1 ≤
∑𝑁

𝑗=1
1

𝑝 ( 𝑗)𝐿
(
𝑝 ( 𝑗)

) ≤ 2. We

set 𝑔 =
∑𝑁

𝑗=1 𝑔𝑝 ( 𝑗) , where the 𝑔𝑝 ( 𝑗) are as in Lemma 4.1. Conditions (i)′, (ii) and (iv) can be read off
directly from conditions (i), (ii) and (v) of that lemma.

We now wish to bound |�̂�(𝑟) |. We observe that

|�̂�(𝑟) | ≤
∑

𝑝 ( 𝑗) ≤ |𝑟 |𝛼/9

|�̂�𝑝 ( 𝑗) (𝑟) | +
∑

|𝑟 |𝛼/9≤𝑝 ( 𝑗) ≤ |𝑟 |

|�̂�𝑝 ( 𝑗) (𝑟) |

and bound the two sums separately. By condition (iii) of Lemma 4.1,∑
𝑝 ( 𝑗) ≤𝑟 𝛼/9

|�̂�𝑝 ( 𝑗) (𝑟) | ≤
∑

𝑝 ( 𝑗) ≤𝑟 𝛼/9

𝐵 |𝑟 |−2 ≤ 𝐵𝑟−1

= 𝐵

(
𝑘 (|𝑟 |)

|𝑟 |

)1/2 (
𝐿(|𝑟 |)

|𝑟 |

)1/2 1√
𝑘 (|𝑟 |)𝐿(|𝑟 |)

≤ 𝐵1
1√

𝑘 (|𝑟 |)𝐿(|𝑟 |)

for an appropriate 𝐵1 since 𝑘 (|𝑟 |) |𝑟 |−1 and 𝐿(|𝑟 |) |𝑟 |−1 decrease with |𝑟 |.
On the other hand, there can be at most 9/𝛼 distinct primes 𝑟 ≥ 𝑝( 𝑗) ≥ 𝑟𝛼/9 with �̂�𝑝 ( 𝑗) (𝑟) ≠ 0 (since

the 𝑝( 𝑗) must divide r, we write 𝑝( 𝑗) |𝑟 when this happens), so, using condition (iv) of Lemma 4.1,∑
|𝑟 | ≥𝑝 ( 𝑗)> |𝑟 |𝛼/9

|�̂�𝑝 ( 𝑗) (𝑟) | =
∑

𝑟 ≥𝑝 ( 𝑗)>𝑟 𝛼/9 , 𝑝 ( 𝑗) |𝑟

|�̂�𝑝 ( 𝑗) (𝑟) |

≤
∑

𝑟 ≥𝑝 ( 𝑗)>𝑟 𝛼/9 ,𝑟 |𝑝 ( 𝑗)

𝐴(
𝑘 (|𝑟 |)𝐿(|𝑟 |)

)1/2 ≤
9𝐴𝛼−1(

𝑘 (|𝑟 |)𝐿(|𝑟 |)
)1/2

and we are done. �

4.2. Completion of the proof

The remainder of the proof is straightforward.

Lemma 4.4. Suppose that the conditions of Theorem 1.6 hold. Then given any 𝜂 > 0, there exists an
𝑀0 (𝜂) such that, if 𝑀 ≥ 𝑀0 (𝜂), we can find a 𝑔 ∈ 𝐶∞(T) with the following properties:

(i) �̂�(0) = 1.
(ii) �̂�(𝑟) = 0 for 1 ≤ |𝑟 | ≤ 𝑀 .

(iii) |�̂�(𝑟) | ≤
𝜂(

𝑘 (|𝑟 |)𝐿(|𝑟 |)
)1/2 for all 𝑟 ≠ 0.

(iv) There is a finite collection of intervals I such that⋃
𝐼 ∈I

𝐼 ⊇ supp 𝑔, but
∑
𝐼 ∈I

ℎ(|𝐼 |) ≤ 𝜂.
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Proof. We can choose ℎ̃ = 𝐴′𝜂−1ℎ and �̃� such that �̃�(𝑥)/𝐿(𝑥) → 0 so that the conditions of Theorem 1.6
still hold. We now apply Lemma 4.3 with and h replaced by ℎ̃ and L by �̃�. �

The next result corresponds to Lemma 2.8 but is little simpler.

Lemma 4.5. Suppose the conditions of Theorem 1.6 hold. Then if 𝑓 ∈ 𝐶∞(T) is a positive function with
𝑓 (0) = 1, 𝜖 > 0 and 𝑄 ≥ 1, we can find a positive function 𝐹 ∈ 𝐶∞(T) with the following properties:

(i) �̂� (0) = 1.
(ii) |�̂� (𝑟) − 𝑓 (𝑟) | ≤ 𝜖

(
𝑘 (|𝑟 |)𝐿(|𝑟 |)

)−1/2.
(iii) There is a finite collection of intervals I such that⋃

𝐼 ∈I
𝐼 ⊇ supp 𝐹, but

⋃
𝐼 ∈I

ℎ(|𝐼 |) ≤ 𝜂.

(iv) supp 𝐹 ⊆ supp 𝑓 .

Proof. As in the first paragraph of the proof of Lemma 2.8, we observe that we can replace condition
(i) by the weaker condition |�̂� (0) − 1| < 𝜖 .

Now let g be as in Lemma 4.4, with 𝜂 and M to be determined. Set 𝐹 (𝑡) = 𝑓 (𝑡)𝑔(𝑡). Conditions (iii)
and (iv) are immediate. We know that there exists a C such that | 𝑓 (𝑟) | ≤ 𝐶𝑟−4, so, provided N is large
enough,

| 𝑓 (𝑟) | ≤
𝜖

2
(
𝑘 (|𝑟 |)𝐿(|𝑟 |)

)−1/2

whenever |𝑟 | ≥ 𝑁 .
We also have

|�̂� (𝑟) − 𝑓 (𝑟) | =

������∑𝑗≠0
𝑓 ( 𝑗)�̂�(𝑟 − 𝑗)

������ ≤ ∑
𝑗≠0

| 𝑓 ( 𝑗) | |�̂�(𝑟 − 𝑗) |

≤
∑

𝑗≠0, |𝑟− 𝑗 | ≥𝑀

𝐶 𝑗−4 → 0

as 𝑀 → ∞ for each r, so, provided we take M large enough, we will have

|�̂� (𝑟) − 𝑓 (𝑟) | ≤ 𝜖
(
𝑘 (|𝑟 |)𝐿(|𝑟 |)

)−1/2

for all 1 ≤ |𝑟 | ≤ 𝑁 and in addition |�̂� (0) − 1| < 𝜖 .
Combining the results of the two previous paragraphs, we see that the required result will hold,

provided we can ensure that

|�̂� (𝑟) − 𝑓 (𝑟) | ≤
𝜖

2
(
𝑘 (|𝑟 |)𝐿(|𝑟 |)

)−1/2

for all |𝑟 | ≥ 𝑁 . We have

|�̂� (𝑟) − 𝑓 (𝑟) | ≤
∑
𝑗≠0

| 𝑓 ( 𝑗) | |�̂�(𝑟 − 𝑗) |

≤
∑

𝑗≠0, |𝑟− 𝑗 | ≤𝑟/2
𝐶 𝑗−4 |�̂�(𝑟 − 𝑗) | +

∑
|𝑟− 𝑗 |> |𝑟 |/2

𝐶 𝑗−4.
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We estimate the two sums separately:∑
|𝑟− 𝑗 |> |𝑟 |/2

𝑗−4 ≤ 𝐶1 |𝑟 |
−3 ≤

𝜖

4
(
𝑘 (|𝑟 |)𝐿(|𝑟 |)

)−1/2

(with 𝐶1 an appropriate constant) for all |𝑟 | ≥ 𝑁 , provided only that we have taken N large enough.
On the other hand, we know that there is a constant 𝐶2 such that

𝑘 (|𝑟 |)𝐿(|𝑟 |) ≤ 𝐶2
2 𝑘 (| 𝑗 |)𝐿(| 𝑗 |)

for all |𝑟 − 𝑗 | ≤ |𝑟 |/2, so∑
𝑗≠0, |𝑟− 𝑗 | ≤ |𝑟 |/2

𝐶 𝑗−4 |�̂�(𝑟 − 𝑗) | ≤
∑

𝑗≠0, |𝑟− 𝑗 | ≤ |𝑟 |/2
𝐶 𝑗−4 𝜂(

𝑘 (|𝑟 − 𝑗 |)𝐿(|𝑟 − 𝑗 |)
)1/2

≤
∑

𝑗≠0, |𝑟− 𝑗 | ≤ |𝑟 |/2
𝐶2𝐶 𝑗−4 𝜂(

𝑘 (|𝑟 |)𝐿(|𝑟 |)
)1/2

≤
𝜂𝐶2𝐶(

𝑘 (|𝑟 |)𝐿(|𝑟 |)
)1/2

≤
𝜖

4
(
𝑘 (|𝑟 |)𝐿(|𝑟 |)

)1/2 ,

provided only that we have choose 𝜂 sufficiently small. Condition (ii) follows. �

The rest of the argument is standard.

Proof of Theorem 1.4. Take 𝑓0 = 1. By Lemma 4.5, we can find a sequence of positive function
𝑓𝑛 ∈ 𝐶∞(T) with the following properties:

(i)n 𝑓𝑛 (0) = 1.
(ii)n | 𝑓𝑛 (𝑟) − 𝑓𝑛−1(𝑟) | ≤

2−𝑛(
𝑘 (|𝑟 |)𝐿(|𝑟 |)

)1/2 .

(iii)n There is a finite collection of intervals I𝑛 such that⋃
𝐼 ∈I𝑛

𝐼 ⊇ supp 𝑓𝑛, but
⋃
𝐼 ∈I𝑛

ℎ(|𝐼 |) ≤ 2−𝑛.

(iv)n supp 𝑓𝑛 ⊆ supp 𝑓𝑛−1.

Standard theorems now tell us that the measures 𝑓𝑛𝑚 (where m is Lebesgue measure) converge
weakly to a probability measure 𝜇 with supp 𝜇 ⊆ supp 𝑓𝑛 and that 𝜇 has the properties we require. �

The results and proofs of this paper go over with appropriate modifications to T𝑛 and R𝑛.
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